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Abstract: Let k£ > 1 be an integer, and let G be a finite and simple graph with
vertex set V(G). A weak signed Roman k-dominating function (WSRkDF') on a graph
G is a function f: V(G) — {—1,1, 2} satisfying the conditions that ZZEN[U] flx) >k
for each vertex v € V(G), where N[v] is the closed neighborhood of v. The weight of a
WSRKDF f is w(f) = ZUEV(G) f(v). The weak signed Roman k-domination number
'y{f)sR(G) of G is the minimum weight of a WSRKDF on G. In this paper we initiate
the study of the weak signed Roman k-domination number of graphs, and we present
different bounds on v* . (G). In addition, we determine the weak signed Roman k-
domination number of some classes of graphs. Some of our results are extensions of
well-known properties of the signed Roman k-domination number v¥,(G), introduced
and investigated by Henning and Volkmann [5] as well as Ahangar, Henning, Zhao,
Léwenstein and Samodivkin [1] for the case k = 1.

Keywords: Weak signed Roman k-dominating function, weak signed Roman k-
domination number, Signed Roman k-dominating function, Signed Roman k-
domination number
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1. Terminology and introduction

For notation and graph theory terminology, we in general follow Haynes, Hedetniemi
and Slater [4]. Specifically, let G be a graph with vertex set V(G) = V and edge
set E(G) = E. The integers n = n(G) = |[V(G)| and m = m(G) = |E(G)| are the
order and the size of the graph G, respectively. The open meighborhood of a vertex
vis Ng(v) = N(v) = {u € V(G)|uv € E(G)}, and the closed neighborhood of v is
Nglv] = N[v] = N(v) U{v}. The degree of a vertex v is dg(v) = d(v) = |[N(v)|.
The minimum and mazimum degree of a graph G are denoted by §(G) = §
and A(G) = A, respectively. For a set X C V(G), its open neighborhood is
© 2021 Azarbaijan Shahid Madani University



2 Weak signed Roman k-domination in graphs

the set Ng(X) = N(X) = U,ex N(v), and its closed neighborhood is the set
N¢g[X] = N[X] = N(X)U X. The complement of a graph G is denoted by G. For
sets A, B C V(G), we say that A dominates B if B C N[A]. A leaf of a graph G is a
vertex of degree 1, while a support vertex of G is a vertex adjacent to a leaf. An edge
incident with a leaf is called a pendant edge. The star K;: has on vertex of degree
t and t leaves. A spider is the graph formed by subdividing all edges of a star K ;.
Let P,, C,, and K,, be the path, cycle and complete graph of order n, and let K, ,
be the complete bipartite graph of order 2p.

All along this paper we will assume that k is a positive integer. In 1985, Fink and
Jacobson [3] introduced the concept of k-dominating sets. A subset D € V(G) is a
k dominating set if every vertex in V(D) — D has at least k neighbors in D. The
minimum cardinality of a k-dominating set is the k-domination number, denoted by
Y(G).

In this paper we continue the study of Roman dominating functions in graphs
and digraphs. For a subset S C V(G) of vertices of a graph G and a function
[: V(G) — R, we define f(S) =3 g f(x). For a vertex v, we denote f(N[v]) by
f[v] for notational convenience.

If £ > 1 is an integer, then Henning and Volkmann [5] defined the signed Roman k-
dominating function (SRKDF) on a graph G as a function f : V(G) — {—1, 1,2} such
that f[v] > k for every v € V(G), and every vertex u for which f(u) = —1 is adjacent
to a vertex v for which f(v) = 2. The weight of an SRKDF f on a graph G is w(f) =
> vev(a) /(v). The signed Roman k-domination number 755(G) of G is the minimum
weight of an SRKDF on G. The special case k = 1 was introduced and investigated
by Ahangar, Henning, Zhao, Lowenstein and Samodivkin [1]. Sheikholeslami and
Volkmann [6] studied the signed Roman domination number in digraphs. A 7%, (G)-
function is a signed Roman k-dominating function on G of weight 'yfR(G).

A weak signed Roman k-dominating function (WSRKDF) on a graph G is defined as
a function f : V(G) — {—1, 1,2} having the property f[v] > k for every v € V(G).
The weight of a WSRKDF f on a graph G is w(f) = ZUGV(G) f(). The weak signed
Roman k-domination number v* o(G) of G is the minimum weight of a WSRkDF
on G. The special case k = 1 was introduced and investigated by Volkmann [7].
A Ak, r(G)-function is a weak signed Roman k-dominating function on G of weight
vk r(G). For a WSRKDF f on G, let V; = V;(f) = {v € V(G) : f(v) = i} for
i =—1,1,2. A weak signed Roman k-dominating function f : V(G) — {-1,1,2}
can be represented by the ordered partition (V_1, V7, V2) of V(G).

