[1] M. Ahmad, D. Afzal, W. Nazeer, and S. Kang, On topological indices of octagonal network, Far East J. Math. Sci. 102 (2017), no. 11, 2563–2571.
[3] T. Bartnicki, B. Brešar, J. Grytczuk, M. Kovše, Z. Miechowicz, and I. Peterin, Game chromatic number of Cartesian product graphs, Electron. J. Comb. 15 (2008), Articel ID: R72.
https://doi.org/10.37236/796
[4] R. Belmonte, A. Giannopoulou, D. Lokshtanov, and D.M. Thilikos, The structure of $w_4$-immersion-free graphs, 2016.
[6] S.A.U.H. Bokhary and M.S. Akhtar, Game chromatic number of some convex polytope graphs, Util. Math. 104 (2017), 15–22.
[7] S.A.U.H. Bokhary, T. Iqbal, and U. Ali, Game chromatic number of Cartesian and corona product graphs, J. Algebra Comb. Discrete Appl. 5 (2018), no. 3, 129–136.
[8] J.A. Bondy and U.S.R. Murty, Graph Theory, 6 springer, Springer, New York, 2008.
[9] D. Chakraborti, A. Frieze, and M. Hasabnis, The game chromatic number of a random hypergraph, pp. 153–175, Springer Cham, 2020.
[12] U. Faigle, U. Kern, H. Kierstead, and W.T. Trotter, On the game chromatic number of some classes of graphs, Ars Combin. 35 (1993), 143–150.
[14] D.J. Guan and X. Zhu, Game chromatic number of outerplanar graphs, J. Graph Theory 30 (1999), no. 1, 67–70.
[17] P.D. Manuel and I. Rajasingh, Minimum metric dimension of silicate networks., Ars Combin. 98 (2011), 501–510.
[18] C. Sia and J. Gallian, The game chromatic number of some families of Cartesian product graphs, AKCE Int. J. Graphs Comb. 6 (2009), no. 2, 315–327.
[19] F. Simonraj and A. George, Topological properties of few poly oxide, poly silicate, DOX and DSL networks, Int. J. Future Comput. Commun. 2 (2013), no. 2, 90–95.
http://doi.org/10.7763/IJFCC.2013.V2.128