[1] C. Berge, Theory of Graphs and its Applications, Methuen, London, 1962.
[2] M. Bhanumathi and R.M. Abirami, Superior eccentric domination in graphs, Int. J. Pure Appl. Math. 117 (2017), no. 14, 175–182.
[4] G. Chartrand, T.W. Haynes, M.A. Henning, and P. Zhang, Detour domination in graphs, Ars Combin. 71 (2004), 149–160.
[5] F. Harary, Graph Theory, Addison-Wesley, 1969.
[6] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
[7] A.M. Ismayil and R. Priyadharshini, Detour eccentric domination in graphs, Bull. Pure Appl. Sci. 38E (2019), no. 1, 342–347.
[8] A.M. Ismayil and A.R.U. Rehman, Accurate eccentric domination in graphs, Our Heritage 68 (2020), no. 4, 209–216.
[9] A.M. Ismayil and A.R.U. Rehman, Equal eccentric domination in graphs, Malaya J. Mat. 8 (2020), no. 1, 159–162.
[10] R. Jahir Hussain and A. Fathima Begam, Inverse eccentric domination in graphs, Adv. Appl. Math. Sci. 20 (2021), no. 4, 641–648.
[11] T.N. Janakiraman, M. Bhanumathi, and S. Muthammai, Eccentric domination in graphs, Int. J. Eng. Sci. Adv. Comput. Bio Tech. 1 (2010), no. 2, 55–70.
[12] K.S.J. Kalaiarasan and K.L. Gipson, Eccentric domination decomposition of graphs, Malaya J. Mat. 8 (2020), no. 3, 1186–1188.
[13] O. Ore, Theory of Graphs, Amer. Math. Soc. Colloq. Publ., 1962.
[14] A. Prasanna and N. Mohamedazarudeen, D–eccentric domination in graphs, Adv. Appl. Math. Sci. 20 (2021), no. 4, 541–548.
[17] P. Titus and J.A. Fancy, Connected total monophonic eccentric domination in graphs, preprint.
[18] P. Titus and J.A. Fancy, Total monophonic eccentric domination in graphs, communicated.
[19] P. Titus and J.A. Fancy, Total monophonic eccentric domination number of corona product of some standard graphs, Tierärztliche Praxis 40 (2020), 493– 508.