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Abstract: The zero forcing number of a graph G, denoted Z(G), is a graph parame-

ter which is based on a color change rule that describes how to color the vertices. Zero
forcing is useful in several branches of science such as electrical engineering, computa-

tional complexity and quantum control. In this paper, we investigate the zero forcing

number for Cartesian products of some graphs. The main contribution of this paper
is to introduce a new presentation of the Cartesian product of two complete bipartite

graphs and to obtain the zero forcing number of these graphs. We also introduce a

purely graph theoretical method to prove Z(Kn2Km) = mn−m− n+ 2.
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1. Introduction

Let G = (VG, EG) be a graph with vertex set VG and edge set EG. The order of G,

denoted |G|, is the number of vertices of G. Throughout this paper, all graphs are

simple (no loops, no multiple edges), undirected, and have finite nonempty vertex

sets. The Cartesian product of two graphs G and H, denoted G2H, is the graph

with the vertex set VG× VH and two vertices (g1, h1) and (g2, h2) are adjacent if and

only if either g1 = g2 and h1h2 ∈ EH , or h1 = h2 and g1g2 ∈ EG. For other graph

theory terminology, we refer to [10].

The zero forcing number of a graph G, denoted Z(G), was introduced in [5] to bound

the minimum rank of graphs. Although it is defined as a useful tool to compute the

minimum rank of graphs, it becomes an interesting graph parameter that is studied

for its own sake (see for example [6, 7, 9]). Zero forcing is also known as graph

infection or graph propagation. Actually, it has been described differently and used

in many branches of science and mathematics (see for example [1–3, 11]).
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Definition 1. [5]

• Color-change rule:
Let G be a graph with each vertex colored either white or black. If u is a black vertex
of G, and v is the only white neighbor of u, then change the color of v to black.

• A zero forcing set for a graph G is a subset of vertices Z such that if initially the
vertices in Z are colored black and the remaining vertices are colored white, all the
vertices of G will be turned black after finitely many applications of the color-change
rule. The zero forcing number Z(G) is the minimum of |Z| over all zero forcing sets
Z ⊆ V (G).

We will call the discrete dynamical process of applying the color-change rule to Z and

G, the zero forcing process. For any zero forcing set Z of G, Chilakamarri et al. in [4]

introduced the iteration index IZ(G) of G to be the number of (global) applications

of the color-change rule required to turn all vertices of G black. Hogben et al. in [6],

studied the iteration index, which they call the propagation time, and characterized

graphs that have extreme propagation times. Propagation time was also described

implicitly in [3] and explicitly in [8].

Definition 2. [6] Let G = (V,E) be a graph and B a zero forcing set of G. Define
B(0) = B, and for t ≥ 0, B(t+1) is the set of vertices w for which there exists a vertex
b ∈

⋃t
s=0 B

(s) such that w is the only neighbor of b not in
⋃t

s=0 B
(s). The propagation time

of B in G, denoted pt(G,B), is the smallest integer t0 such that V =
⋃t0

t=0 B
(t).

Definition 3. [6] The minimum propagation time of G is

pt(G) = min{pt(G,B) | B is a minimum zero forcing set of G}.

In this paper, we investigate the zero forcing number of some Cartesian products of

graphs and also we try to determine some graph parameters associated with the zero

forcing number. In Section 2, we obtain the zero forcing number of the Cartesian

product of two complete graphs which is called Rook’s graph. In Section 3, we intro-

duce a generalization of Rook’s graph, and obtain its zero forcing number. Finally, we

pose a conjecture about the value of the propagation time of the Cartesian product

of two complete bipartite graphs.

2. Zero forcing number of Rook’s graph

A graph can be formed from an m×n chessboard if taking the squares as the vertices

and two vertices (exp. vi and vj) are adjacent if a chess piece situated on one square

(vi) can be transferred to the other square (vj) using the chess rules. Rook’s graph is

an example of this kind of graph. The Rook’s graph Rmn has mn squares as vertices

and two vertices are adjacent if they are on the same row or column. In other words,

this graph describes all possible movements of a rook on an m × n chessboard. We
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can see that the Rook’s graph is a Kn2Km graph which is the Cartesian product of

two complete graphs. The square (i, j) indicates the vertex located on the ith copy

of Kn and the jth copy of Km.

Throughout this section, we use this representation of Kn2Km. On an m× n chess-

board, as a Rook’s graph, where some squares are colored black and the others are

colored white, the color change rule of the zero forcing process is: if a square v = (i, j)

is black and w = (i′, j) or w = (i, j′) is the only white square in the row i and the

column j, then the color of w has to be changed to black and we say v forces w and

write v −→ w.

