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Abstract: Let tp(G) denote the number of paths in a graph G and let f : E → Z+

be an edge labeling of G. The weight of a path P is the sum of the labels assigned to

the edges of P . If the set of weights of the paths in G is {1, 2, 3, . . . , tp(G)}, then f is
called a Leech labeling of G and a graph which admits a Leech labeling is called a Leech

graph. In this paper, we prove that the complete bipartite graphs K2,n and K3,n are

not Leech graphs and determine the maximum possible value that can be given to an
edge in the Leech labeling of a cycle.
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1. Introduction

By a graph G = (V,E) we mean a finite undirected graph with neither loops nor

multiple edges. The order |V | and the size |E| are denoted by n and m respectively.

For graph theoretic terminology we refer to Chartrand and Lesniak [2].

Let f : E → Z+ be an edge labeling of G. The weight of a path P in G is the sum

of the labels of the edges of P and is denoted by w(P ). Leech [5] introduced the

concept of a Leech tree, while considering a problem in electrical engineering, where

edge labels represent electrical resistance. Let T be a tree of order n. An edge labeling
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f : E → Z+ is called a Leech labeling if the weights of the
(
n
2

)
paths in T are exactly

1, 2, . . . ,
(
n
2

)
. A tree which admits a Leech labeling is called a Leech tree. Since each

edge label is the weight of a path of length one, it follows that f is an injection and

1,2 are edge labels for all n ≥ 3. Leech found five Leech trees which are given in

Figure 1 and these are the only known Leech trees.

Figure 1. Leech trees

Taylor [8] proved that if T is a Leech tree of order n, then n = k2 or k2 + 2 for some

integer k. Since then it has been proved by several authors ([1, 7, 9]) that no Leech

trees of order 9, 11 or 16 exist, leaving n = 18 as the smallest open case. In [13] and

[10], it is shown that bistars, tristars and a subclass of trees of diameter n − 2 are

non-Leech trees. Some variations of Leech trees such as modular Leech trees ([3, 4]),

minimal distinct distance trees [1] and leaf-Leech trees [6] have been investigated

by several authors. A parameter called Leech index was introduced in [11], which

measures how close a tree is towards being a Leech tree.

The total number of paths in a graph G is called the path number of G and is

denoted by tp(G). Let f : E → Z+ be an edge labeling of G. The weight of a path P

in G is the sum of the labels of the edges of P and is denoted by w(P ). If the set of

weights of the paths in G is {1, 2, 3, . . . , tp(G)}, then f is called a Leech labeling of

G and a graph that admits a Leech labeling is called a Leech graph [12].

Let f be an edge labeling of a graph G such that both f and the weight function w

on the set of all paths of G are both injective. Let S be the set of all path weights.

Let kf be the positive integer such that {1, 2, 3, . . . , kf} ⊆ S and kf + 1 /∈ S. Let

k(G) = max kf , where the maximum is taken over all such edge labelings f . Then

k(G) is called the Leech index of the graph G.

In [12], it has been proved that cycles of order at most 6 are Leech graphs, whereas

complete graphs of order 4, 5 and 6 are non-Leech graphs. The case n ≥ 7 is left as

an open problem for both cycles and complete graphs. It is a simple observation that

K4 − {e} and P5 are non-Leech graphs of smallest order and smallest size. Since C6

is a Leech graph and P5 is not a Leech graph, it follows that the property of being

a Leech graph is not hereditary and hence does not admit a forbidden subgraph

characterization.
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In this paper, we prove that K2,n and K3,n, for n > 2 are non-Leech graphs and

determine the Leech index of these graphs. We also prove some properties of Leech

cycles.

2. Complete Bipartite Graphs

Throughout this section, let X = {u1, u2, . . . , um} and Y = {v1, v2, . . . , vn} be the

bipartition of Km,n. If P1 and P2 are two paths having a common end vertex v

and V (P1) ∩ V (P2) = {v}, then the path obtained by concatenation of P1 and P2 is

denoted by P1 ◦ P2.

