[1] H. Abdollahzadeh Ahangar, J. Amjadi, N. Jafari Rad, and V. Samodivkin, Total k-rainbow domination numbers in graphs, Commun. Comb. Optim. 3 (2018), no. 1, 37–50.
[2] H. Abdollahzadeh Ahangar, M. Chellali, and S.M. Sheikholeslami, On the double Roman domination in graphs, Discrete Appl. Math. 232 (2017), 1–7.
[3] B. Courcelle, The monadic second-order logic of graphs. I. Recognizable sets of finite graphs, Information and Computation 85 (1990), no. 1, 12–75.
4] M. Dettlaff, M. Lemańska, J. Topp, R. Ziemann, and P. Zyliński, ˙ Certified domination, AKCE Int. J. Graphs Combin. 17 (2020), no. 1, 86–97.
[5] M.E. Dyer and A.M. Frieze, Planar 3DM is NP-complete, J. Algorithms 7 (1986), no. 2, 174–184.
[6] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Domination in Graphs: Advanced Topics, Marcel Dekker, Inc., New York, 1998.
[7] , Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
[8] W. Jiang, T. Liu, T. Ren, and K. Xu, Two hardness results on feedback vertex sets, Frontiers in Algorithmics and Algorithmic Aspects in Information and Management, Springer, 2011, pp. 233–243.
[9] R.M. Karp, Reducibility among combinatorial problems, Complexity of Computer Computations, Springer, 1972, pp. 85–103.
[10] N.V.R. Mahadev and U.N. Peled, Threshold Graphs and Related Topics, Elsevier, 1995.
[11] J. Pavan Kumar and P. Venkata Subba Reddy, Algorithmic aspects of 2-secure domination in graphs, J. Comb. Optim., (In press).
[12] J. Pavan Kumar, P. Venkata Subba Reddy, and S. Arumugam, Algorithmic complexity of secure connected domination in graphs, AKCE Int. J. Graphs Combin. 17 (2020), no. 3, 1010–1013.
[13] R. Uehara and Y. Uno, Efficient algorithms for the longest path problem, International Symposium on Algorithms and Computation, Springer, 2004, pp. 871–883.
[14] M. Vikas and P. Venkata Subba Reddy, Algorithmic aspects of quasi-total Roman domination in graphs, Commun. Comb. Optim., (In press).
[15] D.B. West, Introduction to Graph Theory, Prentice hall, Upper Saddle River, 2001.