Now, we are interested in computing the zero forcing number of Kn2Km by this

representation. Although it is computed in [5] by an algebraic method, here we

present a purely graph theoretical method to determine it.

Lemma 1. For every two integers m,n ≥ 2,

Z(Kn2Km) ≤ (m− 1)(n− 1) + 1.

Proof. We assume that the m × n chessboard represents the graph Kn2Km. Let

B ⊆ V (Kn2Km) be the zero forcing set of Kn2Km containing all the squares except

the squares of the first column and the squares (1, 2), (1, 3), . . . , (1, n − 1), as it is

shown in Figure 1. If we apply the color change rule with B, the zero forcing process

Figure 1. The corresponding m × n chessboard of graph Kn2Km with the black squares represent the
zero forcing set B.

will finish in two steps. At the first step the vertices (2, n), (3, n), . . . , (n, n) force

the vertices (2, 1), (3, 1), . . . , (n, 1), respectively, and at the second step the vertices

(n, 1), (n, 2), . . . , (n, n−1) can force the vertices (1, 1), (1, 2), . . . , (1, n−1), respectively.

Therefore Z(Kn2Km) ≤ |B| = (m− 1)(n− 1) + 1.

For a graph G, define mz(G) = |G|−Z(G) [5]. In fact, mz(G) is the number of white

vertices in a black-white coloring of G where the black vertices form a minimum zero

forcing set. In the following lemma, we give an upper bound for mz(Kn2Km).
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Lemma 2. For every two integers m,n ≥ 2,

mz(Kn2Km) ≤ m + n− 2.

Proof. We use contradiction and assume that mz(Kn2Km) = m+ n− 1. Consider

a black-white coloring of the m× n chessboard corresponding to the graph Kn2Km

with the black squares representing a minimum zero forcing set of Kn2Km. Since

the black squares form a zero forcing set, there exists a completely black line (a row

or a column with no white square), otherwise each black square has at least two

white neighbors which is a contradiction. So the m + n − 1 white squares are in a

smaller chessboard which the sum of its dimensions is m + n − 1 (an m × (n − 1)

or an (m − 1) × n chessboard). To start the zero forcing process, there must be a

line with only one white square. Thus the other m + n − 2 white squares are in a

smaller chessboard which the sum of its dimensions is m+n−2. To continue the zero

forcing process, there must be a line with only one white square in this chessboard.

So the other m+n−3 white squares are in a smaller chessboard which the sum of its

dimensions is m + n− 3. By continuing this procedure, we reach a chessboard whose

sum of its dimensions is 4 and has four white squares. A 3 × 1 or 1 × 3 chessboard

with four squares is impossible so we end up with a 2× 2 chessboard with four white

squares. It means the initial chessboard has two rows i, i′ and two columns j, j′ that

have white squares in their crossing. Now, the color change rule cannot change the

color of these four squares, which is a contradiction. So mz(Kn2Km) < m + n − 1,

therefore mz(Kn2Km) ≤ m + n− 2.

Lemma 2 gives us a lower bound for Z(Kn2Km) and we can prove that the equality

holds.

Theorem 1. For every two integers m,n ≥ 2,

Z(Kn2Km) = (m− 1)(n− 1) + 1

and also pt(Kn2Km) = 2.

Proof. By Lemma 2, mn − Z(Kn2Km) ≤ m + n − 2 and thus the lower bound

follows. The upper bound comes from Lemma 1. So

Z(Kn2Km) = (m− 1)(n− 1) + 1.

To prove the second part, without loss of generality we assume that m ≤ n. As

it is shown in Lemma 1, there is a zero forcing set B of minimum size for which

pt(Kn2Km, B) = 2. So pt(Kn2Km) ≤ pt(Kn2Km, B) = 2 and the upper bound

follows. We now prove that pt(Kn2Km) > 1. We use contradiction and assume that

pt(Kn2Km) = 1. So there exists a minimum zero forcing set B with pt(Kn2Km, B) =
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1. In other words, the vertices of B will force all white vertices in one step. Hence,

no vertex that must perform a force, has more than one white neighbor. Consider the

m × n chessboard of graph Kn2Km when the squares corresponding to the vertices

of B are black. In this case, the most white squares can only exist in one line. So

there exist at most n white squares and we have |B| ≥ mn−n, which contradicts our

assumption that we took B as a minimum zero forcing set. Hence, for every minimum

zero forcing set B of Kn2Km, pt(Kn2Km, B) > 1 and we have pt(Kn2Km) = 2.

