

Research Article

Total restrained Roman domination

Jafar Amjadi^{1,*}, Babak Samadi², Lutz Volkmann³

¹Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, I.R. Iran j-amjadi@azaruniv.ac.ir

² Department of Mathematics, Faculty of Mathematical Sciences, Alzahra University, Tehran, Iran b.samadi@alzahra.ac.ir

³ Lehrstuhl II fur Mathematik, RWTH Aachen University, 52056 Aachen, Germany, volkm@math2.rwth-aachen.de

Received: 14 January 2022; Accepted: 12 August 2022 Published Online: 15 August 2022

Abstract: Let G be a graph with vertex set V(G). A Roman dominating function (RDF) on a graph G is a function $f:V(G) \longrightarrow \{0,1,2\}$ such that every vertex v with f(v)=0 is adjacent to a vertex u with f(u)=2. If f is an RDF on G, then let $V_i=\{v\in V(G):f(v)=i\}$ for $i\in\{0,1,2\}$. An RDF f is called a restrained (total) Roman dominating function if the subgraph induced by V_0 (induced by $V_1\cup V_2$) has no isolated vertex. A total and restrained Roman dominating function is a total restrained Roman dominating function. The total restrained Roman domination number $\gamma_{tr}(G)$ on a graph G is the minimum weight of a total restrained Roman dominating function on the graph G.

We initiate the study of total restrained Roman domination number and present several sharp bounds on $\gamma_{trR}(G)$. In addition, we determine this parameter for some classes of graphs.

Keywords: Total restrained domination, total restrained Roman domination, total restrained Roman domination number

AMS Subject classification: 05C69

1. Introduction

For definitions and notations not given here we refer to [11]. We consider simple and finite graphs G with vertex set V = V(G) and edge set E = E(G). The order of G is n = n(G) = |V|. The neighborhood of a vertex v is the set $N(v) = N_G(v) = \{u \in V(G) \mid uv \in E\}$. The degree of vertex $v \in V$ is $d(v) = d_G(v) = |N(v)|$. The maximum degree and minimum degree of G are denoted by $\Delta = \Delta(G)$ and $\delta = \delta(G)$,

^{*} Corresponding Author

respectively. The complement of a graph G is denoted by \overline{G} . For a subset D of vertices in a graph G, we denote by G[D] the subgraph of G induced by D. A leaf is a vertex of degree one, and its neighbor is called a support vertex. An edge incident with a leaf is called a pendant edge. We denoted the sets of all leaves and all support vertices of G by L(G) and S(G), respectively. Let $K_{n_1,n_2,...,n_p}$ denote the complete p-partite graph with vertex set $S_1 \cup S_2 \cup ... \cup S_p$ where $|S_i| = n_i$ for $1 \le i \le p$.

A set $S \subseteq V(G)$ is called a dominating set if every vertex is either an element of S or is adjacent to an element of S. The domination number $\gamma(G)$ of a graph G is the minimum cardinality of a dominating set of G. A total restrained dominating set of a graph G without isolated vertices is defined in [14] as a dominating set D with the property that the subgraphs induced by D and $V(G) \setminus D$ do not contain isolated vertices. The cardinality of a minimum total restrained dominating set in G is the total restrained domination number, denoted by $\gamma_{tr}(G)$. A total restrained dominating set of G of cardinality $\gamma_{tr}(G)$ is called a $\gamma_{tr}(G)$ -set.

In this paper we continue the study of Roman dominating functions in graphs (see, for example, the survey articles [7–9]). A Roman dominating function (RDF) on a graph G is defined in [10] as a function $f:V(G)\longrightarrow\{0,1,2\}$ such that every vertex v with f(v)=0 is adjacent to a vertex u with f(u)=2. The weight of an RDF f is the value $f(V(G))=\sum_{u\in V(G)}f(u)$. The Roman domination number $\gamma_R(G)$ is the minimum weight of an RDF on G. Moreover, if f is an RDF on G, we let $V_i^f=\{v\in V\mid f(v)=i\}$ for every $i\in\{0,1,2\}$. Consequently, any RDF f can be represented by $f=(V_0^f,V_1^f,V_2^f)$, where the superscript f can be deleted in V_i^f when no confusion arises.

A total Roman dominating function (TRDF) on a graph G without isolated vertices is defined in [13] as a Roman dominating function f with the property that the subgraph induced by $V_1 \cup V_2$ has no isolated vertex. The total Roman domination number $\gamma_{tR}(G)$ is the minimum weight of a TRDF on G. A TRDF on G with weight $\gamma_{tR}(G)$ is called a $\gamma_{tR}(G)$ -function. Total Roman domination has been studied by several authors [1–3, 5, 6].

A restrained Roman dominating function (RRDF) on a graph G is defined in [15] as a Roman dominating function f with the property that the subgraph induced by V_0 has no isolated vertex. The restrained Roman domination number $\gamma_{rR}(G)$ is the minimum weight of an RRDF on G. An RRDF on G with weight $\gamma_{rR}(G)$ is called a $\gamma_{rR}(G)$ -function. The restrained Roman domination number has also been studied in [4, 16].

A total and restrained Roman dominating function on a graph without isolated vertices is a total restrained Roman dominating function (TRRDF). The total restrained Roman domination number $\gamma_{trR}(G)$ on a graph G is the minimum weight of a TRRDF on G. A TRRDF on G with weight $\gamma_{trR}(G)$ is called a $\gamma_{trR}(G)$ -function.

