Research Article ## Leech graphs # Seena Varghese^{1,*}, Aparna Lakshmanan Savithri ² and S. Arumugam³ Department of Mathematics, Federal Institute of Science and Technology, Angamaly - 683577, Kerala, India *graceseenaprince@gmail.com ²Department of Mathematics, Cochin University of Science and Technology, Cochin-22, Kerala, India aparnals@cusat.ac.in ³ National Centre for Advanced Research in Discrete Mathematics, Kalasalingam University Anand Nagar, Krishnankoil-626 126, Tamil Nadu, India s.arumugam.klu@gmail.com > Received: 31 March 2022; Accepted: 30 September 2022 Published Online: 3 October 2022 **Abstract:** Let $t_p(G)$ denote the number of paths in a graph G and let $f: E \to \mathbb{Z}^+$ be an edge labeling of G. The weight of a path P is the sum of the labels assigned to the edges of P. If the set of weights of the paths in G is $\{1, 2, 3, \ldots, t_p(G)\}$, then f is called a Leech labeling of G and a graph which admits a Leech labeling is called a Leech graph. In this paper, we prove that the complete bipartite graphs $K_{2,n}$ and $K_{3,n}$ are not Leech graphs and determine the maximum possible value that can be given to an edge in the Leech labeling of a cycle. Keywords: Leech labeling, Leech tree, Leech graph AMS Subject classification: 05C78 ## 1. Introduction By a graph G=(V,E) we mean a finite undirected graph with neither loops nor multiple edges. The order |V| and the size |E| are denoted by n and m respectively. For graph theoretic terminology we refer to Chartrand and Lesniak [2]. Let $f: E \to \mathbb{Z}^+$ be an edge labeling of G. The weight of a path P in G is the sum of the labels of the edges of P and is denoted by w(P). Leech [5] introduced the concept of a Leech tree, while considering a problem in electrical engineering, where edge labels represent electrical resistance. Let T be a tree of order n. An edge labeling ^{*} Corresponding Author $f: E \to \mathbb{Z}^+$ is called a Leech labeling if the weights of the $\binom{n}{2}$ paths in T are exactly $1, 2, \ldots, \binom{n}{2}$. A tree which admits a Leech labeling is called a Leech tree. Since each edge label is the weight of a path of length one, it follows that f is an injection and 1,2 are edge labels for all $n \geq 3$. Leech found five Leech trees which are given in Figure 1 and these are the only known Leech trees. Figure 1. Leech trees Taylor [8] proved that if T is a Leech tree of order n, then $n = k^2$ or $k^2 + 2$ for some integer k. Since then it has been proved by several authors ([1, 7, 9]) that no Leech trees of order 9, 11 or 16 exist, leaving n = 18 as the smallest open case. In [13] and [10], it is shown that bistars, tristars and a subclass of trees of diameter n - 2 are non-Leech trees. Some variations of Leech trees such as modular Leech trees ([3, 4]), minimal distinct distance trees [1] and leaf-Leech trees [6] have been investigated by several authors. A parameter called Leech index was introduced in [11], which measures how close a tree is towards being a Leech tree. The total number of paths in a graph G is called the path number of G and is denoted by $t_p(G)$. Let $f: E \to \mathbb{Z}^+$ be an edge labeling of G. The weight of a path P in G is the sum of the labels of the edges of P and is denoted by w(P). If the set of weights of the paths in G is $\{1, 2, 3, \ldots, t_p(G)\}$, then f is called a Leech labeling of G and a graph that admits