3. Zero forcing number of Generalized Rook’s graph

As already mentioned, the Cartesian product of two complete graphs (Kn2Km) is

a Rook’s graph corresponding to an m × n chessboard. In this section we introduce

a similar representation for the Cartesian product of two complete bipartite graphs,

saying Km,n2Km′,n′ . Here we introduce Generalized Rook’s graph as a generalization

of Rook’s graph, corresponding to this graph and finally obtain the zero forcing num-

ber of it during this section. First, we introduce a different checker pattern for this

graph. Consider the graph Km,n2Km′,n′ . Throughout this section, without loss of

generality we assume that m ≥ n, m′ ≥ n′, and m ≥ m′. Form an (m′+n′)× (m+n)

generalized chessboard from four smaller chessboards denoted C1 to C4. We denote

the m′ ×m chessboard in the upper-left corner by C1, the m′ × n chessboard in the

upper-right corner by C2, the n′ × n chessboard in the lower-right corner by C3 and

the n′ ×m chessboard in the lower-left corner by C4. So, C2 and C4 indicate even

chessboards and C1 and C3 indicate odd chessboards. The square (i, j) indicates the

vertex that is in the ith copy of Km,n and in the jth copy of Km′,n′ at the same time.

For simplicity, we index the rows and columns of the chessboards as shown in Figure

2. So the vertex set of G = Km,n2Km′,n′ can be represented as V = V1∪V2∪V3∪V4,

where

V1 = {(1, i, j) : 1 ≤ i ≤ m′, 1 ≤ j ≤ m},
V2 = {(2, i, j) : 1 ≤ i ≤ m′, 1 ≤ j ≤ n},
V3 = {(3, i, j) : 1 ≤ i ≤ n′, 1 ≤ j ≤ n},
V4 = {(4, i, j) : 1 ≤ i ≤ n′, 1 ≤ j ≤ m}.

The neighbors of the vertex (1, i, j) when 1 ≤ i ≤ m′ and 1 ≤ j ≤ m are the vertices

(2, i, j′) with 1 ≤ j′ ≤ n and the vertices (4, i′, j) with 1 ≤ i′ ≤ n′ and when 1 ≤ i ≤ n′

and 1 ≤ j ≤ n, the vertices (4, i, j′) with 1 ≤ j′ ≤ m and the vertices (2, i′, j) with

1 ≤ i′ ≤ m′ are the neighbors of the vertex (3, i, j). Thus the neighbors of each vertex

in an odd (even) chessboard are in the even (odd) chessboards. So it is obvious that

each chessboard mentioned above, corresponds to an independent set in the graph

Km,n2Km′,n′ .

In this section, we use this representation of Km,n2Km′,n′ , and determine the zero

forcing number of this graph. Consider the corresponding (m′ + n′)× (m+ n) gener-

alized chessboard and every Ci for i ∈ {1, 2, 3, 4}. Let all squares be initially colored
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Figure 2. The location of chessboards in the generalized chessboard corresponding to the Cartesian prod-
uct of two complete bipartite graphs.

black or white. So a black square (k, i, j) of Ck (when k is odd) can force a white

square if it is the only white square in the ith row of C(k+1) and jth column of C(k+3)(

mod 4) (consider Z4 = {1, 2, 3, 4}) and a black square (k, i, j) of Ck (when k is even)

can force a white square if it is the only white square in the jth column of C(k+1) (

mod 4) and ith row of C(k+3)( mod 4). Now, we are ready to give an upper bound

for the zero forcing number of the Generalized Rook’s graph.

Figure 3. The corresponding generalized chessboard of graph Km,n2Km′,n′ (where m ≥ n ≥ m′ ≥ n′)
in which the black squares represent the zero forcing set B.

Lemma 3. Let m, n, m′, and n′ be integers greater than 2. Then

Z(Km,n2Km′,n′) ≤ (m + n)(m′ + n′)− 2(m + n + m′ + n′) + 8.