If G is a graph without isolated vertices, then the definitions lead to

$$\gamma_R(G) \le \gamma_{tR}(G) \le \gamma_{trR}(G) \tag{1}$$

and

$$\gamma_R(G) \le \gamma_{rR}(G) \le \gamma_{trR}(G).$$
(2)

We initiate the study of total restrained Roman domination and present several sharp bounds on $\gamma_{trR}(G)$. In addition, we determine this parameter for some classes of graphs. Furthermore, if T is a tree of order $n \geq 6$, then we prove the sharp lower bound $\gamma_{trR}(T) \geq \frac{3(n+2)}{4}$.

We make use of the following results.

Proposition 1. [3] If G is a nontrivial path or a cycle of order n, then $\gamma_{tR}(G) = n$.

Proposition 2. [15] If $p, q \ge 2$ are integers, then $\gamma_{rR}(K_{p,q}) = 4$.

Proposition 3. [14] If C_n is a cycle of order n, then $\gamma_{tr}(C_n) = n - 2\lfloor \frac{n}{4} \rfloor$.

Proposition 4. [3] If G is a graph with no isolated vertex, then $2\gamma(G) \leq \gamma_{tR}(G)$.

Proposition 5. [1] If G is a connected graph of order $n \geq 3$, then $\gamma_{tR}(G) \geq \lceil \frac{2n}{\Delta(G)} \rceil$.

2. Complexity of total restrained Roman domination number

Our aim in this section is to show that the decision problem associated with the total restrained Roman domination is NP-hard even when restricted to bipartite graphs.

Total restrained Roman domination number problem (TRRDN)

Instance: A bipartite graph G with no isolated vertices and a positive integer k. Question: Is $\gamma_{trR}(G) \leq k$?

We show the NP-hardness of TRRDN problem by transforming the 3-SAT problem to it in polynomial time. Recall that the 3-SAT problem specified below was proven to be NP-complete in [12].

3-SAT problem

Instance: A collection $C = \{C_1, C_2, \dots, C_m\}$ of clauses over a finite set U of variables such that $|C_j| = 3$ for $j = 1, 2, \dots, m$.

Question: Is there a truth assignment for U that satisfies all the clauses in C?

Now, we show that the problem above is NP-hard, even when restricted to bipartite graphs.

Theorem 1. Problem TRRDN is NP-complete for bipartite graphs.

Proof. The problem clearly belongs to NP since checking that a given function is indeed a TRRDF, on a bipartite graph, of weight at most k can be done in polynomial time. Now let us show how to transform any instance of 3-SAT into an instance G of TRRD so that one of them has a solution if and only if the other one has a solution. Let $U = \{u_1, u_2, \ldots, u_n\}$ and $\mathscr{C} = \{C_1, C_2, \ldots, C_m\}$ be an arbitrary instance of 3-SAT. We will construct a bipartite graph G and a positive integer K such that \mathscr{C} is satisfiable if and only if $\gamma_{trR}(G) \leq k$. We construct such a graph G as follows. For each $i = 1, 2, \ldots, n$, corresponding to the variable $u_i \in U$, associate a complete

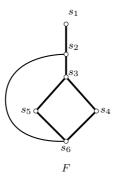


Figure 1. The graph F

bipartite graph $H_i = K_{3,4}$ with bipartite sets $X = \{x_i, y_i, z_i, w_i\}$ and $Y = \{u_i, t_i, \overline{u_i}\}$. For each $j = 1, 2, \ldots, m$, corresponding to the clause $C_j = \{p_j, q_j, r_j\} \in \mathscr{C}$, associate a single vertex c_j and add edge-set $E_j = \{c_j p_j, c_j q_j, c_j r_j\}$. Finally, add the graph F depicted in Figure 1 and connect s_1 to every vertex c_j with $1 \leq j \leq m$. Set k = 4n + 4. Clearly, G is a bipartite graph of order 7n + m + 6. The graph obtained when $U = \{u_1, u_2, u_3, u_4\}$ and $\mathscr{C} = \{C_1, C_2, C_3\}$, where $C_1 = \{u_1, u_2, \overline{u_3}\}, C_2 = \{\overline{u_1}, u_2, u_4\}, C_3 = \{\overline{u_2}, u_3, u_4\}$ is illustrated in Figure 2. Now, we only need to prove that $\gamma_{trR}(G) = 4n + 4$ if and only if there is a truth assignment for U satisfying each clause in \mathscr{C} . This goal can be established by proving the next two claims.

Claim 1. $\gamma_{trR}(G) \geq 4n + 4$. Moreover, if $\gamma_{trR}(G) = 4n + 4$, then for any $\gamma_{trR}(G)$ -function $f = (V_0, V_1, V_2)$, $f(V(H_i)) = 4$, at most one of $f(u_i)$ and $f(\overline{u_i})$ is 2 for each $i, f(s_2) = f(s_6) = 2$ or $f(s_2) = f(s_3) = 2$, f(s) = 0 for the remaining vertices of F and $f(c_i) = 0$ for each j.