Lemma 1. Let f be a Leech labeling of Km,n,m, n > 2. Let P1 be a x− y path, P2 be a
r− s path, V (P1)∩V (P2) = φ,w(P1) = k,w(P2) = l and xr ∈ E(Km,n). Then w(P ) 6= k+ l
for any path P with x as origin and r /∈ V (P ).

Proof. Suppose there exists a path P with x as origin, r /∈ V (P ) and w(P ) = k + l.

Then the two paths P ◦ (x, r) and P1 ◦ (x, r) ◦P2 have the weight k+ l+ f(xr), which

is a contradiction.

Corollary 1. Let f be a Leech labeling of Km,n,m, n > 2. Let e1 and e2 be two
nonadjacent edges, f(e1) = k and f(e2) = l. Then f(e) 6= k + l for any edge e adjacent to
e1 or e2.

Corollary 2. Let f be a Leech labeling of K3,n and let n > 3. Let P1 and P2 be
two vertex disjoint paths such that the end vertices of P1 and P2 cover all the vertices of
X = {u1, u2, u3}. Let w(P1) + w(P2) = c. Then f(e) 6= c for any edge e.

Proof. Suppose there exists an edge e with f(e) = c. Since the end vertices of P1

and P2 cover X, we may assume without loss of generality that u1 is an end vertex

of P1 and e. We claim that no vertex of the other partite set Y = {v1, v2, . . . , vn}
is an end vertex of P2. Suppose v1 is an end vertex of P2. If e = u1vi where i 6= 1,

then w(P1 ◦ (u1, v1) ◦ P2) = w((vi, u1, v1)) = c + f(u1v1), which is a contradiction.

Hence e = u1v1 and the other end vertex of P2 is u2 or u3. Let u2 be the other

end vertex of P2. Since n > 3, there exists vi in Y such that vi /∈ (V (P1) ∪ V (P2)).

Now, w(P1 ◦ (u1, vi, u2) ◦ P2) = w((v1, u1, vi, u2)) = c + f(u1vi) + f(viu2), which is

a contradiction. Thus no vertex of Y is an end vertex of P2 and hence P2 is a u2-u3

path. Clearly, P1 has length 1 and P2 has length 2. Let P1 = (u1, v1), P2 = (u2, v2, u3)

and e = u1vi where i 6= 1. Since n > 3, there exists vj ∈ Y such that j /∈ {1, 2, i}.
Then w(P1 ◦ (u1, vj , u2) ◦P2) = w((vi, u1, vj , u2)) = c+ f(u1vj) + f(vju2), which is a

contradiction. Hence f(e) 6= c for any edge e.
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Corollary 3. Let f be a Leech labeling of K3,n, n > 3. Let P1 and P2 be two vertex
disjoint paths and let P3 and P4 be another pair of vertex disjoint paths such that w(P1) +
w(P2) = w(P3) + w(P4) = c and the end vertices of P1, P2, P3, P4 covers all the vertices of
X = {u1, u2, u3}. Then f(e) 6= c for any edge.

Proof. Suppose there exists an edge e with f(e) = c. Since the end vertices of

P1, P2, P3 and P4 cover X, we may assume without loss of generality that u1 is an

end vertex of P1 and e. Proceeding as in Corollary 2, the proof follows.

Lemma 2. Let f be a Leech labeling of K2,n, n > 2. Let f(u1vi) + f(u2vj) = c where
i 6= j. Then f(e) 6= c for any edge e.

Proof. Suppose f(e) = c for some edge e. Since e is incident with u1 or u2, we may

assume that e = u1vk where k 6= i. If k 6= j, then w((vk, u1, vj)) = w((vi, u1, vj , u2)) =

c+f(u1vj). If k = j, then for any r 6= i, j, w((vi, u1, vr, u2, vj)) = w((vj , u1, vr, u2)) =

c + f(u1vr) + f(u2vr). Hence the result follows.

We now proceed to prove that K2,n and K3,n are not Leech graphs for all n ≥ 3.