The weak signed Roman k-domination number exists when ¢ > g — 1. Therefore we
assume in this paper that § > & — 1. The definitions lead to 7%, ,(G) < 74 (G).
Therefore each lower bound of v* ,(G) is also a lower bound of v*4(G) and each
upper bound of 7*,(G) is also an upper bound of V¥ .(G).

Our purpose in this work is to initiate the study of the weak signed Roman k-
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domination number. We present basic properties and sharp bounds on 'yfus r(G).
In particular, we show that many lower bounds on v¥;(G) are also valid for 7% . (G).
Some of our results are extensions of well-known properties of the signed Roman
k-domination number and the weak signed Roman domination number 7, sr(G) =
7L r(G), given by Ahangar, Henning, Zhao, Lowenstein and Samodivkin [1], Am-
jadi, Nazari-Moghaddam, Sheikholeslami and Volkmann [2], Henning and Volkmann
[5] and Volkmann [7].

2. Preliminary results

In this section we present basic properties of the weak signed Roman k-dominating
functions and the weak signed Roman k-domination numbers.

Proposition 1. If f = (V_1, Vi, V3) is a WSRKDF on a graph G of order n, then
(a) [Voal + Wil + [Va| = n.
(b) w(f) = V1| + 2|Va| — [V-1].

(c) ViU Va is a [EH1]-dominating set.

Proof. Since (a) and (b) are immediate, we only prove (c). If |V_i| = 0 then
ViUVs = V(G) is a [£t]-dominating set. Let now [V_1| > 1 and let v € V_; an
arbitrary vertex. Assume that v has j neighbors in V; and ¢ neighbors in V5. The
the condition f[v] > k leads to j +2¢g — 1 > k and so ¢ > k‘*‘% This implies

ktl-j k+1l+j _ k+1

o
Jtezgt 2 = 2

Therefore v has at least j+q > [%1 neighbors in V3 U V5. Since v was an arbitrary
vertex in V_1, we deduce that V; U V5 is a (%}domina‘cing set. O

Corollary 1. If G is a graph of order n, then 4% 5 (G) > 2V kt1y (G) —n.
2

Proof. Let f = (V_1,V1,V2) be a v* _,(G)-function. Then it follows from Proposi-
tion 1 that

7 (G) = [VA] 4 21Va] — Vo1 = 2[VA| 4 3[Va] —n > 2V UVa| —n > 291201,(G) — .

O

The graphs K,, and ¢K, show that Corollary 1 is sharp for £ = 1 and k = 2. The
proof of the next proposition is identically with the proof of Proposition 2 in [5] and
is therefore omitted.



4 Weak signed Roman k-domination in graphs

Proposition 2. Assume that f = (V_1, Vi, V2) is a WSRKDF on a graph G of order n,
A = A(G) and § = §(G). Then

() CA+2—-k)|Va| +(A+1—=K)|Vi| > (6 + K+ 1)|V_1].

)

(ii) QA +686+3)[Va|+(A+5+2)|Vi] > (6 + k+ 1)n.

(i) (A +642w(f) > (6 — A+ 2k)n + (6 — A)|Val.
)

(iv) w(f) > (6 — 2A + 2k — 1)n/(2A + 6 + 3) + | Val.

3. Bounds on the weak signed Roman k-domination number

We start with a general upper bound, and we characterize all extremal graphs.

Theorem 1. Let G be a graph of order n with §(G) > [£] — 1. Then ~},z(G) < 2n,
with equality if and only if k is even, §(G) = g — 1, and each vertex of G is of minimum
degree or adjacent to a vertex of minimum degeree.

Proof. Define the function g : V(G) — {—1,1,2} by g(x) = 2 for each vertex
z € V(G). Since §(G) > [£7] —1, the function g is a WSRKDF on G of weight 2n and
thus 7% _-(GQ) < 2n.

Now let k be even, §(G) = % — 1, and assume that each vertex of G is of minimum
degree or adjacent to a vertex of minimum degeree. Let f be a WSRKDF on G, and
let z € V(G) be an arbitray vertex. If d(z) = £ — 1, then f[z] > k implies that
f(z) = 2. If x is not of minimum degree, then x is adjacent to a vertex w of minmum
degree. The condition f[w] > k implies f(x) = 2. Thus f is of weight 2n, and we
obtain ¥ (@) = 2n in this case.