Proof of Claim 1. Let $f = (V_0, V_1, V_2)$ be a $\gamma_{trR}(G)$ -function. It is easily verified that $f(V(H_i)) \geq 3$ for each $i \in \{1, 2, ..., n\}$. Define $Q = \{i \mid f(V(H_i)) = 3 \text{ and } 1 \leq i \leq n\}$ and let $i \in Q$. It is easy to see that $f(t_i) = 2$, $f(p_i) = 1$ for only one vertex $p_i \in \{x_i, y_i, z_i, w_i\}$, and f(v) = 0 for the other vertices of H_i . Since f is a TRRDF of G, there exist some vertices c_j , with $f(c_j) = 2$, adjacent to the vertices u_i and $\overline{u_i}$. Let Q' be the set of such vertices c_j . We moreover observe that $2|Q| \leq |[Q, Q']| \leq 3|Q'|$. On the other hand, it is a routine matter to see that $f(V(F)) \geq 4$. Therefore,

$$\gamma_{trR}(G) = f(V(G)) \ge 3|Q| + 2|Q'| + 4(n - |Q|) + 4 = 4n - |Q| + 2|Q'| + 4 \ge 4n + 4.$$

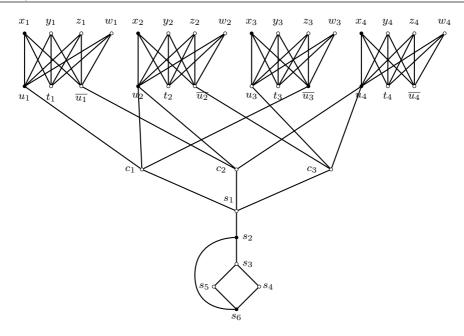


Figure 2. The graph G

Note that if |Q| > 0, then we have $\gamma_{trR}(G) > 4n + 4$.

Suppose that $\gamma_{trR}(G) = 4n + 4$. Then $f(V(H_i)) = 4$ for each i = 1, 2, ..., n. If $f(s_1) \neq 0$, then for totally restrained Roman dominating the vertices s_3, s_4, s_5 and s_6 we must have $f(N[s_3]) \cup \{s_6\}) \geq 4$ which leads to a contradiction. Hence $f(s_1) = 0$ and similar as above, it is clear to see that $f(s_2) = f(s_3) = 2$ or $f(s_2) = f(s_6) = 2$. Therefore f(s) = 0 for the remaining vertices of F, and $\sum_{j=1}^m f(c_j) = 0$. Now we show that at most one of $f(u_i)$ and $f(\overline{u_i})$ is 2. Let $f(u_i) = f(\overline{u_i}) = 2$ for some $1 \leq i \leq n$. Since $f(V(H_i)) = 4$, it follows that f(x) = 0 for each $x \in V(H_i) \setminus \{u_i, \overline{u_i}\}$. This implies that $f(t_i) = f(N[t_i]) = 0$, a contradiction. Therefore, at most of one $f(u_i)$ and $f(\overline{u_i})$ equals two. \blacklozenge

Claim 2. $\gamma_{trR}(G) = 4n + 4$ if and only if \mathscr{C} is satisfiable.

Proof of Claim 2. Suppose that $\gamma_{trR}(G) = 4n + 4$ and let f be a $\gamma_{trR}(G)$ -function. By Claim 2, at most one of $f(u_i)$ and $f(\overline{u_i})$ is 2 for each i = 1, 2, ..., n. Define a mapping $t: U \longrightarrow \{T, F\}$ by

$$t(u_i) = \begin{cases} T & \text{if } f(u_i) = 2, \\ F & \text{otherwise.} \end{cases}$$
 (i = 1,...,n) (3)

We now show that t is a satisfying truth assignment for \mathscr{C} . It is sufficient to show that every clause in \mathscr{C} is satisfied by t. To this end, we arbitrarily choose a clause $C_j \in \mathscr{C}$ with $1 \leq j \leq m$. By Claim 2, $f(s_1) = f(c_j) = 0$. Hence, there exists some

i with $1 \leq i \leq n$ such that $f(u_i) = 2$ or $f(\overline{u_i}) = 2$ where c_j is adjacent to u_i or $\overline{u_i}$. Suppose that c_j is adjacent to u_i where $f(u_i) = 2$. Since u_i is adjacent to c_j in G, the literal u_i is in the clause C_i by the construction of G. Since $f(u_i) = 2$, it follows that $t(u_i) = T$ by (3), which implies that the clause C_i is satisfied by t. Suppose that c_j is adjacent to $\overline{u_i}$ where $f(\overline{u_i}) = 2$. Since $\overline{u_i}$ is adjacent to c_j in G, the literal $\overline{u_i}$ is in the clause C_i . Since $f(\overline{u_i}) = 2$, it follows that $t(u_i) = F$ by (3). Thus, t assigns $\overline{u_i}$ the truth value T, that is, t satisfies the clause C_j . By the arbitrariness of j with $1 \leq j \leq m$, we have shown that t satisfies all the clauses in \mathscr{C} , that is, \mathscr{C} is satisfiable. Conversely, suppose that \mathscr{C} is satisfiable, and let $t: U \to \{T, F\}$ be a satisfying truth assignment for \mathscr{C} . We construct a subset D of vertices of G as follows. If $t(u_i) = T$, then put the vertices u_i and x_i in D; if $t(u_i) = F$, then put the vertices $\overline{u_i}$ and x_i in D. Hence |D|=2n. Define the function $g:V(G)\longrightarrow \{0,1,2\}$ by g(x)=2 for every $x \in D$, $g(s_2) = g(s_3) = 2$ and g(y) = 0 for the remaining vertices. Since t is a satisfying truth assignment for \mathscr{C} , the corresponding vertex c_i in G is adjacent to at least one vertex in D. One can easily check that g is a TRRDF on G of weight 4n+4and so $\gamma_{trR}(G) \leq 4n+4$. By Claim 2, $\gamma_{trR}(G) \geq 4n+4$. Therefore, $\gamma_{trR}(G) = 4n+4$.

