[3] D. Bakhshesh, M.A. Henning, and D. Pradhan, On the coalition number of trees, Bull. Malaysian Math. Sci. Soc. 46 (2023), Article number: 95.
[6] T.W. Haynes, J.T. Hedetniemi, S.T. Hedetniemi, A.A. McRae, and R. Mohan, Upper bounds on the coalition number, Austral. J. Combin. 80 (2021), no. 3, 442–453.
[7] T.W. Haynes, J.T. Hedetniemi, S.T. Hedetniemi, A.A. McRae, and R. Mohan, Coalition graphs, Commun. Comb. Optim. 8 (2023), no. 2, 423–430.
[8] T.W. Haynes, J.T. Hedetniemi, S.T. Hedetniemi, A.A. McRae, and R. Mohan, Coalition graphs of paths, cycles and trees, Discuss. Math. Graph Theory 43 (2023), no. 4, 931–946.
https://doi.org/10.7151/dmgt.2416
[9] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Domination in Graphs, Advanced Topics, Marcel Dekker, Inc., New York, 1998.
[10] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc. New York,
1998.
[11] G.B. Khosrovshahi, Ch. Maysoori, and B. Tayfeh-Rezaie, A note on 3-factorizations of $K_{10}$, J. Combin. Designs 9 (2001), no. 5, 379–383.
https://doi.org/10.1002/jcd.1018
[12] B. Zelinka, On domatic numbers of graphs, Math. Slovaca 31 (1981), no. 1, 91–95.
[13] B. Zelinka, Domatic number and degrees of vertices of a graph, Math. Slovaca 33 (1983), no. 2, 145–147.