[2] H. Amjadi and N. Soltankhah, On the existence of d-homogeneous 3-way Steiner trades, Util. Math. 108 (2018), 307–320.
[3] M. Asgari and N. Soltankhah, On the non-existence of some Steiner $t − (v, k)$ trades of certain volumes, Util. Math. 79 (2009), 277–283.
[6] B.D. Gray and C. Ramsay, On a conjecture of Mahmoodian and Soltankhah regarding the existence of $(v, k, t)$ trades, Ars Combin. 48 (1998), 191–194.
[8] B.D. Gray and C. Ramsay, On the spectrum of Steiner $(v, k, t)$ trades I, J. Combin. Math. Combin. Comput. 34 (2000), 133–158.
[9] A.S. Hedayat, The theory of trade-off for t-designs, D. Ray-Chaudhuri: Coding Theory and Design Theory, Part II: Design Theory, , IMA Vol. Math. Appl., 1990, pp. 101–126.
[10] H.L. Hwang, On the structure of $(v, k, t)$ trades, J. Statist. Plann. Inference 13 (1986), 179–191.
[11] A. Khodkar and D.G. Hoffman, On the non-existence of Steiner $(v, k, 2)$ trades with certain volumes, Australas. J. Combin. 18 (1998), 303–312.
[13] C.C. Lindner and A. Rosa, Corrigendum:“Steiner triple systems having a prescribed number of triples in common”(Canad. J. Math. 27 (1975), no. 5, 1166–1175), Canad. J. Math. 30 (1978), no. 4, 896–896.
[14] E.S. Mahmoodian and N. Soltankhah, On the existence of $(v, k, t)$ trades., Australas. J. Combin. 6 (1992), 279–292.
[15] S. Milici and G. Quattrocchi, Some results on the maximum number of STSs such that any two of them intersect in the same block-set, J. Inform. Optim. Sci. 7 (1986), no. 3, 291–302.
https://doi.org/10.1080/02522667.1986.10698862
[16] S. Rashidi and N. Soltankhah, On the possible volume of $mu-(v, k, t)$ trades, Bull. Iranian Math. Soc. 40 (2014), no. 6, 1387–1401.
[19] N. Soltankhah and H. Amjadi, The 3-way flower intersection problem for Steiner triple systems, Discrete Math. Theor. Comput. Sci. 22 (2020), 1–14.