This completes the proof.

3. Properties and bounds

In this section we present basic properties and bounds on the total restrained Roman domination number. Since the function f with f(x) = 1 for each vertex $x \in V(G)$ is a TRRDF on a graph G without isolated vertices, we obtain our first bound.

Observation 2. If G is a graph of order n without isolated vertices, then $\gamma_{trR}(G) \leq n$.

The next result follows from the inequality $\gamma_{tR}(G) \leq \gamma_{trR}(G)$, Proposition 1 and Observation 2.

Observation 3. If G is a nontrivial path or a cycle of order n, then $\gamma_{trR}(G) = n$.

Proposition 6. For any connected graph G of order n with minimum degree at least three, $\gamma_{trR}(G) \leq n-1$.

Proof. Let G be a graph with $\delta(G) \geq 3$. If G has a triangle uvwu, then the function f defined by f(v) = 2, f(u) = f(w) = 0 and f(x) = 1 otherwise, is a TRRDF on G of weight n-1 and we are done. Hence, we assume that G is triangle-free. Let v be a vertex of G with minimum degree and let u_1, u_2 be two neighbors of v. Assume that $w_i \in N(u_i) \setminus \{v\}$ for i = 1, 2. If $w_1 = w_2$, then let $w \in N(w_1) \setminus \{u_1, u_2\}$ and define the function g on G by g(v) = g(w) = 2, $g(u_1) = g(u_2) = g(w_1) = 0$ and g(x) = 1 for the remaining vertices. Clearly, g is a TRRDF on G of weight

n-1 and hence $\gamma_{trR}(G) \leq n-1$. Therefore we assume that $w_1 \neq w_2$. Since G is triangle-free, w_1 has a neighbor z_1 not in $\{u_1, u_2, w_2\}$ and w_2 has a neighbors z_2 not in $\{u_2, u_1, w_1\}$. If $z_1 = z_2$, then the function g defined on G by $g(v) = g(z_1) = 2$, $g(u_1) = g(u_2) = g(w_1) = g(w_2) = 0$ and g(x) = 1 for the remaining vertices, is a TRRDF on G of weight n-2 as desired. Let $z_1 \neq z_2$ and define the function g on G by $g(v) = g(z_1) = g(z_2) = 2$, $g(u_1) = g(u_2) = g(w_1) = g(w_2) = 0$ and g(x) = 1 for the remaining vertices. Clearly, g is a TRRDF of G of weight $g(u_1) = g(u_2) = 1$. This completes the proof.

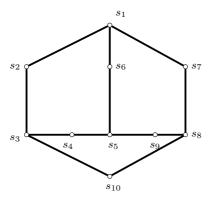


Figure 3. A graph G of order 10 with girth 6 and $\gamma_{trR}(G) = 10$

Proposition 7. For any connected graph G of order n with minimum degree at least two and girth at least seven different from cycles, $\gamma_{trR}(G) \leq n-1$.

Proof. Let G be a connected graph of order n with $\delta(G) \geq 2$ and $g = g(G) \geq 7$. Let $C = x_1x_2 \dots x_gx_1$ be a cycle of G on g(G) vertices. Since G is a connected graph different from a cycle and because C has length g(G), we may assume that x_1 has a neighbor $w_1 \in V(G) \setminus V(C)$. Let $w_2 \in N(w_1) \setminus \{x_1\}$. Notice that since $g(G) \geq 7$, each vertex in $V(G) \setminus V(C)$ has at most one neighbor in V(C). Define the function g on G by $g(x_1) = g(x_4) = g(x_{g-2}) = 2$, $g(x_2) = g(x_3) = g(x_g) = g(x_{g-1}) = 0$ and g(x) = 1 for the remaining vertices. It is easy to verify that g is a TRRDF on G and consequently $\gamma_{trR}(G) \leq n-1$.

The graph illustrated in Figure 3 shows that the assumption of $g(G) \ge 7$ in Proposition 7 is necessary.

Observation 4. If $p, q \ge 2$ are integers, then $\gamma_{trR}(K_{p,q}) = 4$.

Proof. Proposition 2 leads to $\gamma_{trR}(K_{p,q}) \geq \gamma_{rR}(K_{p,q}) = 4$. Now let X, Y be a bipartition of $K_{p,q}$. If $x \in X$ and $y \in Y$, then define f by f(x) = f(y) = 2 and f(u) = f(y) = 2

0 for $u \in V(K_{p,q}) \setminus \{x,y\}$. Then f is a TRRDF on $K_{p,q}$ and thus $\gamma_{trR}(K_{p,q}) \leq 4$ and so $\gamma_{trR}(K_{p,q}) = 4$.

The inequality $\gamma_{tR}(G) \leq \gamma_{trR}(G)$ and Proposition 5 yield the following lower bound.

Corollary 1. If G is a connected graph of order $n \geq 3$, then $\gamma_{trR}(G) \geq \lceil \frac{2n}{\Delta(G)} \rceil$.