a Leech labeling is called a Leech graph [12]. Let f be an edge labeling of a graph G such that both f and the weight function w on the set of all paths of G are both injective. Let S be the set of all path weights. Let k_f be the positive integer such that $\{1, 2, 3, \ldots, k_f\} \subseteq S$ and $k_f + 1 \notin S$. Let $k(G) = \max k_f$, where the maximum is taken over all such edge labelings f. Then k(G) is called the Leech index of the graph G. In [12], it has been proved that cycles of order at most 6 are Leech graphs, whereas complete graphs of order 4, 5 and 6 are non-Leech graphs. The case $n \geq 7$ is left as an open problem for both cycles and complete graphs. It is a simple observation that $K_4 - \{e\}$ and P_5 are non-Leech graphs of smallest order and smallest size. Since C_6 is a Leech graph and P_5 is not a Leech graph, it follows that the property of being a Leech graph is not hereditary and hence does not admit a forbidden subgraph characterization. In this paper, we prove that $K_{2,n}$ and $K_{3,n}$, for n > 2 are non-Leech graphs and determine the Leech index of these graphs. We also prove some properties of Leech cycles. # 2. Complete Bipartite Graphs Throughout this section, let $X = \{u_1, u_2, \dots, u_m\}$ and $Y = \{v_1, v_2, \dots, v_n\}$ be the bipartition of $K_{m,n}$. If P_1 and P_2 are two paths having a common end vertex v and $V(P_1) \cap V(P_2) = \{v\}$, then the path obtained by concatenation of P_1 and P_2 is denoted by $P_1 \circ P_2$. **Lemma 1.** Let f be a Leech labeling of $K_{m,n}, m, n > 2$. Let P_1 be a x - y path, P_2 be a r - s path, $V(P_1) \cap V(P_2) = \phi$, $w(P_1) = k$, $w(P_2) = l$ and $xr \in E(K_{m,n})$. Then $w(P) \neq k + l$ for any path P with x as origin and $r \notin V(P)$. *Proof.* Suppose there exists a path P with x as origin, $r \notin V(P)$ and w(P) = k + l. Then the two paths $P \circ (x, r)$ and $P_1 \circ (x, r) \circ P_2$ have the weight k + l + f(xr), which is a contradiction. **Corollary 1.** Let f be a Leech labeling of $K_{m,n}, m, n > 2$. Let e_1 and e_2 be two nonadjacent edges, $f(e_1) = k$ and $f(e_2) = l$. Then $f(e) \neq k + l$ for any edge e adjacent to e_1 or e_2 . **Corollary 2.** Let f be a Leech labeling of $K_{3,n}$ and let n > 3. Let P_1 and P_2 be two vertex disjoint paths such that the end vertices of P_1 and P_2 cover all the vertices of $X = \{u_1, u_2, u_3\}$. Let $w(P_1) + w(P_2) = c$. Then $f(e) \neq c$ for any edge e. Proof. Suppose there exists an edge e with f(e) = c. Since the end vertices of P_1 and P_2 cover X, we may assume without loss of generality that u_1 is an end vertex of P_1 and e. We claim that no vertex of the other partite set $Y = \{v_1, v_2, \ldots, v_n\}$ is an end vertex of P_2 . Suppose v_1 is an end vertex of P_2 . If $e = u_1v_i$ where $i \neq 1$, then $w(P_1 \circ (u_1, v_1) \circ P_2) = w((v_i, u_1, v_1)) = c + f(u_1v_1)$, which is a contradiction. Hence $e = u_1v_1$ and the other end vertex of P_2 is u_2 or u_3 . Let u_2 be the other end vertex of P_2 . Since n > 3, there exists v_i in Y such that $v_i \notin (V(P_1) \cup V(P_2))$. Now, $w(P_1 \circ (u_1, v_i, u_2) \circ P_2) = w((v_1, u_1, v_i, u_2)) = c + f(u_1v_i) + f(v_iu_2)$, which is a contradiction. Thus no vertex of Y is an end vertex of P_2 and hence P_2 is a u_2 - u_3 path. Clearly, P_1 has length 1 and P_2 has length 2. Let $P_1 = (u_1, v_1), P_2 = (u_2, v_2, u_3)$ and $e = u_1v_i$ where $i \neq 1$. Since n > 3, there exists $v_j \in Y$ such that $j \notin \{1, 2, i\}$. Then $w(P_1 \circ (u_1, v_j, u_2) \circ P_2) = w((v_i, u_1, v_j, u_2)) = c + f(u_1v_j) + f(v_ju_2)$, which is a contradiction. Hence $f(e) \neq c$ for any edge e. **Corollary 3.