[1] N. Biggs, Algebraic Graph Theory, 2nd edn. Cambridge University Press, Cambridge, 1993.
[2] J.A. Bondy and U.S.R. Murty, Graph Theory, Springer, Berlin, 2008.
[3] G. Chartrand, A.M. Hobbs, H.A. Jung, S.F. Kapoor, and C.St.J.A. Nash-Williams, The square of a block is Hamiltonian connected, J. Combin. Theory, Ser. B 16 (1974), no. 3, 290–292.
https://doi.org/10.1016/0095-8956(74)90075-6
[4] H. Fleischner, In the square of graphs, hamiltonicity and pancyclicity, hamiltonian connectedness and panconnectedness are equivalent concepts, Monatsh. Math. 82 (1976), 125–149.
https://doi.org/10.1007/BF01305995
[5] C. Godsil and G.F. Royle, Algebraic Graph Theory, vol. 207, Springer Science & Business Media, 2001.
[6] F. Harary, Graph Theory, CRC Press, 1969.
[9] S.M. Mirafzal, Some other algebraic properties of folded hypercubes, Ars Combin. 124 (2016), 153–159.
[14] S.M. Mirafzal, A note on the automorphism groups of Johnson graphs, Ars Combin. 154 (2021), 245–255.
[16] S.M. Mirafzal and A. Zafari, Some algebraic properties of bipartite Kneser graphs, Ars Combin. 153 (2020), 3–12.
[18] G. Sabidussi, Vertex-transitive graphs, Monatsh. Math. 68 (1964), 426–438.