Using Observations 3 and 4, we observe that we have equality for paths, cycles and the complete bipartite graphs $K_{p,p}$ in the inequality of Corollary 1.

Observation 5. Let G be a graph of order $n \geq 2$ without isolated vertices, and let f be a TRRDF of G. Then $f(x) \geq 1$ for every leaf and every support vertex and thus $\gamma_{trR}(G) \geq |L(G)| + |S(G)|$.

Let H be the graph consisting of a path $x_1x_2...x_{3t}$ for an integer $t \geq 2$, further vertices $v_1, v_2, ..., v_t$ such that v_i is adjacent with x_{3i-2}, x_{3i-1} and x_{3i} for $1 \leq i \leq t$. Then $\gamma_{rR}(H) = 2t$ and $\gamma_{trR}(H) = 3t$. Hence we have

Proposition 8. There exists a graph H for which $\gamma_{trR}(H) - \gamma_{rR}(H)$ can be made arbitrarily large.

If $S_{p,q}$ is a double star of order n with $p,q \geq 2$, then $\gamma_{trR}(S_{p,q}) = n$ by Observation 5 and $\gamma_{tR}(S_{p,q}) = 4$ and thus

Proposition 9. There exists a graph H for which $\gamma_{trR}(H) - \gamma_{tR}(H)$ can be made arbitrarily large.

Using the inequality $\gamma_{tR}(G) \leq \gamma_{trR}(G)$ and Proposition 4, we obtain the next lower bound.

Corollary 2. If G is a graph with no isolated vertex, then $2\gamma(G) \leq \gamma_{tR}(G) \leq \gamma_{trR}(G)$.

The corona $H \circ K_1$ of a graph H is the graph obtained from H by adding a pendant edge to each vertex of H. If $G = H \circ K_1$ with a connected graph H, then $\gamma(G) = \frac{n}{2}$, and $\gamma_{trR}(G) = n$ by Observations 2 and 5. Hence $\gamma_{trR}(H \circ K_1) = 2\gamma(H \circ K_1)$ and thus Corollary 2 is sharp.

Theorem 6. If G is a graph of order $n \ge 4$ without isolated vertices, then $\gamma_{trR}(G) \ge 3$, with equality if and only if $\Delta(G) = n - 1$, and G contains a vertex w of maximum degree such that $G[N_G(w)]$ has exactly one isolated vertex or no isolated vertex and at least one component of order at least three.

Proof. Let f be a $\gamma_{trR}(G)$ -function. If $f(x) \geq 1$ for all $x \in V(G)$, then $\gamma_{trR}(G) \geq n > 3$. If there exists a vertex u with f(u) = 0, then u has a neighbor v with f(v) = 2. Since f is a TRRDF, the vertex v is adjacent to a vertex z such that $f(z) \geq 1$. Therefore, $\gamma_{trR}(G) \geq 3$.

If $\Delta(G) = n-1$ and G contains a vertex w of maximum degree such that $G[N_G(w)]$ has exactly one isolated vertex u, then the function f with f(w) = 2, f(u) = 1 and f(x) = 0 for $x \in V(G) \setminus \{u, w\}$ is a TRRDF on G and thus $\gamma_{trR}(G) = 3$. Assume next that $\Delta(G) = n-1$ and G contains a vertex w of maximum degree such that $G[N_G(w)]$ has no isolated vertex and at least one component H of order at least three. Let T be a spanning tree of H and let v be a leaf of T. Then $G[V(T) \setminus \{v\}]$ is connected, and hence the function f with f(w) = 2, f(v) = 1 and f(x) = 0 for $x \in V(G) \setminus \{v, w\}$ is a TRRDF on G and thus $\gamma_{trR}(G) = 3$.

Conversely, assume that $\gamma_{trR}(G) = 3$, and let f be a $\gamma_{trR}(G)$ -function. Since $n \geq 4$, we note that there exist two vertices w and u with f(w) = 2, f(u) = 1 and f(x) = 0 for $x \in V(G) \setminus \{u, w\}$. Therefore all vertices $x \neq w$ are adjacent to w and $G[N_G(w) \setminus \{u\}]$ does not contain an isolated vertex. So $\Delta(G) = n - 1$ and $G[N_G(w)]$ has exatly one isolated vertex u or u is adjacent to a vertex of $N_G(w) \setminus \{u\}$, and then $G[N_G(w)]$ has no isolated vertex and at least one component of order at least three.

Since $\gamma_{trR}(K_3) = 3$, Theorem 6 leads to the next special case immediately.

Corollary 3. If $n \geq 3$, then $\gamma_{trR}(K_n) = 3$.

Corollary 4. If G and \overline{G} are graphs of order $n \geq 4$ without isolated vertices, then $\gamma_{trR}(G) + \gamma_{trR}(\overline{G}) \geq 8$.

Proof. Since G and \overline{G} are without isolated vertices, we observe that $\Delta(G) \leq n-2$ and $\Delta(\overline{G}) \leq n-2$. Hence Theorem 6 implies $\gamma_{trR}(G), \gamma_{trR}(\overline{G}) \geq 4$ and so $\gamma_{trR}(G) + \gamma_{trR}(\overline{G}) \geq 8$.