Throughout the proof S denotes the set of all path weights at each stage. For any

positive integer r, the set {1, 2, . . . , r} is denoted by [r].

Theorem 1. The complete bipartite graph K2,n, n > 2 is not a Leech graph.

Proof. Suppose K2,n is a Leech graph with Leech labeling f . It follows from Lemma

2 that the edges with labels 1 and 2 are adjacent. Suppose f(u1v1) = 1 and f(u2v1) =

2. Then either f(u1v2) = 4 or f(u2v2) = 4. If f(u1v2) = 4, then [5] ⊆ S and there

cannot be a path of weight 6. Similarly, if f(u2v2) = 4, then there cannot be a path

of weight 5, which is a contradiction. Hence f(u1v1) = 1, f(u1v2) = 2 and [3] ⊆ S.

If 4 is assigned to an edge not adjacent to u1v1, u1v2, then it follows from Lemma

2 that the path weights 5 or 6 cannot be obtained. Hence let f(u1v3) = 4, so that

[6] ⊆ S. Again it follows from Lemma 2 that if 7 is assigned to an edge not adjacent

to u1v1, u1v2, then the path weight 8 or 9 cannot be obtained. Hence f(u1v4) = 7,

so that [9]∪ {11} ⊆ S. Now let f(e) = 10. Since 11 ∈ S, e is not adjacent to u1v1. If

e is not adjacent to u1v2, then by Lemma 2, the path weight 12 cannot be obtained.

Hence e = u2v2. Now u2v2 and u1v3 are nonadjacent and by Lemma 2 the path

weight 14 cannot be obtained. Hence K2,n is not a Leech graph.

Corollary 4. The Leech index of K2,n is k(K2,n) = 13, for n ≥ 4. When n = 3,
k(K2,3) = 8 and when n = 2, K2,2 = C4 which is a Leech graph.

Theorem 2. The complete bipartite graph K3,n, n ≥ 3 is not a Leech graph.
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Proof. Suppose K3,n is a Leech graph with Leech labeling f . Let f(e1) = 1 and

f(e2) = 2. Suppose e1 and e2 are nonadjacent. Then by Corollary 1, the edge e3 with

f(e3) = 3 is nonadjacent to e1 and e2 and the edge e4 with f(e4) = 4 is nonadjacent

to e1 and e3. Thus 1 and 4 are assigned to a pair of nonadjacent edges and 2 and 3

are assigned to a pair of nonadjacent edges. Hence path weight 5 cannot be obtained.

Thus e1 and e2 are adjacent. We consider two cases.

Case 1. e1 = u1v1 and e2 = u1v2.

Hence [3] ⊆ S. Let f(e3) = 4. If e3 is nonadjacent to e1 and e2, then by Corollary

1, the label 5 must be assigned to an edge not adjacent to e1 and e2. Thus 1 and 5

are assigned to two nonadjacent edges and 2 and 4 are assigned to two nonadjacent

edges. Hence the path weight 6 cannot be obtained.

If e3 is nonadjacent to e1 and adjacent to e2, then 5 must be assigned to an edge

independent to e1 and e3, say, f(u3v3) = 5. Then path weight 6 + f(u1v3) repeats.

Now suppose e3 is adjacent to e1 and not adjacent to e2. Let e3 = u2v1. Then by

Corollary 1, the label 6 must be assigned to an edge not adjacent to both e2 = u1v2
and e3 = u2v1. Hence [7] ⊆ S. By Corollary 1 the label 8 must be assigned to an

edge not adjacent to the edges with labels 2 and 6. Thus 1 and 8 are assigned to two

nonadjacent edges and 3 and 6 are path weights of two vertex disjoint paths. Hence,

by Corollary 3, path weight 9 cannot be obtained.