** Let f be a Leech labeling of $K_{3,n}$, n > 3. Let P_1 and P_2 be two vertex disjoint paths and let P_3 and P_4 be another pair of vertex disjoint paths such that $w(P_1) + w(P_2) = w(P_3) + w(P_4) = c$ and the end vertices of P_1, P_2, P_3, P_4 covers all the vertices of $X = \{u_1, u_2, u_3\}$. Then $f(e) \neq c$ for any edge. *Proof.* Suppose there exists an edge e with f(e) = c. Since the end vertices of P_1, P_2, P_3 and P_4 cover X, we may assume without loss of generality that u_1 is an end vertex of P_1 and e. Proceeding as in Corollary 2, the proof follows. **Lemma 2.** Let f be a Leech labeling of $K_{2,n}$, n > 2. Let $f(u_1v_i) + f(u_2v_j) = c$ where $i \neq j$. Then $f(e) \neq c$ for any edge e. *Proof.* Suppose f(e) = c for some edge e. Since e is incident with u_1 or u_2 , we may assume that $e = u_1v_k$ where $k \neq i$. If $k \neq j$, then $w((v_k, u_1, v_j)) = w((v_i, u_1, v_j, u_2)) = c + f(u_1v_j)$. If k = j, then for any $r \neq i, j, w((v_i, u_1, v_r, u_2, v_j)) = w((v_j, u_1, v_r, u_2)) = c + f(u_1v_r) + f(u_2v_r)$. Hence the result follows. We now proceed to prove that $K_{2,n}$ and $K_{3,n}$ are not Leech graphs for all $n \geq 3$. Throughout the proof S denotes the set of all path weights at each stage. For any positive integer r, the set $\{1, 2, \ldots, r\}$ is denoted by [r]. **Theorem 1.** The complete bipartite graph $K_{2,n}$, n > 2 is not a Leech graph. Proof. Suppose $K_{2,n}$ is a Leech graph with Leech labeling f. It follows from Lemma 2 that the edges with labels 1 and 2 are adjacent. Suppose $f(u_1v_1) = 1$ and $f(u_2v_1) = 2$. Then either $f(u_1v_2) = 4$ or $f(u_2v_2) = 4$. If $f(u_1v_2) = 4$, then $[5] \subseteq S$ and there cannot be a path of weight 6. Similarly, if $f(u_2v_2) = 4$, then there cannot be a path of weight 5, which is a contradiction. Hence $f(u_1v_1) = 1$, $f(u_1v_2) = 2$ and $[3] \subseteq S$. If 4 is assigned to an edge not adjacent to u_1v_1, u_1v_2 , then it follows from Lemma 2 that the path weights 5 or 6 cannot be obtained. Hence let $f(u_1v_3) = 4$, so that $[6] \subseteq S$. Again it follows from Lemma 2 that if 7 is assigned to an edge not adjacent to u_1v_1, u_1v_2 , then the path weight 8 or 9 cannot be obtained. Hence $f(u_1v_4) = 7$, so that $[9] \cup \{11\} \subseteq S$. Now let f(e) = 10. Since $11 \in S$, e is not adjacent to u_1v_1 . If e is not adjacent to u_1v_2 , then by Lemma 2, the path weight 12 cannot be obtained. Hence $e = u_2v_2$. Now u_2v_2 and u_1v_3 are nonadjacent and by Lemma 2 the path weight 14 cannot be obtained. Hence $K_{2,n}$ is not a Leech graph. **Corollary 4.** The Leech index of $K_{2,n}$ is $k(K_{2,n}) = 13$, for $n \ge 4$. When n = 3, $k(K_{2,3}) = 8$ and when n = 2, $K_{2,2} = C_4$ which is a Leech graph. **Theorem 2.