Example 1. Let $X = \{x_1, x_2, \dots, x_p\}$ and $Y = \{y_1, y_2, \dots, y_q\}$ be a bipartition of the complete bipartite graph $K_{p,q}$ for $p,q \geq 3$, and let $B = K_{p,q} - e$ with $e = x_1y_1$. We note that $\Delta(B) \leq n(B) - 2$ and $\Delta(\overline{B}) \leq n(B) - 2$. Define f by $f(x_p) = f(y_q) = 2$ and f(x) = 0 otherwise. Then f is a TRRDF on B and therefore $\gamma_{trR}(B) = 4$ according to Theorem 6. Next define g by $g(x_1) = g(y_1) = 2$ and g(x) = 0 otherwise. Then g is a TRRDF on \overline{B} and thus $\gamma_{trR}(\overline{B}) = 4$. Consequently, $\gamma_{trR}(B) + \gamma_{trR}(\overline{B}) = 8$.

Example 1 demonstrates that Corollary 4 is sharp.

Observation 7. Let $G = K_{n_1, n_2, ..., n_p}$ be a complete p-partite graph with $p \geq 3$ and $n_1 \leq n_2 \leq ... \leq n_p$. If $n = n_1 + n_2 + ... + n_p \geq 4$, then $\gamma_{trR}(G) = 3$ when $n_1 = 1$ and $\gamma_{trR}(G) = 4$ when $n_1 \geq 2$.

Proof. If $n_1 = 1$, then Theorem 6 leads to $\gamma_{trR}(G) = 3$. If $n_1 \geq 2$, then $\Delta(G) \leq n-2$ and therefore $\gamma_{trR}(G) \geq 4$ by Theorem 6. Now let $u \in S_1$ and $v \in S_2$, where S_1 and S_2 are two different partite sets of G. Then the function f defined by f(u) = f(v) = 2 and f(x) = 0 for $x \in V(G) \setminus \{u, v\}$ is a TRRDF on G of weight 4 and so $\gamma_{trR}(G) \leq 4$. Consequently, $\gamma_{trR}(G) = 4$ when $n_1 \geq 2$.

Theorem 8. If G is a graph of order $n \geq 4$ without isolated vertices, then

$$\gamma_{tr}(G) \le \gamma_{trR}(G) \le 2\gamma_{tr}(G).$$

In addition, $\gamma_{tr}(G) = \gamma_{trR}(G)$ if and only if $\gamma_{tr}(G) = \gamma_{trR}(G) = n$.

Proof. Let $f = (V_0, V_1, V_2)$ be an arbitrary $\gamma_{trR}(G)$ -function. Then $V_1 \cup V_2$ is a total restrained dominating set of G, and hence it follows that

$$\gamma_{tr}(G) \le |V_1| + |V_2| \le |V_1| + 2|V_2| = \gamma_{trR}(G).$$

This establishes the lower bound in the statement of the theorem. In particular, if $\gamma_{tr}(G) = \gamma_{tr}(G)$, then $V_2 = \emptyset$, implying $V(G) = V_1$ and so $\gamma_{tr}(G) = \gamma_{tr}(G) = n$. Clearly, if $\gamma_{tr}(G) = \gamma_{tr}(G) = n$, then $\gamma_{tr}(G) = \gamma_{tr}(G)$.

For the upper bound, let D be a $\gamma_{tr}(G)$ set. Define f by f(x) = 2 for $x \in D$ and f(x) = 0 for $x \in V(G) \setminus D$. Then f is a TRRDF on G of weight $2|D| = 2\gamma_{tr}(G)$ and thus $\gamma_{trR}(G) \leq 2\gamma_{tr}(G)$.

If C_n is a cycle of order n=4t, then we deduce from Proposition 3 that $\gamma_{tr}(C_{4t})=2t$, and Observation 3 implies $\gamma_{trR}(C_{4t})=4t$. This example shows that the upper bound in Theorem 8 is sharp.

4. Trees

In this section we first characterize all trees T with $\gamma_{trR}(T) = n(T)$, and then we present a lower bound for the total restrained Roman domination number of trees.

Theorem 9. Let T be a tree of order n. Then $\gamma_{trR}(T) = n$ if and only if there is no path $v_1v_2v_3v_4v_5$ in T such that $d(v_3) \geq 3$ and v_i is not a leaf or a support vertex for each $i \in \{1, 2, 4, 5\}$.

Proof. Let $\gamma_{trR}(T) = n$. We assume, by contradiction, that there is a path $v_1v_2v_3v_4v_5$ in T such that $d(v_3) \geq 3$ and v_i is not a leaf or support vertex for each $i \in \{1, 2, 4, 5\}$. Root T at v_3 , and let u_i be a child of v_i for $i \in \{1, 5\}$. Define the function f by $f(v_3) = f(u_1) = f(u_5) = 2$, $f(v_i) = 0$ for $i \in \{1, 2, 4, 5\}$ and f(x) = 1 for the remaining vertices. One can easily see that f is a TRRDF on T of weight n-1 which leads to the contradiction $\gamma_{trR}(T) < n$.