Therefore e3 is adjacent to both e1 and e2. Let e3 = u1v3. Hence [6] ⊆ S. Now

let f(e4) = 7. If e4 is not adjacent to e1, then by Corollary 1, the label 8 must

be assigned to an edge e not adjacent to e1 and e4. Now if e4 is not adjacent to

e2, then f(e2) + f(e4) = f(e1) + f(e) = 9 and hence by Corollary 3, the path

weight 9 cannot be obtained. If e4 is adjacent to e2, then 8 must be assigned to

an edge independent to e1 and e4, say, f(u3vj) = 8, j 6= 1, 2 and then 9 + f(vju1)

repeats. Hence e4 is adjacent to e1. Now if e4 is not adjacent e2, then by Corollary

1, the label 9 must be assigned to an edge e not adjacent to e2 and e4. Hence

f(e3) + f(e4) = f(e) + f(e2) = 11 and by Corollary 3, path weight 11 cannot be

obtained. Thus e4 is adjacent to e2. Therefore e4 = u1v4 and so [9]∪ {11} ⊆ S. Now

let f(e5) = 10.

Since 11 ∈ S, e5 is not adjacent to e1. If e5 is adjacent to e2, then [13]∪{16, 19} ⊆ S.

By Corollary 1, the label 14 must be assigned to an edge e not adjacent to e3 and e5.

If e is adjacent to e1, then path weight 19 repeats. If e is non adjacent to e1, then

f(e1) + f(e) = f(e5) + w(v1, u1, u3) = 15, and by Corollary 3, the path weight 15

cannot be obtained. Therefore e5 is not adjacent to e2. Hence let e5 = u2vj where

j 6= 1, 2. Then the label 12 must be assigned to an edge not adjacent to e2 and e5.

Let f(u3vk) = 12 where k 6= 2, j.

If k = 1, since e2 and u3vk are nonadjacent, the edge e5 = u2vj with label
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10 and the edge e3 = u1v3 with label 4 are adjacent. Thus j = 3. Now

w((u2, v3, u1, v1)) = w((u3, v1, u1, v2)) = 15, a contradiction. If k 6= 1, then

w((v1, u1, v2)) + f(e5) = f(u1v1) + f(u3vk) = 13 and hence path weight 13 cannot

be obtained. Hence the labels 1 and 2 cannot be assigned to the adjacent edges

e1 = u1v1 and e2 = u1v2.

Case 2. e1 = u1v1 and e2 = u2v1.

Let f(e3) = 4. If e3 is nonadjacent to both e1 and e2, then by Corollary 1, the label

5 must be assigned to an edge nonadjacent to e1 and e3. Thus 1 and 5 are assigned

to two nonadjacent edges and 2 and 4 are assigned to two nonadjacent edges. Hence

path weight 6 cannot be obtained.

If e3 is adjacent to e2 and nonadjacent to e1, then 5 must be assigned to an edge

nonadjacent to both e1 and e3. Let f(u3v3) = 5. Then the paths (u1, v1, u3, v3) and

(v2, u2, v1, v3) have weight 6 + f(u3v1) which is a contradiction.

Now suppose e3 is adjacent to e1 and nonadjacent to e2. Let e3 = u1v2. By

Corollary 1, the label 6 must be assigned to an edge not adjacent to e2 and e3. Hence

[7] ⊆ S. Again by Corollary 1, the label 8 must be assigned to an edge not adjacent

to the edges with labels 2 and 6. But now 2 and 8 are assigned to two nonadjacent

edges and 4 and 6 are assigned to nonadjacent edges. Hence by Corollary 3, path

weight 10 cannot be obtained.

Therefore e3 is adjacent to both e1 and e2. Let e3 = u3v1. Hence [6] ⊆ S. Let

f(e4) = 7. If e4 is nonadjacent to e1, then by Corollary 1, the label 8 must be

assigned to an edge e nonadjacent to e1 and e4. Now, if e4 is nonadjacent to e2,

then f(e2) + f(e4) = f(e1) + f(e) = 9 and by Corollary 3, the path weight 9 cannot

be obtained. If e4 is adjacent to e2, then the label 8 must be assigned to an edge

nonadjacent to both e1 and e4. Let f(u3v3) = 8. In this case we get two paths

with weight 13. Hence e4 is adjacent to e1. Now if e4 is nonadjacent to e2, then by

Corollary 1, the label 9 must be assigned to an edge e nonadjacent to both e2 and

e4. Hence f(e3) + f(e4) = f(e) + f(e2) = 11 and by Corollary 3, the path weight 11

cannot be obtained, which is a contradiction. Hence K3,n is not a Leech graph.