** The complete bipartite graph $K_{3,n}$, $n \geq 3$ is not a Leech graph. Proof. Suppose $K_{3,n}$ is a Leech graph with Leech labeling f. Let $f(e_1) = 1$ and $f(e_2) = 2$. Suppose e_1 and e_2 are nonadjacent. Then by Corollary 1, the edge e_3 with $f(e_3) = 3$ is nonadjacent to e_1 and e_2 and the edge e_4 with $f(e_4) = 4$ is nonadjacent to e_1 and e_3 . Thus 1 and 4 are assigned to a pair of nonadjacent edges and 2 and 3 are assigned to a pair of nonadjacent edges. Hence path weight 5 cannot be obtained. Thus e_1 and e_2 are adjacent. We consider two cases. Case 1. $e_1 = u_1 v_1$ and $e_2 = u_1 v_2$. Hence $[3] \subseteq S$. Let $f(e_3) = 4$. If e_3 is nonadjacent to e_1 and e_2 , then by Corollary 1, the label 5 must be assigned to an edge not adjacent to e_1 and e_2 . Thus 1 and 5 are assigned to two nonadjacent edges and 2 and 4 are assigned to two nonadjacent edges. Hence the path weight 6 cannot be obtained. If e_3 is nonadjacent to e_1 and adjacent to e_2 , then 5 must be assigned to an edge independent to e_1 and e_3 , say, $f(u_3v_3) = 5$. Then path weight $6 + f(u_1v_3)$ repeats. Now suppose e_3 is adjacent to e_1 and not adjacent to e_2 . Let $e_3 = u_2v_1$. Then by Corollary 1, the label 6 must be assigned to an edge not adjacent to both $e_2 = u_1v_2$ and $e_3 = u_2v_1$. Hence $[7] \subseteq S$. By Corollary 1 the label 8 must be assigned to an edge not adjacent to the edges with labels 2 and 6. Thus 1 and 8 are assigned to two nonadjacent edges and 3 and 6 are path weights of two vertex disjoint paths. Hence, by Corollary 3, path weight 9 cannot be obtained. Therefore e_3 is adjacent to both e_1 and e_2 . Let $e_3 = u_1v_3$. Hence $[6] \subseteq S$. Now let $f(e_4) = 7$. If e_4 is not adjacent to e_1 , then by Corollary 1, the label 8 must be assigned to an edge e not adjacent to e_1 and e_4 . Now if e_4 is not adjacent to e_2 , then $f(e_2) + f(e_4) = f(e_1) + f(e) = 9$ and hence by Corollary 3, the path weight 9 cannot be obtained. If e_4 is adjacent to e_2 , then 8 must be assigned to an edge independent to e_1 and e_4 , say, $f(u_3v_j) = 8, j \neq 1, 2$ and then $9 + f(v_ju_1)$ repeats. Hence e_4 is adjacent to e_1 . Now if e_4 is not adjacent e_2 , then by Corollary 1, the label 9 must be assigned to an edge e not adjacent to e_2 and e_4 . Hence $f(e_3) + f(e_4) = f(e) + f(e_2) = 11$ and by Corollary 3, path weight 11 cannot be obtained. Thus e_4 is adjacent to e_2 . Therefore $e_4 = u_1v_4$ and so $[9] \cup \{11\} \subseteq S$. Now let $f(e_5) = 10$. Since $11 \in S$, e_5 is not adjacent to e_1 . If e_5 is adjacent to e_2 , then $[13] \cup \{16, 19\} \subseteq S$. By Corollary 1, the label 14 must be assigned to an edge e not adjacent to e_3 and e_5 . If e is adjacent to e_1 , then path weight 19 repeats. If e is non adjacent to e_1 , then $f(e_1) + f(e) = f(e_5) + w(v_1, u_1, u_3) = 15$, and by Corollary 3, the path weight 15 cannot be obtained. Therefore e_5 is not adjacent to e_2 . Hence let $e_5 = u_2v_j$ where $j \neq 1, 2$. Then the label 12 must be assigned to an edge not adjacent to e_2 and e_5 . Let $f(u_3v_k) = 12$ where $k \neq 2, j$. If k = 1, since e_2 and u_3v_k are nonadjacent, the edge $e_5 = u_2v_i$ with label 10 and the edge $e_3 = u_1v_3$ with label 4 are adjacent. Thus j = 3. Now $w((u_2, v_3, u_1, v_1)) = w((u_3, v_1, u_1, v_2)) = 15$, a contradiction. If $k \neq 1$, then $w((v_1, u_1, v_2)) + f(e_5) = f(u_1v_1) + f(u_3v_k) = 13$ and hence path weight 13 cannot be obtained. Hence the labels 1 and 2 cannot be assigned to the adjacent edges $e_1 = u_1v_1$ and $e_2 = u_1v_2$. Case 2. $e_1 = u_1 v_1$ and $e_2 = u_2 v_1$. Let $f(e_3) = 4$. If e_3 is nonadjacent to both e_1 and e_2 , then by Corollary 1, the label 5 must be assigned to an edge nonadjacent to e_1 and e_3 . Thus 1 and 5 are assigned to two nonadjacent edges and 2 and 4 are assigned to two nonadjacent edges. Hence path weight 6 cannot be obtained. If e_3 is adjacent to e_2 and nonadjacent to e_1 , then 5 must be assigned to an edge nonadjacent to both e_1 and e_3 . Let $f(u_3v_3) = 5$. Then the paths (u_1, v_1, u_3, v_3) and (v_2, u_2, v_1, v_3) have weight $6 + f(u_3v_1)$ which is a contradiction. Now suppose e_3 is adjacent to e_1 and nonadjacent to e_2 . Let $e_3 = u_1v_2$. By Corollary 1, the label 6 must be assigned to an edge not adjacent to e_2 and e_3 . Hence $[7] \subseteq S$. Again by Corollary 1, the label 8 must be assigned to an edge not adjacent to the edges with labels 2 and 6. But now 2 and 8 are assigned to two nonadjacent edges and 4 and 6 are assigned to nonadjacent edges. Hence by Corollary 3, path weight 10 cannot be obtained. Therefore e_3 is adjacent to both e_1 and e_2 . Let $e_3 = u_3v_1$. Hence $[6] \subseteq S$. Let $f(e_4) = 7$. If e_4 is nonadjacent to e_1 , then by Corollary 1, the label 8 must be assigned to an edge e nonadjacent to e_1 and e_4 . Now, if e_4 is nonadjacent to e_2 , then $f(e_2) + f(e_4) = f(e_1) + f(e) = 9$ and by Corollary 3, the path weight 9 cannot be obtained. If e_4 is adjacent to e_2 , then the label 8 must be assigned to an edge nonadjacent to both e_1 and e_4 . Let $f(u_3v_3) = 8$. In this case we get two paths with weight 13. Hence e_4 is adjacent to e_1 . Now if e_4 is nonadjacent to e_2 , then by Corollary 1, the label 9 must be assigned to an edge e_4 nonadjacent to both e_2 and e_4 . Hence $f(e_3) + f(e_4) = f(e) + f(e_2) = 11$ and by Corollary 3, the path weight 11 cannot be obtained, which is a contradiction. Hence $K_{3,n}$ is not a Leech graph. \square **Corollary 5.** The Leech index of $K_{3,n}$ is $k(K_{3,n}) = 14$, for $n \ge 4$. When n = 3, $k(K_{3,3}) = 10$. # 3. Leech Cycles In [12], it has been proved that the cycle C_n , with $3 \le n \le 6$ is a Leech graph. The Leech labelings of these cycles are given in Figure 2, in which two Leech labelings are given for C_4 . Thus for a Leech graph, the Leech labeling is not in general unique. In a cycle, since there exist exactly two paths between every pair of vertices, $t_p(C_n)$ n(n-1). In this section, we present results on the maximum label that can assigned to an edge in a Leech cycle. Figure 2. Leech labeling of cycles of order < 6 **Theorem 3.** Let f be the Leech labeling of a cycle C_n . Then, $w(f) = 2\binom{n}{2} + 1$. *Proof.* Let $$C_n = (v_1, v_2, ..., v_n, v_1)$$ and $f(v_1v_2) = 1$. Then $P = (v_2, v_3, ..., v_n, v_1)$ is the path of maximum weight. Hence $w(P) = t_p(G) = n(n-1)$. Therefore, $w(f) = w(P) + 1 = n^2 - n + 1 = 2\binom{n}{2} + 1$. **Theorem 4.** The maximum value that can be assigned to an edge in a Leech labeling of a cycle C_n is $\binom{n}{2} + 1$. Also, this maximum value is attained only by C_3 and C_4 . Proof. Let f(e) = M, where M is the maximum value assigned to an edge by f. Now, $P_n = C_n - e$ is a path of order n and hence $w(C_n - e) \ge 1 + 2 + \dots + (n - 1) = \binom{n}{2}$. Hence, $w(f) = 2\binom{n}{2} + 1 = w(C_n - e) + M \ge \binom{n}{2} + M$. Therefore, $M \le \binom{n}{2} + 1$. Also, equality holds if and only if $w(P_n) = \binom{n}{2}$ and the path weights of all subpaths of P_n are exactly $\{1, 2, \dots, \binom{n}{2} - 1\}$. Hence P_n is a Leech path. Since P_2 , P_3 and P_4 are the only Leech paths, the maximum edge label M is attained only for C_3 and C_4 . **Theorem 5.