[1] Y. Alp and E.G. Koçer, Some properties of Leonardo numbers, Konuralp J. Math. 9 (2021), no. 1, 183–189.
[2] P. Catarino and A. Borges, On Leonardo numbers, Acta Math. Univ. Comenian. 89 (2019), no. 1, 75–86.
[3] P. Catarino, P. Vasco, H. Campos, A.P. Aires, and A. Borges, New families of Jacobsthal and Jacobsthal-Lucas numbers, Algebra Discrete Math. 20 (2015), no. 1, 40–54.
[5] T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, 2019.
[6] K. Kuhapatanakul and J. Chobsorn, On the generalized Leonardo numbers, Integer 22 (2022), Article number A48.
[7] M. Kumari, J. Tanti, and K. Prasad, On some new families of $k$-Mersenne and generalized $k$-Gaussian Mersenne numbers and their polynomials, Contrib. Discrete Math. 18 (2023), no. 2, 244–260.
http://doi.org/10.55016/ojs/cdm.v18i2.
[8] E. Özkan, İ. Altun, and A. Göçer, On relationship among a new family of $k$-Fibonacci, $k$-Lucas numbers, Fibonacci and Lucas numbers, Chiang Mai J. Sci. 44 (2017), no. 4, 1744–1750.
[10] K. Prasad, H. Mahato, and M. Kumari, On the generalized $k$-Horadam-like sequences, Algebra, Analysis, and Associated Topics, Springer, 2022, pp. 11–26.
[16] Y. Soykan, Generalized Leonardo numbers, J. Progressive Res. Math. 18 (2021), no. 4, 58–84.
[17] Y. Soykan, Special cases of generalized Leonardo numbers: Modified $p$-Leonardo, $p$-Leonardo-Lucas and $p$-Leonardo numbers, Earthline J. Math. Sci. 11 (2023), no. 2, 317–342.
https://doi.org/10.34198/ejms.11223.317342
[19] Y. Yazlik and N. Taskara, A note on generalized k-Horadam sequence, Comput. Math. Appl. 63 (2012), no. 1, 36–41.
[20] N. Yilmaz, M. Taştan, and E. Özkan, A new family of Horadam numbers, Electron. J. Math. Anal. Appl. 10 (2022), no. 1, 64–70.