Conversely, assume that v* ,(G) = 2n. If k = 2p + 1 is odd, then §(G) > p. Define
the function h : V(G) — {-1,1,2} by h(w) = 1 for an arbitrary vertex w and
h(z) = 2 for each vertex z € V(G) \ {w}. Then

= fla)21+20G) > 1+2p=k
€N [v]

for each vertex v € V(G). Thus the function h is a WSRKDF on G of weight 2n — 1,
and we obtain the contradiction v _»(G) < 2n — 1.

Let now k even, and assume that there exists a vertex w with d(w) > £ and d(z) > &
for each € N(w). Define the function hy : V(G) — {-1,1,2} by hi(w) = 1 and
hi(z) = 2 for each vertex z € V(G) \ {w}. Then hy[v] > k + 1 for each v € N[w]
and hi[z] > k for each © ¢ N[w]. Hence the function hy is a WSRKDF on G of
weight 2n — 1, a contradiction to the assumption v¥ .(G) = 2n. This completes the
proof. [

The next result is an immediate corollary of Theorem 1.
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Corollary 2. Let G be a graph of order n with §(G) > [4] — 1. Then v5z(G) < 2n,
with equality if and only if k is even, 6(G) = g — 1, and each vertex of G is of minimum
degree or adjacent to a vertex of minimum degeree.

The next known corollary follows immediately from Corollary 2.

Corollary 3. ([2]) Let T be a tree of order n. Then v3(T) < 2n, with equality if and
only if every vertex of T is either a leaf or a support vetex.

Observation 2. IfG is a graph of order n with §(G) > k—1, then v¥ ;5 (G) < vF-(G) < n.

Proof. Define the function f : V(G) — {-1,1,2} by f(z) = 1 for each vertex
xz € V(G). Since 6(G) > k — 1, the function f is an SRKDF on G of weight n and
thus vX  p(G) < ¥FR(G) < n. O

As an application of Proposition 2 (iii), we obtain a lower bound on the weak signed
Roman k-domination number for r-regular graphs.

Corollary 4. If G is an r-regular graph of order n with r > & — 1, then

kn

k
> .
’szR(G) =4+ 1

Example 1. If H is a (k — 1)-regular graph of order n, then it follows from Corollary 4
that v¥ . r(H) > n and thus v¥,r(H) = n, according to Observation 2.

Example 1 shows that Observation 2 and Corollary 4 are both sharp. The proof of
the next observation is analogously to the proof of Proposition 3 in [7] and is therefore
omitted.

Observation 3. IfG is a graph of order n with §(G) > £ — 1, then
Yosr(G) > k+1+ A(G) — n.

Let n > k > 2 be integers. Then it was shown in [5] that v*5(K,) = k. This implies
vk R(Kn) < v85(K,) = k. According to Corollary 4, we deduce that 4% p(K,,) >
k. Therefore we obtain v¥_.(K,) = k for n > k > 2. This example shows that
Observation 3 is sharp.

Corollary 5. Let G be a graph of order n, minimum degree § > £ — 1 and maximum
degree A. If § < A, then
—2A + 26 + 3k

k
>
Ywsr(G) 2 5 53
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Proof. Multiplying both sides of the inequality in Proposition 2 (iv) by A —§ and
adding the resulting inequality to the inequality in Proposition 2 (iii), we obtain the
desired lower bound. O

Since v, (G) > 4% »(G), Corollary 5 leads immediately to the next lower bound,
given by Henning and Volkmann [5].

Corollary 6. ([5]) Let G be a graph of order n, minimum degree § > £ —1 and maximum
degree A. If § < A, then
—2A 426 + 3k

k
>
Yr(G) 2 A3

Examples 9 and 10 in [5] demonstrate that Corollary 6 is sharp and therefore Corollary
5 too. The special case k = 1 of Corollary 6 can be found in [1].
A set S C V(G) is a 2-packing of the graph G if N[u] N N[v] = 0 for any two distinct
vertices u,v € S. The 2-packing number p(G) of G is defined by

p(G) = max{|S|: S is a 2 — packing of G}.
Theorem 4. If G is a graph of order n with §(G) > £ — 1, then
Ywsr(G) = p(G)(k+6(G) +1) — n.
Proof.  Let {v1,v2,...,v,} be a 2-packing of G, and let f be a vk R (G)-function.