Corollary 5. The Leech index of K3,n is k(K3,n) = 14, for n ≥ 4. When n = 3,
k(K3,3) = 10.

3. Leech Cycles

In [12], it has been proved that the cycle Cn, with 3 ≤ n ≤ 6 is a Leech graph. The

Leech labelings of these cycles are given in Figure 2, in which two Leech labelings are

given for C4. Thus for a Leech graph, the Leech labeling is not in general unique. In

a cycle, since there exist exactly two paths between every pair of vertices, tp(Cn) =
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n(n− 1). In this section, we present results on the maximum label that can assigned

to an edge in a Leech cycle.

Figure 2. Leech labeling of cycles of order ≤ 6

Theorem 3. Let f be the Leech labeling of a cycle Cn. Then, w(f) = 2
(
n
2

)
+ 1.

Proof. Let Cn = (v1, v2, . . . , vn, v1) and f(v1v2) = 1. Then P = (v2, v3, . . . , vn, v1)

is the path of maximum weight. Hence w(P ) = tp(G) = n(n − 1). Therefore,

w(f) = w(P ) + 1 = n2 − n + 1 = 2
(
n
2

)
+ 1.

Theorem 4. The maximum value that can be assigned to an edge in a Leech labeling of
a cycle Cn is

(
n
2

)
+ 1. Also, this maximum value is attained only by C3 and C4.

Proof. Let f(e) = M , where M is the maximum value assigned to an edge by f .

Now, Pn = Cn−e is a path of order n and hence w(Cn−e) ≥ 1+2+· · ·+(n−1) =
(
n
2

)
.

Hence, w(f) = 2
(
n
2

)
+ 1 = w(Cn− e) +M ≥

(
n
2

)
+M . Therefore, M ≤

(
n
2

)
+ 1. Also,

equality holds if and only if w(Pn) =
(
n
2

)
and the path weights of all subpaths of Pn

are exactly {1, 2, . . . ,
(
n
2

)
− 1}. Hence Pn is a Leech path. Since P2, P3 and P4 are the

only Leech paths, the maximum edge label M is attained only for C3 and C4.

Theorem 5. The only Leech cycles which admits a Leech labeling in which the maximum
label is

(
n
2

)
are C4 and C5.

Proof. Let f(e1) = M =
(
n
2

)
, where M is the maximum value assigned to an

edge by f and e1 = v1v2. Let Pn = Cn − e1. Then, w(Pn) =
(
n
2

)
+ 1 and

all path weights 1, 2, . . . ,
(
n
2

)
− 1 must be obtained from Pn. Hence, the set of

edge labels of Pn is {1, 2, . . . , n − 2, n}. Let f(e2) = 1. If e2 = v2v3, then

w(v3, v4, . . . , vn, v1) =
(
n
2

)
= w(v1v2). Hence, e2 6= v2v3. Similarly, e2 6= vnv1. If

e2 = vivi+1 and f(vi−1vi) = k then w(vi−1, vi, vi+1) = k + 1. Since 1, 2, . . . , n − 2

and n are already edge weights, k /∈ {2, 3, . . . , n − 3}. A similar argument holds for

f(vi+1vi+2) = l also. Therefore, k and l are n− 2 and n in some order. If n = 4, this

gives a Leech labeling of C4 with maximum label 6 as given in Figure 2.

Now, let n ≥ 5. Let f(e3) = 2. If e3 is adjacent to an edge labeled k then

these two edges together gives a path of weight k + 2. Since, 1, 2, . . . , n − 2 and
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n are already edge weights and {w(vi−1vivi+1), w(vivi+1vi+2)} = {n − 1, n + 1},
k /∈ {1, 3, . . . , n− 2}. Hence, e3 is adjacent only to the edge with label n.

