[4] B. Alzalg, Logarithmic-barrier decomposition interior-point methods for stochastic linear optimization in a Hilbert space, Numer. Funct. Anal. Optim. 41 (2020), no. 8, 901–928.
https://doi.org/10.1080/01630563.2019.1709499
[5] B. Alzalg and K.A. Ariyawansa, Logarithmic barrier decomposition-based interior point methods for stochastic symmetric programming, J. Math. Anal. Appl. 409 (2014), 973–995.
https://doi.org/10.1016/j.jmaa.2013.07.075
[6] B. Alzalg, K. Badarneh, and A. Ababneh, An infeasible interior-point algorithm for stochastic second-order cone optimization, J. Optim. Theory Appl. 181 (2019), no. 1, 324–346.
https://doi.org/10.1007/s10957-018-1445-8
[11] L. Faybusovich and J.B. Moore, Infinite-dimensional quadratic optimization: interior-point methods and control applications, Appl. Math. Optim. 36 (1997), no. 1, 43–66.
https://doi.org/10.1007/BF02683337
[12] L. Faybusovich and J.B. Moore, Long-step path-following algorithm for convex quadratic programming prob-
lems in a Hilbert space, J. Optim. Theory Appl. 95 (1997), no. 3, 615–635.
https://doi.org/10.1023/A:1022626006554
[13] S. Mehrotra and M. Gokhan Ozevin, Decomposition based interior point methods for two-stage stochastic convex quadratic programs with recourse, Oper. Res. 57 (2009), no. 4, 964–974.
https://doi.org/10.1287/opre.1080.0659
[14] S. Mehrotra and M.G. Özevin, Decomposition-based interior point methods for two-stage stochastic semidefinite programming, SIAM J. Optim. 18 (2007), no. 1, 206–222.
https://doi.org/10.1137/050622067
[15] S. Mehrotra and M.G. Ozevin, Decomposition based interior point methods for two-stage stochastic convex quadratic programs with recourse, Oper. Res. 57 (2009), no. 4, 964–974.
http://doi.org/10.1287/opre.1080.0659
[16] Y. Nesterov and A. Nemirovskii, Interior-point polynomial algorithms in convex programming, SIAM, 1994.
[18] J. Renegar, A mathematical view of interior-point methods in convex optimization, SIAM, 2001.
[19] C. Roos and J.P. Vial, A polynomial method of approximate centers for linear programming, Math. Program. 54 (1992), no. 1, 295–305.
https://doi.org/10.1007/BF01586056
[20] G. Zhao, A log-barrier method with Benders decomposition for solving two-stage stochastic linear programs, Math. Program. 90 (2001), no. 3, 507–536.
https://doi.org/10.1007/PL00011433