The energy and edge energy of some Cayley graphs on the abelian group Zn4

Document Type : Original paper

Author

Department of Mathematics, Faculty of Sciences, Golestan University, Gorgan, Iran

Abstract

Let G=(V,E) be a simple graph such that λ1,,λn be the eigenvalues of G. The energy of graph G is denoted by E(G) and is defined as E(G)=i=1n|λi|. The edge energy of G is the energy of line graph G. In this paper, we investigate the energy and edge energy for two Cayley graphs on the abelian group Zn4, namely, the Sudoku graph and the positional Sudoku graph. Also, we obtain graph energy and edge energy of the complement of these two graphs.

Keywords

Main Subjects


[1] L.W. Beineke, R.J. Wilson, and P.J. Cameron, Topics in Algebraic Graph Theory, Cambridge University Press, 2004.
[2] Ş.B. Bozkurt and D. Bozkurt, On incidence energy, MATCH Commun. Math. Comput. Chem. 71 (2014), no. 1, 215–225.
[3] A. Cayley, Desiderata and suggestions: No. 2. The Theory of groups: graphical representation, Amer. J. Math. 1 (1878), no. 2, 174–176.  https://doi.org/10.2307/2369306
[4] S. Chokani, F. Movahedi, and S.M. Taheri, Graph energies of zero-divisor graphs of finite commutative rings, Int. J. Nonlinear Anal. Appl. 14 (2023), no. 7, 207–216.  https://doi.org/10.22075/ijnaa.2022.7136
[5] S. Chokani, F. Movahedi, and S.M. Taheri, The minimum edge dominating energy of the Cayley graphs on some
symmetric groups, Algebr. Struct. their Appl. 10 (2023), no. 2, 15–30.  https://doi.org/10.22034/as.2023.3001
[6] D. Cvetković, M. Doob, and H. Sachs, Spectra of Graphs-Theory and Application, Academic Press, New York, 1980.
[7] D. Cvetković, P. Rowlinson, and S. Simić, An Introduction to the Theory of Graph Spectra, Cambridge University Press, New York, 2010.
[8] K.C. Das, S.A. Mojallal, and I. Gutman, On energy of line graphs, Linear Algebra Appl. 499 (2016), 79–89. https://doi.org/10.1016/j.laa.2016.03.003
[9] M. Ghorbani, On the energy and Estrada index of Cayley graphs, Discrete Math. Algorithms Appl. 7 (2015), no. 1, Atricle ID: 1550005.  https://doi.org/10.1142/S1793830915500056
[10] I. Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forschungsz. Graz. 103 (1978), 1–22.
[11] I. Gutman, M. Robbiano, E.A. Martins, D.M. Cardoso, L. Medina, and O. Rojo, Energy of line graphs, Linear Algebra Appl. 433 (2010), no. 7, 1312–1323.  https://doi.org/10.1016/j.laa.2010.05.009
[12] F. Harary, Graph Theory, Addison-Wesley, 1969.
[13] A. Ilić, The energy of unitary Cayley graphs, Linear Algebra Appl. 431 (2009), no. 10, 1881–1889. https://doi.org/10.1016/j.laa.2009.06.025
[14] W. Klotz and T. Sander, Integral Cayley graphs over abelian groups, Electron. J. Combin. 17 (2010), no. 1, ID: #R81. https://doi.org/10.37236/353
[15] N. Palanivel and A.V. Chithra, Energy and Laplacian energy of unitary addition Cayley graphs, Filomat 33 (2019), no. 11, 3599–3613.
[16] B.R. Rakshith, On Zagreb energy and edge-Zagreb energy, Commun. Comb. Optim. 6 (2021), no. 1, 155–169. https://doi.org/10.22049/cco.2020.26901.1160
[17] H Shooshtary and J Rodriguez, New bounds on the energy of a graph, Commun. Comb. Optim. 7 (2022), no. 1, 81–90.  https://doi.org/10.22049/cco.2021.26999.1179