** The only Leech cycles which admits a Leech labeling in which the maximum label is $\binom{n}{2}$ are C_4 and C_5 . Proof. Let $f(e_1) = M = \binom{n}{2}$, where M is the maximum value assigned to an edge by f and $e_1 = v_1v_2$. Let $P_n = C_n - e_1$. Then, $w(P_n) = \binom{n}{2} + 1$ and all path weights $1, 2, \ldots, \binom{n}{2} - 1$ must be obtained from P_n . Hence, the set of edge labels of P_n is $\{1, 2, \ldots, n-2, n\}$. Let $f(e_2) = 1$. If $e_2 = v_2v_3$, then $w(v_3, v_4, \ldots, v_n, v_1) = \binom{n}{2} = w(v_1v_2)$. Hence, $e_2 \neq v_2v_3$. Similarly, $e_2 \neq v_nv_1$. If $e_2 = v_iv_{i+1}$ and $f(v_{i-1}v_i) = k$ then $w(v_{i-1}, v_i, v_{i+1}) = k + 1$. Since $1, 2, \ldots, n-2$ and n are already edge weights, $k \notin \{2, 3, \ldots, n-3\}$. A similar argument holds for $f(v_{i+1}v_{i+2}) = l$ also. Therefore, k and l are n-2 and n in some order. If n=4, this gives a Leech labeling of C_4 with maximum label 6 as given in Figure 2. Now, let $n \geq 5$. Let $f(e_3) = 2$. If e_3 is adjacent to an edge labeled k then these two edges together gives a path of weight k + 2. Since, $1, 2, \ldots, n - 2$ and n are already edge weights and $\{w(v_{i-1}v_iv_{i+1}), w(v_iv_{i+1}v_{i+2})\} = \{n-1, n+1\}, k \notin \{1, 3, \ldots, n-2\}$. Hence, e_3 is adjacent only to the edge with label n. Now, since the edges with labels 1 and 2 are non-adjacent, there exists an edge e_4 with $f(e_4) = 3$. If e_4 is adjacent to an edge labeled $k \in \{1, 2, 4, ..., n-2\}$ then the path weight of e_4 together with this edge will be in $\{4, 5, 7, ..., n+1\}$ which is not possible. Hence, the only possibility is n-2=3 and this gives a Leech labeling of C_5 with the maximum edge label is 10 as given in Figure 2. **Theorem 6.** The only Leech cycle which admits a Leech labeling in which the maximum label is $\binom{n}{2} - 1$ is C_6 . Proof. Let $f(e) = \binom{n}{2} - 1$, where $e = v_1 v_2$. Let $P_n = C_n - e = (v_2, v_3, \dots, v_n, v_1)$. Then $w(P_n) = \binom{n}{2} + 2$ and all path weights less than $\binom{n}{2} - 1$ must be obtained from P_n . Hence the set of all path weights of the subpaths of P_n is $\{1, 2, \dots, \binom{n}{2} - 2, \binom{n}{2} + 2, k\}$, where k is $\binom{n}{2}$ or $\binom{n}{2} + 1$. Also, the sum of edge weights of P_n is $\binom{n}{2} + 2$ and hence the set of all edge labels of P_n is $\{1, 2, \dots, n-2, n+1\}$ or $\{1, 2, \dots, n-3, n-1, n\}$. We consider four cases. Case 1. $k = \binom{n}{2}$ and the set of edge labels of P_n is $\{1, 2, \dots, n-2, n+1\}$. Since $w(P_n) = \binom{n}{2} + 2$ and $k = \binom{n}{2}$ is a path weight of a subpath of P_n , the label 2 must be assigned to a pendant edge of P_n . Let $f(v_2v_3)=2$. Now since $f(e)=\binom{n}{2}-1$ and $\binom{n}{2}$ is a path weight of a subpath of P_n , the label 1 cannot be assigned to a pendant edge of P_n . Let $f(e_1) = 1$, where e_1 is an internal edge of P_n . Now, if a and b are edge labels of two adjacent edges of P_n , then a+b is not an edge label. Hence, a+b=n-1 or n or $a+b\geq n+2$. Hence the two edges adjacent to e_1 have labels n-2 and n+1 and we get path weights n-1 and n+2. Now, if $f(v_3v_4)=x$ then, $w(v_2, v_3, v_4) = x + 2 = n \text{ or } x + 2 \ge n + 3.