Proof. Consider the generalized chessboard of the graph Km,n2Km′,n′ . We use
a special stairway pattern to color this generalized chessboard. We only show this
coloring for the case m ≥ n ≥ m′ ≥ n′ in Figure 3, as it can be done in a similar
fashion for the other cases. In fact, the zero forcing set shown in Figure 3 is B =
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{V1 \X1} ∪ {V2 \X2} ∪ {V3 \X3} ∪ {V4 \X4}, where

X1 = {(1, i, i+ 1), (1, i, i+ 2) : 1 ≤ i ≤ m′ − 2} ∪ {(1,m′ − 1, j) : m′ ≤ j ≤ m},
X2 = {(2, i, i+ 1), (2, i, i+ 2) : 1 ≤ i ≤ m′ − 2} ∪ {(2,m′ − 1, j) : m′ ≤ j ≤ n},
X3 = {(3, i, i), (3, i, i+ 1) : 1 ≤ i ≤ n′ − 2} ∪ {(3, n′ − 1, j) : n′ − 1 ≤ j ≤ n} ∪ {(3, n′, n′)},
X4 = {(4, i, i), (4, i, i+ 1) : 1 ≤ i ≤ n′ − 2} ∪ {(4, n′ − 1, j) : n′ − 1 ≤ j ≤ m} ∪ {(4, n′, n′)}.

If we apply the color change rule with the set B, the entire graph G will be black

after m′ steps. The cardinality of B is (m+n)(m′+n′)− 2(m+n+m′+n′) + 8. So

the bound follows.

Now, we present some lemmas in order to prove the equality of Lemma 3.

Lemma 4. Consider the generalized chessboard of the Cartesian product of two complete
bipartite graphs. To start the zero forcing process in every chessboard Ci (i ∈ {1, 2, 3, 4}), we
need a line (row or column) with only one white square in that chessboard.

Proof. For each i, all the squares in a line (row or column) of Ci are common

neighbors of some squares not in Ci. Assume that for k ∈ {1, 2, 3, 4}, every line in Ck

having some white squares, has at least two white squares. So even if all the squares

in other chessboards are black, no more color change can be done in Ck. So there

must be a line with exactly one white square to start the zero forcing process.

Lemma 5. Suppose that G is the Cartesian product of two complete bipartite graphs
and Z is a zero forcing set of G. Consider the checker pattern of G and color the squares
corresponding to the vertices in Z black. Then there exists at least one completely black
line in one of the even chessboards and at least one completely black line in one of the odd
chessboards.

Proof. We prove the lemma for the even chessboards. By a similar fashion, this

proof is valid for the odd chessboards as well.

Suppose that there dose not exist any completely black line in even chessboards. In

this case, each black square in any of the odd chessboards has at least two white

neighbors; at least one in each C2 and C4. Hence, the zero forcing process cannot

start in even chessboards and this contradicts the hypothesis.

Lemma 6. Consider the generalized chessboard which represents the graph G =
Km,n2Km′,n′ . In every minimum zero forcing set of G, there exist t + 2 lines in odd chess-
boards (also in even chessboards) having exactly t white squares together, for some integers
t ≥ 1.

Proof. By considering the odd chessboards, according to the previous lemma, there

exists at least one completely black line in these chessboards. If there exists another

such black line, then these two black lines and one of the lines mentioned in Lemma



642 Zero forcing number for Cartesian product of some graphs

4 are the desired lines. So, suppose that there exist no other black lines. without loss

of generality, assume that the only black line is a column of C1. In this case, only the

squares of C4 can change the color of the white squares in odd chessboards. Since

the black squares form a minimum zero forcing set of G, we also need color change

in odd chessboards by the squares of C2. On the other hand, none of the squares of

C2 can force any square until there exists a black column in C3 or a black row in C1.

Without loss of generality, suppose first when the rows of C3 become black by some

squares of C4, a column in C3 (say the ith column) also becomes black. This means,

if the ith column of C3 have t white squares, the corresponding rows of these white

squares in C3 have no other white squares. So these t rows of C3, the ith column of

C3 and the black column of C1 are the desired lines. By a similar argument for C2

and C4, the theorem is also true for even chessboards.

We are now in a position to obtain an upper bound for mz(Km,n2Km′,n′) and con-

clude the equality in Lemma 3.

Theorem 2. Let m, n, m′, and n′ be integers greater than 2. Then

Z(Km,n2Km′,n′) = (m + n)(m′ + n′)− 2(m + n + m′ + n′) + 8.

Proof. We proved the upper bound in Lemma 3. Now, we only need to prove the

lower bound. First, we give an upper bound for mz(G) where G = Km,n2Km′,n′ .

The checker pattern of the graph Km,n2Km′,n′ has four distinct smaller chessboards

Ci (i = 1, 2, 3, 4) and a zero forcing process can continue in each Ci at the same time.

