[1] L.W. Beineke, R.J. Wilson, and P.J. Cameron, Topics in Algebraic Graph Theory, Cambridge University Press, 2004.
[2] Ş.B. Bozkurt and D. Bozkurt, On incidence energy, MATCH Commun. Math. Comput. Chem. 71 (2014), no. 1, 215–225.
[3] A. Cayley, Desiderata and suggestions: No. 2. The Theory of groups: graphical representation, Amer. J. Math. 1 (1878), no. 2, 174–176.
https://doi.org/10.2307/2369306
[4] S. Chokani, F. Movahedi, and S.M. Taheri, Graph energies of zero-divisor graphs of finite commutative rings, Int. J. Nonlinear Anal. Appl. 14 (2023), no. 7, 207–216.
https://doi.org/10.22075/ijnaa.2022.7136
[5] S. Chokani, F. Movahedi, and S.M. Taheri, The minimum edge dominating energy of the Cayley graphs on some
symmetric groups, Algebr. Struct. their Appl. 10 (2023), no. 2, 15–30.
https://doi.org/10.22034/as.2023.3001
[6] D. Cvetković, M. Doob, and H. Sachs, Spectra of Graphs-Theory and Application, Academic Press, New York, 1980.
[7] D. Cvetković, P. Rowlinson, and S. Simi´c, An Introduction to the Theory of Graph Spectra, Cambridge University Press, New York, 2010.
[10] I. Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forschungsz. Graz. 103 (1978), 1–22.
[12] F. Harary, Graph Theory, Addison-Wesley, 1969.
[14] W. Klotz and T. Sander, Integral Cayley graphs over abelian groups, Electron. J. Combin. 17 (2010), no. 1, ID: #R81.
https://doi.org/10.37236/353
[15] N. Palanivel and A.V. Chithra, Energy and Laplacian energy of unitary addition Cayley graphs, Filomat 33 (2019), no. 11, 3599–3613.