Now, since the edges with labels 1 and 2 are non-adjacent, there exists an edge e4
with f(e4) = 3. If e4 is adjacent to an edge labeled k ∈ {1, 2, 4, . . . , n − 2} then the

path weight of e4 together with this edge will be in {4, 5, 7, . . . , n + 1} which is not

possible. Hence, the only possibility is n − 2 = 3 and this gives a Leech labeling of

C5 with the maximum edge label is 10 as given in Figure 2.

Theorem 6. The only Leech cycle which admits a Leech labeling in which the maximum
label is

(
n
2

)
− 1 is C6.

Proof. Let f(e) =
(
n
2

)
− 1, where e = v1v2. Let Pn = Cn − e = (v2, v3, . . . , vn, v1).

Then w(Pn) =
(
n
2

)
+2 and all path weights less than

(
n
2

)
−1 must be obtained from Pn.

Hence the set of all path weights of the subpaths of Pn is {1, 2, . . . ,
(
n
2

)
−2,

(
n
2

)
+2, k},

where k is
(
n
2

)
or

(
n
2

)
+ 1. Also, the sum of edge weights of Pn is

(
n
2

)
+ 2 and hence

the set of all edge labels of Pn is {1, 2, . . . , n− 2, n + 1} or {1, 2, . . . , n− 3, n− 1, n}.
We consider four cases.

Case 1. k =
(
n
2

)
and the set of edge labels of Pn is {1, 2, . . . , n− 2, n + 1}.

Since w(Pn) =
(
n
2

)
+ 2 and k =

(
n
2

)
is a path weight of a subpath of Pn, the label 2

must be assigned to a pendant edge of Pn. Let f(v2v3) = 2. Now since f(e) =
(
n
2

)
−1

and
(
n
2

)
is a path weight of a subpath of Pn, the label 1 cannot be assigned to a

pendant edge of Pn. Let f(e1) = 1, where e1 is an internal edge of Pn. Now, if a and

b are edge labels of two adjacent edges of Pn, then a + b is not an edge label. Hence,

a + b = n− 1 or n or a + b ≥ n + 2. Hence the two edges adjacent to e1 have labels

n− 2 and n + 1 and we get path weights n− 1 and n + 2. Now, if f(v3v4) = x then,

w(v2, v3, v4) = x + 2 = n or x + 2 ≥ n + 3. If x + 2 = n, then x = n − 2 and hence

e1 = v4v5. But, then w(v2, v3, v4, v5) = 2 + n − 2 + 1 = n + 1 which is already an

edge weight, a contradiction. Therefore, the only possibility is f(v3v4) = n + 1 and

eventually f(v4v5) = 1 and f(v5v6) = n− 2 and we get path weights n+ 3 and n+ 4.

Now, there is an edge with label 3 and if the edge adjacent to it is labeled y then

y + 3 = n or y + 3 ≥ n + 5. But, y ≥ n + 2 is not possible and hence 3 is assigned

to a pendant edge of Pn. But, then the path weight 3 +
(
n
2

)
− 1 =

(
n
2

)
+ 2 repeats.

Hence, this case is not possible.

Case 2. k =
(
n
2

)
and the set of edge labels of Pn is {1, 2, . . . , n− 3, n− 1, n}.

As in Case 1, f(v2v3) = 2 and f(e1) = 1, where e1 is an internal edge of Pn. Also, if a

and b are edge labels of two adjacent edges of Pn, then a+ b = n− 2 or a+ b ≥ n+ 1.

Hence the two edges adjacent to e1 have labels n− 3 and n and we get path weights

n− 2 and n + 1. Now if f(v3v4) = x then, w(v2, v3, v4) = x + 2 ≥ n + 2. Therefore,

f(v3v4) = n and eventually, f(v4v5) = 1 and f(v5v6) = n−3. Also, we have obtained

all path weights up to n + 3. Now, if the label y is assigned to an edge adjacent to

the edge labeled 3, then y + 3 ≥ n + 4 which is not possible.
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Case 3. k =
(
n
2

)
+ 1 and the set of edge labels of Pn is {1, 2, . . . , n− 2, n + 1}.

