[1] M. Bianchi, A. Cornaro, J.L. Palacios, and A. Torriero, Bounds for the Kirchho index via majorization techniques, J. Math. Chem. 51 (2013), no. 2, 569-587.
[2] P. Biler and A. Witkowski, Problems in Mathematical Analysis, CRC Press, New York, 2017.
[3] K.C. Das, A sharp upper bound for the number of spanning trees of a graph, Graphs Combin. 23 (2007), no. 6, 625-632.
[4] K.C. Das and K. Xu, On relation between Kirchho index, Laplacian-energy-like invariant and Laplacian energy of graphs, Bull. Malays. Math. Sci. Soc. 39 (2016), no. 1, 59-75.
[5] Kinkar C Das, On the Kirchho index of graphs, Z. Naturforschung 68a (2013), no. 8-9, 531-538.
[6] B. Furtula and I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015), no. 4, 1184-1190.
[7] R. Grone and R. Merris, The Laplacian spectrum of a graph ii, SIAM J. Discrete Math. 7 (1994), no. 2, 221-229.
[8] I. Gutman and B. Mohar, The quasi-Wiener and the Kirchho indices coincide, J. Chem. Inf. Comput. Sci. 36 (1996), no. 5, 982-985.
[9] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972), no. 4, 535-538.
[10] D.J. Klein and M. Randić, Resistance distance, J. Math. Chem. 12 (1993), no. 1, 81-95.
[11] J. Li, W.C. Shiu, and W.H. Chan, The laplacian spectral radius of some graphs, Linear Algebra Appl. 431 (2009), no. 1-2, 99-103.
[12] R. Merris, Laplacian matrices of graphs: A survey, Linear Algebra Appl. 197&198 (1994), 143-176.
[13] I. Milovanović, I. Gutman, and E. Milovanović, On Kirchho and degree Kirchho indices, Filomat 29 (2015), no. 8, 1869-1877.
[14] I. Milovanović and E. Milovanović, Bounds of Kirchho and degree Kirchho indices, Bounds in Chemical Graph Theory { Mainstreams (K.C. Das, E. Milovanović, I. Milovanović, I. Gutman, B. Furtula, Ed.), Univ. Kragujevac, Kragujevac,
2017, pp. 93-119.
[15] I. Milovanović and E. Milovanović, On some lower bounds of the Kirchho index, MATCH Commun. Math. Comput. Chem. 78 (2017), 169-180.
[16] I. Milovanović, E. Milovanović, E. Glogić, and M. Matejić, On Kirchho index, Laplacian energy and their relations, MATCH Commun. Math. Comput. Chem. 81 (2019), no. 2, 405-418.
[17] D.S. Mitrinović and P.M. Vasić, Analytic inequalities, Springer, Berlin, 1970.
[18] B. Mohar, The Laplacian spectrum of graphs, Graph Theory, Combinatorics, and Applications (G. Alavi, O.R. Chartrand, and A.J.S. Oellermann, eds.), Wiley, New York, 1991, pp. 871-898.
[19] J.L. Palacios, Some additional bounds for the Kirchho index, MATCH Commun. Math. Comput. Chem. 75 (2016), no. 2, 365-372.
[20] S. Pirzada, H.A. Ganie, and I. Gutman, On Laplacian-energy-like invariant and Kirchho index, MATCH Commun. Math. Comput. Chem. 73 (2015), no. 1, 41-59.
[21] B.C. Rennie, On a class of inequalities, J. Austral. Math. Soc. 3 (1963), no. 4, 442-448.
[22] O. Rojo, R. Soto, and H. Rojo, An always nontrivial upper bound for Laplacian graph eigenvalues, Linear Algebra Appl. 312 (2000), no. 1-3, 155-159.
[23] S. Rosset, Normalized symmetric functions, Newton's inequalities, and a new set of stronger inequalities, Amer. Math. Soc. 96 (1989), no. 9, 815-819.
[24] Y. Yang, H. Zhang, and D.J. Klein, New Nordhaus-Gaddum-type results for the Kirchho index, J. Math. Chem. 49 (2011), no. 8, 1587-1598.
[25] B. Zhou and N. Trinajstić, A note on Kirchho index, Chem. Phys. Lett. 455 (2008), no. 1-3, 120-123.
[26] B. Zhou and N. Trinajstić, On resistance-distance and Kirchho index., J. Math. Chem. 46 (2009), no. 1, 283-289.
[27] H.-Y. Zhu, D.J. Klein, and I. Lukovits, Extensions of the Wiener number, J. Chem. Inf. Comput. Sci. 36 (1996), no. 3, 420-428.
[28] E. Zogic and E. Glogic, A note on the Laplacian resolvent energy, Kirchho index and their relations, Discrete Math. Lett. 2 (2019), no. 1, 32-37.
[29] P. Zumstein, Comparison of spectral methods through the adjacency matrix and the Laplacian of a graph, Th Diploma, ETH Zurich, 2005.