$ If x + 2 = n, then x = n - 2 and hence $e_1 = v_4 v_5$. But, then $w(v_2, v_3, v_4, v_5) = 2 + n - 2 + 1 = n + 1$ which is already an edge weight, a contradiction. Therefore, the only possibility is $f(v_3v_4) = n+1$ and eventually $f(v_4v_5) = 1$ and $f(v_5v_6) = n-2$ and we get path weights n+3 and n+4. Now, there is an edge with label 3 and if the edge adjacent to it is labeled y then y+3=n or $y+3\geq n+5$. But, $y\geq n+2$ is not possible and hence 3 is assigned to a pendant edge of P_n . But, then the path weight $3 + \binom{n}{2} - 1 = \binom{n}{2} + 2$ repeats. Hence, this case is not possible. Case 2. $k = \binom{n}{2}$ and the set of edge labels of P_n is $\{1, 2, \dots, n-3, n-1, n\}$. As in Case 1, $f(v_2v_3) = 2$ and $f(e_1) = 1$, where e_1 is an internal edge of P_n . Also, if a and b are edge labels of two adjacent edges of P_n , then a+b=n-2 or $a+b \geq n+1$. Hence the two edges adjacent to e_1 have labels n-3 and n and we get path weights n-2 and n+1. Now if $f(v_3v_4) = x$ then, $w(v_2, v_3, v_4) = x+2 \geq n+2$. Therefore, $f(v_3v_4) = n$ and eventually, $f(v_4v_5) = 1$ and $f(v_5v_6) = n-3$. Also, we have obtained all path weights up to n+3. Now, if the label y is assigned to an edge adjacent to the edge labeled 3, then $y+3 \geq n+4$ which is not possible. Case 3. $k = \binom{n}{2} + 1$ and the set of edge labels of P_n is $\{1, 2, \dots, n-2, n+1\}$. Since $w(P_n) = \binom{n}{2} + 2$ and $k = \binom{n}{2} + 1$ is a path weight of a subpath of P_n , the label 1 must be assigned to a pendant edge of P_n . Let $f(v_2v_3)=1$. Also, since $\binom{n}{2}$ is not a path weight of a subpath of P_n , 2 cannot be assigned to a pendent edge of P_n . Let $f(e_1) = 2$, where e_1 is an internal edge of P_n . Now, if a and b are edge labels of two adjacent edges of P_n , then a+b=n-1 or n or $a+b\geq n+2$. Therefore, $f(v_3v_4) = n-2$ or n+1. If $f(v_3v_4) = n-2$ then we get path weight n-1 also, so that if an edge adjacent to e_1 is given label x, then x+2=n or $x+2\geq n+2$. Therefore, the edges adjacent to e_1 are labeled n-2 and n+1. Therefore, $f(v_4v_5)=2$ and $f(v_5v_6) = n+1$. But, then $w(v_2, v_3, v_4, v_5) = 1+n-2+2=n+1$, which is already an edge weight. Therefore, let $f(v_3v_4) = n+1$ and then we get the path weight n+2also. Again, if an edge adjacent to e_1 is given label x, then x+2=n-1 or n or $x+2 \ge n+3$. Therefore, the edges adjacent to e_1 are labeled n-3 or n-2 or n+1. If e_1 is adjacent to an edge labeled n+1 then, $e_1=v_4v_5$ and we get paths of weight n+3 and n+4. Now, the edge labeled 3 can be adjacent only to either n-3 or the edge labeled n-4, which implies 3 is assigned to a pendant edge of P_n . But, then f(e) + 3 gives another path weight of weight $\binom{n}{2} + 2$, a contradiction. Therefore, the labels of edges adjacent to 2 are n-3 and n-2, so that the path weights n-1 and n are obtained. Again, if the label y is assigned to an edge adjacent to the edge labeled 3, then $y+3 \ge n+3$ in which case also 3 is assigned to a pendant edge and hence is not possible. Case 4. $k = \binom{n}{2} + 1$ and the set of edge labels of P_n is $\{1, 2, \dots, n-3, n-1, n\}$. As in Case 3, $f(v_2v_3) = 1$ and $f(e_1) = 2$, where e_1 is an internal edge of P_n . Again, if a and b are edge labels of two adjacent edges of P_n , then a+b=n-2 or $a+b \ge n+1$. Therefore, $f(v_3v_4) = n-3$ or n. If $f(v_3v_4) = n$, then we get path weight n+1 also. Now, if an edge adjacent to e_1 is given label x, then x+2=n-2 or $x+2 \ge n+2$. Therefore, the