[6] B. Alzalg, Logarithmic-barrier decomposition interior-point methods for stochastic linear optimization in a hilbert space, Numer. Func. Anal. Optim. 41 (2020), no. 8, 901–928.
https://doi.org/10.1080/01630563.2019.1709499
[7] B. Alzalg, Combinatorial and Algorithmic Mathematics: From Foundation to Optimization, Kindle Direct Publishing, Seatle WA, 2022.
[8] B. Alzalg and K.A. Ariyawansa, Logarithmic barrier decomposition-based interior point methods for stochastic symmetric programming, J. Math. Anal. Appl. 409 (2014), no. 2, 973–995.
https://doi.org/10.1016/j.jmaa.2013.07.075
[9] B. Alzalg, K. Badarneh, and A. Ababneh, An infeasible interior-point algorithm for stochastic second-order cone optimization, J. Optim. Theory Appl. 181 (2019), 324–346.
https://doi.org/10.1007/s10957-018-1445-8
[12] R. Andreani, E.H. Fukuda, G. Haeser, D.O. Santos, and L.D. Secchin, On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming, Comput. Optim. Appl. 79 (2021), no. 3, 633–648.
https://doi.org/10.1007/s10589-021-00281-8
[14] P. Benner and T. Mitchell, Faster and more accurate computation of the H∞ norm via optimization., SIAM J Sci Comput. 40 (2018), A3609–A3635.
[15] T. Cai and W.X. Zhou, A max-norm constrained minimization approach to 1-bit matrix completion., J. Mach. Learn. Res. 14 (2013), no. 1, 3619–3647.
[16] M. Chen and S. Mehrotra, Self-concordance and decomposition-based interior point methods for the two-stage stochastic convex optimization problem, SIAM J. Optim. 21 (2011), no. 4, 1667–1687.
https://doi.org/10.1137/080742026
[17] I. Gravagne and I.D. Walker, Properties of minimum infinity-norm optimization applied to kinematically redundant robots, Proc. IEEE/RSJ Int. Conf. Intel. Robots Syst., IEEE, 1998, pp. 152–160.
https://doi.org/10.1109/IROS.1998.724612
[18] S. Kakihara, A. Ohara, and T. Tsuchiya, Curvature integrals and iteration complexities in SDP and symmetric cone programs, Comput. Optim. Appl. 57 (2014), no. 3, 623–665.
https://doi.org/10.1007/s10589-013-9608-x
[19] T. Liu, M.T. Hoang, Y. Yang, and M. Pesavento, A parallel optimization approach on the infinity norm minimization problem, 27th Proc Eur Signal Process Conf., IEEE, 2019, pp. 1–5.
https://doi.org/10.23919/EUSIPCO.2019.8902548
[20] S. Mehrotra and M.G. Özevin, Decomposition-based interior point methods for two-stage stochastic semidefinite programming, SIAM J. Optim. 18 (2007), no. 1, 206–222.
https://doi.org/10.1137/050622067
[21] Y. Nesterov and A. Nemirovskii, Interior-point polynomial algorithms in convex programming, SIAM, 1994.
[22] M.S. Sayadi Shahraki, H. Mansouri, and M. Zangiabadi, Two wide neighborhood interior-point methods for symmetric cone optimization, Comput Optim Appl. 68 (2017), 29–55.
https://doi.org/10.1007/s10589-017-9905-x
[24] G. Zhao, A log-barrier method with benders decomposition for solving two-stage stochastic linear programs, Math. Program. 90 (2001), 507–536.
https://doi.org/10.1007/PL00011433