Conversely, suppose there is no path $v_1v_2v_3v_4v_5$ in T such that $d(v_3) \geq 3$ and v_i is not a leaf or a support vertex for each $i \in \{1, 2, 4, 5\}$. We assume, by contradiction, that $\gamma_{trR}(T) < n$ and let $f = (V_0, V_1, V_2)$ be a $\gamma_{trR}(T)$ -function. We deduce from $\gamma_{trR}(T) < n$ that $|V_0| > |V_2|$. Therefore there is a vertex $v \in V_2$ such that $|N(v) \cap V_0| \geq 2$. Let $u_1, u_2 \in N(v) \cap V_0$. Since f is a TRRDF, we must have $d(v) \geq 3$ and that u_1, u_2 have neighbors in V_0 . Assume that $w_1 \in N(u_1) \cap V_0$ and $w_2 \in N(u_2) \cap V_0$. It follows from Observation 5 that no vertex in $\{u_1, u_2, w_1, w_2\}$ is a leaf or support vertex, which is a contradiction.

Theorem 10. If T is a tree of order $n \geq 6$, then $\gamma_{trR}(T) \geq \frac{3(n+2)}{4}$.

Proof. We proceed by induction on $n \geq 6$. If $\operatorname{diam}(T) \leq 4$, then Observations 2 and 5 easily show that $\gamma_{trR}(T) = n \geq \frac{3(n+2)}{4}$. Let now $\operatorname{diam}(T) \geq 5$. If n = 6, then $T \cong P_6$ and we have the equality in the lower bound. Assume that $n \geq 7$ and let the lower bound hold for all trees T' of order $0 \leq n' < n$. Let $0 \leq n' < n$ be a tree of order $0 \leq n' < n$. If $0 \leq n' < n' < n'$ be a strong support vertex $0 \leq n' < n'$. If $0 \leq n' < n'$ be a strong support vertex $0 \leq n' < n'$ with leaf neighbors $0 \leq n' < n'$ by Observation 5 we have $0 \leq n' < n'$ and hence $0 \leq n' < n'$ be a TRRDF on the tree $0 \leq n' < n'$. The induction hypothesis implies

$$\gamma_{trR}(T) \ge 1 + \sum_{x \in V(T-u_1)} f(x) \ge 1 + \frac{3((n-1)+2)}{4} > \frac{3(n+2)}{4}.$$

Thus we assume that T has no strong support vertex. Let $v_1v_2...v_p$ be a diametral path and root T at v_p . By our earlier assumption we have $d(v_2) = 2$, and according to Observation 5, we have $f(v_1), f(v_2) \ge 1$.

If $f(v_3) \ge 1$, then $f|_{V(T-v_1)}$ is a TRRDF on $T-v_1$, and the induction hypothesis yields $\gamma_{trR}(T) > \frac{3(n+2)}{4}$ as above. Let now $f(v_3) = 0$.

Assume that $d(v_3) \geq 3$. Since $f(v_3) = 0$, we deduce from Observation 5 that v_3 is not adjacent to a leaf. Let $u_2 \neq v_2$ be a support vertex adjacent to v_3 , and let u_1 be a leaf adjacent to u_2 . Since T has no strong support vertex, we have $d(u_2) = 2$. Since f is a TRRDF on T, we observe from Observation 5 that $f(v_4) = 0$ and $f(u_1) + f(u_2) \geq 2$. To Roman dominate v_3 , we assume without loss of generality that $f(v_2) = 2$. Therefore we note that $f|_{V(T - \{u_1, u_2\})}$ is a TRRDF on $T - \{u_1, u_2\}$, and the induction hypothesis implies

$$\gamma_{trR}(T) \ge 2 + \sum_{x \in V(T - \{u_1, u_2\})} f(x) \ge 2 + \frac{3((n-2)+2)}{4} > \frac{3(n+2)}{4}.$$

Next we assume that $d(v_3) = 2$. Since $f(v_3) = 0$, it follows from Observation 5 and the fact f is a TRRDF on T that $f(v_2) = 2$ and $f(v_4) = 0$.

Assume now that $d(v_4) \geq 3$. Since $f(v_4) = 0$, the vertex v_4 is not adjacent to a leaf. Considering above arguments we may assume that for each path $v_4 z_3 z_2 z_1$ in T where

 $z_3 \notin \{v_3, v_5\}$, we have $d(z_3) = d(z_2) = 2$. Next we distinguish three cases. **Case 1.** Let $f(v_5) = 2$.

Assume that $u_3 \notin \{v_3, v_5\}$ is a support vertex adjacent to v_4 and v_2 a leaf adjacent to v_3 . Since T has no strong support vertex, we have $d(u_3) = 2$. Since $f(v_5) = 2$, we observe that $f(u_3) + f(u_2) = 2$. Then $f|_{V(T - \{u_3, u_2\})}$ is a TRRDF on $T - \{u_3, u_2\}$, and we obtain the desired bound as above. Now let $v_3 \notin \{v_3, v_5\}$ be adjacent to v_4, v_2 a support vertex adjacent to v_3 and v_4 a leaf adjacent to v_4 . Without loss of generality, we can assume that $d(v_3) = d(v_2) = 2$. We note that $d(v_3) + d(v_4) + d(v_4) + d(v_4) = 3$, and the function v_4 frestricted to v_4 frestricted to v_4 frestricted to v_4 frestricted to v_4 frestricted bound as above.

Case 2. Let $f(v_5) = 1$.

Then v_4 has a neighbor $u_3 \notin \{v_3, v_5\}$ with $f(u_3) = 2$, and u_3 has a neighbor $u_2 \neq v_4$ with $f(u_2) = 1$. Now define the function g by $g(v_5) = 2$, $g(u_3) = 1$ and g(x) = f(x) otherwise. Then g is a TRRDF on T of the same weight as f, and we are in the position of Case 1.

