Domination parameters of the splitting graph of a graph

Document Type : Original paper

Authors

1 Department of Mathematics, Madurai Kamaraj University, Madurai, Tamilnadu, India

2 Department of Mathematics, The Madura College, Madurai, Tamilnadu, India

3 Birla Institute of Technology and Sciences Pilani, Dubai Campus

4 Director (n-CARDMATH) Kalasalingam University Anand Nagar, Krishnankoil-626 126 Tamil Nadu, India

Abstract

Let G=(V,E) be a graph of order n and size m. The graph Sp(G) obtained from G by adding a new vertex v for every vertex vV and joining v to all neighbors of v in G is called the splitting graph of G. In this paper, we determine the domination number, the total domination number, connected domination number, paired domination number and independent domination number for the splitting graph Sp(G).

Keywords

Main Subjects


[1] M.A. Abdlhusein and S.J. Radhi, The arrow edge domination in graphs, Int. J. Nonlinear Anal. Appl. (In press).
[2] R.B. Allan and R. Laskar, On domination and independent domination numbers of a graph, Discrete Math. 23 (1978), no. 2, 73–76.
[3] L.W. Beineke and J.S. Bagga, Line Graphs and Line Digraphs, Springer, 2021.
[4] G. Chartrand and L. Lesniak, Graphs & Digraphs, CRC, Boca Raton, 2016.
[5] T.W. Haynes, S.T. Hedetniemi, and P.J. Salter, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
[6] N. Jafari Rad, D.A. Mojdeh, R. Musawi, and E. Nazari, Total domination in cubic Knödel graphs, Commun. Comb. Optim. 6 (2021), no. 2, 221–230.
[7] R. Khoeilar, H. Karami, M. Chellali, S.M. Sheikholeslami, and L. Volkmann, Nordhaus–Gaddum type results for connected and total domination, RAIRO-Operations Research 55 (2021), S853–S862.
[8] S. Kosari, Z. Shao, X. Shi, S.M. Sheikholeslami, M. Chellali, R. Khoeilar, and H. Karami, Cubic graphs have paired-domination number at most four-seventh of their orders, Discrete Math. (to appear).
[9] Y.S. Kwon, J. Lee, and M.Y. Sohn, Domination parameters in Mycielski graphs, Bull. Korean Math. Soc. 58 (2021), no. 4, 829–836.
[10] E. Sampthkumar and H.B. Walikar, On splitting graph of a graph, J. Karnatak Univ. Sci. 25 (1980), no. 13, 13–16.
[11] J. Topp and L. Volkmann, On graphs with equal domination and independent domination numbers, Discrete Math. 96 (1991), no. 1, 75–80.