Since w(Pn) =
(
n
2

)
+ 2 and k =

(
n
2

)
+ 1 is a path weight of a subpath of Pn, the

label 1 must be assigned to a pendant edge of Pn. Let f(v2v3) = 1. Also, since
(
n
2

)
is not a path weight of a subpath of Pn, 2 cannot be assigned to a pendent edge of

Pn. Let f(e1) = 2, where e1 is an internal edge of Pn. Now, if a and b are edge labels

of two adjacent edges of Pn, then a + b = n − 1 or n or a + b ≥ n + 2. Therefore,

f(v3v4) = n−2 or n+1. If f(v3v4) = n−2 then we get path weight n−1 also, so that

if an edge adjacent to e1 is given label x, then x+ 2 = n or x+ 2 ≥ n+ 2. Therefore,

the edges adjacent to e1 are labeled n − 2 and n + 1. Therefore, f(v4v5) = 2 and

f(v5v6) = n + 1. But, then w(v2, v3, v4, v5) = 1 + n− 2 + 2 = n + 1, which is already

an edge weight. Therefore, let f(v3v4) = n+ 1 and then we get the path weight n+ 2

also. Again, if an edge adjacent to e1 is given label x, then x + 2 = n − 1 or n or

x+ 2 ≥ n+ 3. Therefore, the edges adjacent to e1 are labeled n− 3 or n− 2 or n+ 1.

If e1 is adjacent to an edge labeled n + 1 then, e1 = v4v5 and we get paths of weight

n + 3 and n + 4. Now, the edge labeled 3 can be adjacent only to either n− 3 or the

edge labeled n − 4, which implies 3 is assigned to a pendant edge of Pn. But, then

f(e) + 3 gives another path weight of weight
(
n
2

)
+ 2, a contradiction. Therefore, the

labels of edges adjacent to 2 are n−3 and n−2, so that the path weights n−1 and n

are obtained. Again, if the label y is assigned to an edge adjacent to the edge labeled

3, then y + 3 ≥ n + 3 in which case also 3 is assigned to a pendant edge and hence is

not possible.

Case 4. k =
(
n
2

)
+ 1 and the set of edge labels of Pn is {1, 2, . . . , n− 3, n− 1, n}.

As in Case 3, f(v2v3) = 1 and f(e1) = 2, where e1 is an internal edge of Pn. Again, if

a and b are edge labels of two adjacent edges of Pn, then a+b = n−2 or a+b ≥ n+1.

Therefore, f(v3v4) = n− 3 or n.

If f(v3v4) = n, then we get path weight n + 1 also. Now, if an edge adjacent to e1 is

given label x, then x + 2 = n− 2 or x + 2 ≥ n + 2. Therefore, the edges adjacent to

2 are labeled n− 4 and n, so that we get all path weights upto n+ 3. Now, if label y

is assigned to an edge adjacent to the edge labeled 3, then y + 3 ≥ n+ 4 which is not

possible. Therefore, let f(v3v4) = n− 3 so that we get path weight n− 2 also, so that

if an edge adjacent to e1 is given label x, then x + 2 ≥ n + 1. Therefore, the edges

adjacent to e1 are labeled n− 1 and n, so that we get all path weights up to n+ 2. In

this case also, if the label y is assigned to an edge adjacent to the edge labeled 3, then

y + 3 ≥ n+ 3 in which case 3 is assigned to a pendant edge and hence is not possible.

So, the only possibility is n− 3 = 3 and this gives the Leech labeling of C6.

Corollary 6. The maximum value that can be assigned to an edge in a Leech labeling of
a cycle Cn, where n > 7, is less than

(
n
2

)
− 1.

The following figure gives three different Leech labelings of C6 in which the maximum

labels are
(
n
2

)
−1,

(
n
2

)
−2 and

(
n
2

)
−3. We strongly believe that cycles of length greater

than 6 are not Leech graphs.
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Figure 3. Leech labelings of C6
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