Case 3. Let $f(v_5) = 0$. Then v_4 has a neighbor $u_3 \notin \{v_3, v_5\}$ with $f(u_3) = 2$, and u_3 has a neighbor $u_2 \neq v_4$ with $f(u_2) = 1$. Similarly, v_5 has a neighbor $w \neq v_4$ with f(w) = 2, and w has a neighbor $w' \neq v_5$ with $f(w') \geq 1$. It follows that $p \geq 7$. In this case we observe that the function f restricted to $T - \{v_1, v_2, v_3\}$, is a TRRDF on $T - \{v_1, v_2, v_3\}$, and since $p \geq 7$, the induction hypothesis implies

$$\gamma_{trR}(T) = 3 + \sum_{x \in V(T - \{v_1, v_2, v_3\})} f(x) \ge 3 + \frac{3((n-3)+2)}{4} > \frac{3(n+2)}{4}.$$

Finally, we assume that $d(v_4)=2$. Since $f(v_4)=0$, we conclude that $f(v_5)=2$. If $7 \le n \le 9$, then it is straightforward to verify that $\gamma_{trR}(T) \ge \frac{3(n+2)}{4}$. If $n \ge 10$, then the function f restricted to $T-\{v_1,v_2,v_3,v_4\}$ is a TRRDF on $T-\{v_1,v_2,v_3,v_4\}$, and the induction hypothesis leads to

$$\gamma_{trR}(T) = 3 + \sum_{x \in V(T - \{v_1, v_2, v_3, v_4\})} f(x) \ge 3 + \frac{3((n-4)+2)}{4} = \frac{3(n+2)}{4}.$$

Example 2. Let H be the tree consisting of the vertices w and z and the paths $v_i^1 v_i^2 v_i^3 v_i^4$ for $1 \le 1 \le p$ such that w is adjacent to z and v_i^1 for $1 \le i \le p$. Then n(H) = 4p + 2, and the function f with $f(z) = f(v_i^4) = 1$, $f(w) = f(v_i^3) = 2$ and $f(v_i^1) = f(v_i^2) = 0$ for $1 \le i \le p$ is a TRRDF on H of weight 3p + 3. Therefore $\gamma_{trR}(H) \le 3p + 3 = \frac{3(n(H) + 2)}{4}$. Using Theorem 10, we note that $\gamma_{trR}(H) = 3p + 3 = \frac{3(n(H) + 2)}{4}$. This example demonstrates that Theorem 10 is sharp.

We conclude this section with an open problem.

Problem. Characterize all connected graphs G with $\gamma_{trR}(G) = n(G)$.

References

- [1] H. Abdollahzadeh Ahangar, J. Amjadi, S.M. Sheikholeslami, and M. Soroudi, On the total Roman domination number of graphs, Ars Combin. **150** (2020), 225–240.
- [2] H. Abdollahzadeh Ahangar, M. Chellali, S.M. Sheikholeslami, and J.C. Valenzuela-Tripodoro, *Total Roman* {2}-dominating functions in graphs, Discuss. Math. Graph Theory **42** (2022), no. 3, 937 958.
- [3] H. Abdollahzadeh Ahangar, M.A. Henning, V. Samodivkin, and I.G. Yero, *Total Roman domination in graphs*, Appl. Anal. Discrete Math. 10 (2016), no. 2, 501–517.
- [4] H. Abdollahzadeh Ahangar and S.R. Mirmehdipour, Bounds on the restrained Roman domination number of a graph, Commun. Comb. Optim. 1 (2016), no. 1, 75–82.
- [5] A. Cabrera Martínez, S. Cabrera García, and A. Carríon García, Further results on the total Roman domination in graphs, Mathematics 8 (2020), no. 3, ID: 349.
- [6] A. Cabrera Martínez, A. Martínez Arias, and M. Menendez Castillo, A characterization relating domination, semitotal domination and total Roman domination in trees, Commun. Comb. Optim. 6 (2021), no. 2, 197–209.
- [7] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami, and L. Volkmann, Roman domination in graphs, Topics in Domination in Graphs (T.W. Haynes, S.T. Hedetniemi, and M.A. Henning, eds.), Springer, Berlin/Heidelberg, 2020, pp. 365–409.
- [8] ______, Varieties of Roman domination II, AKCE Int. J. Graphs Comb. 17 (2020), no. 3, 966–984.
- [10] E.J. Cockayne, P.A. Dreyer Jr, S.M. Hedetniemi, and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004), no. 1-3, 11–22.
- [11] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
- [12] D.S. Johnson and M.R. Garey, Computers and intractability: A guide to the theory of NP-completeness, WH Freeman, San Francisco, 1979.
- [13] C.-H. Liu and G.J. Chang, Roman domination on strongly chordal graphs, J. Comb. Optim. 26 (2013), no. 3, 608–619.
- [14] D.-X. Ma, X.-G. Chen, and L. Sun, On total restrained domination in graphs, Czechoslovak Math. J. 55 (2005), no. 1, 165–173.
- [15] R.L. Pushpam and S. Padmapriea, Restrained Roman domination in graphs, Trans. Comb. 4 (2015), no. 1, 1–17.
- [16] F. Siahpour, H. Abdollahzadeh Ahangar, and S.M. Sheikholeslami, Some progress on the restrained Roman domination, Bull. Malays. Math. Sci. Soc. 44 (2021), no. 2, 733–751.