The sum of dimensions of the even (odd) chessboards is m+n+m′+n′. Let B ⊆ VG

be a minimum zero forcing set of G. Consider a black-white coloring of the generalized

chessboard of G so that the squares corresponding to the vertices of B are black and

the other squares are white. Hence, there exist Z(G) black squares and mz(G) white

squares in this coloring. We claim that mz(G) ≤ 2(m + n + m′ + n′ − 4). To prove

it, we use contradiction and assume that mz(G) = 2(m + n + m′ + n′ − 4) + 1. So

either the odd chessboards or the even chessboards have at least m+ n+m′ + n′ − 3

white squares. Without loss of generality, assume that the even chessboards have

m + n + m′ + n′ − 3 white squares. By Lemma 6, there exist t + 2 lines with exactly

t white squares in these chessboards. So there exist m + n + m′ + n′ − t − 3 white

squares in two chessboards that the sum of their dimensions is m+n+m′+n′− t−2.

Now, using an argument similar to the proof of Lemma 2, we have two cases:

1. There exist at least k + 1 white squares in two chessboards which the sum of their

dimensions is k + 2 and one of them is a 1 × 1 chessboard. Thus we have at least k

white squares in a chessboard that the sum of its dimensions is k. We may continue

this argument for this chessboard and reach the contradiction as shown in Lemma 2.

2. There exist at least five white squares in two chessboards that the sum of their

dimensions is 6 and none of them is a 1× 1 chessboard. So each of them is 2× 1 or

1 × 2. Thus these chessboards have totally four squares and cannot have five white

squares.



Z. Montazeri, N. Soltankhah 643

The above argument leads to

mz(Km,n2Km′,n′) ≤ 2(m + n + m′ + n′ − 4).

Therefore

Z(Km,n2Km′,n′) ≥ (m + n)(m′ + n′)− 2(m + n + m′ + n′ − 4)

= (m + n)(m′ + n′)− 2(m + n + m′ + n′) + 8.

Thus the lower bound also follows and equality holds.

Corollary 1. For every two integers m,n ≥ 3,

Z(Km,n2Km,n) = (m + n)2 − 4(m + n) + 8.

We illustrate the statement of Corollary 1 for the case m ≤ n in Figure 4.

Figure 4. The coloring pattern for Km,n2Km,n (m ≤ n) in which the black squares represent a zero
forcing set B for the graph.

Corollary 2. For every integer n ≥ 3,

Z(Kn,n2Kn,n) = 4n2 − 8n + 8.

Example 1. Figure 5 shows the corresponding generalized chessboard of K4,92K4,9. The
black squares demonstrate the vertices of minimum zero forcing set B, which is obtained
by Corollary 1, and the numbers in the white squares indicate the steps that they will
become black. Easily can be seen, all squares will be black after 9 steps. In other words,
pt(K4,92K4,9, B) = 9.
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Figure 5. Corresponding chessboard of K4,92K4,9.

Corollary 3. For every integers m,n,m′, n′ ≥ 3,

pt(Km,n2Km′,n′) ≤ min{max{m,n},max{m′, n′}}.

Proof. As mentioned in the proof of Theorem 2, the propagation time of zero forcing

set B, which is introduced in Figure 3, is m′(= min{max{m,n},max{m′, n′}}). So

pt(Km,n2Km′,n′) ≤ pt(Km,n2Km′,n′ , B) = min{max{m,n},max{m′, n′}}.

Example 2. Figure 6 shows a zero forcing set B of size 84 for K4,62K5,7,
which is obtained by Theorem 2. So it can be easily seen that pt(K4,62K5,7, B) =
min

{
max{m,n},max{m′, n′}

}
= 6.

Figure 6. Corresponding generalized chessboard of K4,62K5,7.
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Corollary 4. The zero forcing number of the Cartesian product of two complete bipartite
graphs depends only on the dimensions of its generalized chessboards. In other words, for
integers m,n,m′, n′, r, s, r′, s′ ≥ 3 which m + n = r + s and m′ + n′ = r′ + s′, we have

Z(Km,n2Km′,n′) = Z(Kr,s2Kr′,s′).

4. Further work

In Section 3, we determined the value of parameter Z(Km,n2Km′,n′). For its related

parameter, propagation time, we pose the following conjecture.

Conjecture. Let m,n,m′, and n′ be integers greater than 2. We guess that

pt(Km,n2Km′,n′) = min
{

max{m,n},max{m′, n′}
}
.
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