edges adjacent to 2 are labeled n-4 and n, so that we get all path weights upto n+3. Now, if label y is assigned to an edge adjacent to the edge labeled 3, then $y+3 \ge n+4$ which is not possible. Therefore, let $f(v_3v_4) = n-3$ so that we get path weight n-2 also, so that if an edge adjacent to e_1 is given label x, then $x+2 \ge n+1$. Therefore, the edges adjacent to e_1 are labeled n-1 and n, so that we get all path weights up to n+2. In this case also, if the label y is assigned to an edge adjacent to the edge labeled 3, then $y+3 \ge n+3$ in which case 3 is assigned to a pendant edge and hence is not possible. So, the only possibility is n-3=3 and this gives the Leech labeling of C_6 . **Corollary 6.** The maximum value that can be assigned to an edge in a Leech labeling of a cycle C_n , where n > 7, is less than $\binom{n}{2} - 1$. The following figure gives three different Leech labelings of C_6 in which the maximum labels are $\binom{n}{2}-1$, $\binom{n}{2}-2$ and $\binom{n}{2}-3$. We strongly believe that cycles of length greater than 6 are not Leech graphs. Figure 3. Leech labelings of C_6 **Acknowledgement.** The second author thank Cochin University of Science and Technology for granting project under Seed Money for New Research Initiatives (order No.CUSAT/PL(UGC).A1/1112/2021) dated 09.03.2021. The authors are thankful to an anonymous reviewer, whose helpful suggestions resulted is substantial improvement in the paper. Conflict of interest. The authors declare that they have no conflict of interest. **Data Availability.** Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study. #### References - B. Calhoun, K. Ferland, L. Lister, and J. Polhill, Minimal distinct distance trees, J. Combin. Math. Combin. Comput. 61 (2007), 33–57. - [2] G. Chartrand, L. Lesniak, and P. Zhang, *Graphs & Digraphs*, vol. 22, Chapman & Hall London, 1996. - [3] D. Leach, Modular Leech trees of order at most 8, Int. J. Combin. 2014 (2014), Article ID: 218086. https://doi.org/10.1155/2014/218086. - [4] D. Leach and M. Walsh, Generalized leech trees, J. Combin. Math. Combin. Comput. 78 (2011), 15–22. - [5] J. Leech, Another tree labeling problem, Amer. Math. Monthly 82 (1975), no. 9, 923–925. - [6] M. Ozen, H. Wang, and D. Yalman, Note on Leech-type questions of tree, Integers 16 (2016), #A21. - [7] L.A. Szekely, H. Wang, and Y. Zhang, Some non-existence results on Leech trees, Bull. Inst. Combin. Appl. 44 (2005), 37–45. - [8] H. Taylor, Odd path sums in an edge-labeled tree, Math. Magazine 50 (1977), no. 5, 258–259. https://doi.org/10.1080/0025570X.1977.11976658. - [9] ______, A distinct distance set of 9 nodes in a tree of diameter 36, Discrete Math. 93 (1991), no. 2-3, 167–168. https://doi.org/10.1016/0012-365X(91)90252-W. - [10] S. Varghese, A. Lakshmanan S., and S. Arumugam, Two classes of non-Leech trees, Electron. J. Graph Theory Appl. 8 (2020), no. 1, 205–210. https://doi.org/10.5614/eigta.2020.8.1.15. - [11] ______, Leech index of a tree, J. Discrete Math. Sci. Crypt. 25 (2022), no. 8, 2237–2247. https://doi.org/10.1080/09720529.2020.1800217. - [12] ______, Two extensions of Leech labeling to the class of all graphs, AKCE Int. J. Graphs Comb. 19 (2022), no. 2, 159–165. http://doi.org/10.1080/09728600.2022.2084354. - [13] ______, Leech labeling problem on tristar, AIP Conf. Proc. 2649 (2023), no. 1, Article ID: 020007. https://doi.org/10.1063/5.0114834.