If we define the set A = UP(G) Nvg], then since {v1,v2,...,v,c)} is a 2-packing, we
have that

p(G)
4] = 3 (dw) + 1) = p(G)(6(G) +1).
It follows that
p(G)
Tesr(G) = > f(x)sz[viH > f()
zeV(G) =1 zeV(G)—
> kp(G)+ Y. f(z) = kp(G >—n+|A\
zeV(G)—A
> kp(G) —n+p(G)(0(G) +1)

p(G)(k + 5(G) + 1) — n.

Theorem 4 yields the next result immediately.
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Corollary 7. ([5]) If G is a graph of order n with §(G) > & — 1, then
V5r(G) = p(G)(k +6(G) + 1) —n.

In [5], the authors presented an infinite family of graphs achieving equality in Corollary
7. Thus Corollary 7 and Theorem 4 are sharp. Using Corollary 4, one can prove the
following Nordhaus-Gaddum type inequality analogously to Theorem 13 in [5].

Theorem 5. If G is an r-regular graph of order n such that r > %— land n—r—12> %— 1,

then
4kn

n+1
If n is even, then v} z(G) + 7h.r(G) > 4k(n + 1)/(n + 2).

fY'rIjJsR(G) + FY'ZQUSR(G) Z

Let k > 1 be an odd integer, and let H and H be (k — 1)-regular graphs of order
n = 2k — 1. By Example 1, we have 4% o(H) = v p(H) = n. Consequently,

4kn

k k
stR( ) wsR( ) n n 1

Thus the Nordhaus-Gaddum bound of Theorem 5 is sharp for odd k.

4. The weak signed Roman k-domination number of K, ,

Example 2. Let k> 1 and p>k+ 1 be integers.
(1) If p> k + 3, then v& z(Kpp) = 2k + 2.
(2) Ifk+1<p<k+2 then v n(Kpp) =p+k—1.
(8) If k > 2, then ¥E p (K1) = 2k and vasr(K11) = 1.

Proof. Let X = {z1,22,...,2,} and Y be a bipartition of the complete bipartite
graph K, ,.

(1) First we show that 4% .(K,,) > 2k + 2. Let f : V(K,,) — {-1,1,2} be a
WSRKDF. If f(u) > 1 for each u € V(K ), then w(f) > 2p > 2k + 2. Assume next,
without loss of generality, that f(z) = —1 for at least one vertex x € X and f(y) > 1
for each y € Y. If w € Y, then it follows that

w(f) = flwl+ D> fy)=k+p-1>2k+2.
yeY —{w}

Finally, assume that f(z) = —1 for at least one vertex z € X and f(y) = —1 for at
least one vertex y € Y. We deduce that

w(f) = flx] + fly] — f(x) = fly) > 2k + 2.
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Since we have discussed all possible cases, we obtain V¥ (K ,) > 2k + 2.

As vF5(K,,) = 2k + 2 for p > k + 2 (see Example 14 in [5]), we have the converse
inequality v (K, ,) < vFR(K,,) = 2k + 2 and so the desired result.

(2) First we show that v* (K, ,) >p+k—1. Let f: V(K,,) — {-1,1,2} be a
WSRKDF. If f(u) > 1 for each u € V(K,,), then w(f) > 2p > p+ k — 1. Assume
next, without loss of generality, that f(xz) = —1 for at least one vertex z € X and
f(y) > 1foreach y €Y. If w € Y, then it follows that

w(f)=flwl+ > fy)=k+p-1L

yeY —{w}

Finally, assume that f(z) = —1 for at least one vertex x € X and f(y) = —1 for at
least one vertex y € Y. We deduce that

w(f) = fle]+ fly] = f(z) = fly) 22k +2> k+p>p+ k-1

If p = k + 2, then define the function g : V(K,,) — {-1,1,2} by g(z1) = g(z2) =
—1, g(z3) = 2 and g(z) = 1 otherwise. Then g is a WSRkDF function on K, , of
weight 2k+1 = p+k—1 and thus v* (K, ,) < p+k—1and so ¥ p(K,,) =p+k—1
in this case.
If p =k + 1, then define the function h : V(K,,) — {—1,1,2} by h(z1) = —1 and
h(z) = 1 otherwise. Then h is a WSRkDF function on K, , of weight 2k =p+k—1
and thus v* n(K,,) <p-+k—1andso~v* ,(K,,) =p+k— 1 also in this case.
(3) Clearly, v}  z(K1,1) = 1. Let now k > 2.
First we show that * (K x) > 2k. Let f: V(Kyx) — {—1,1,2} be a WSRKDF.
If f(u) > 1 for each u € V(Kj ), then w(f) > 2k. Assume next, without loss of
generality, that f(x) = —1 for at least one vertex x € X and f(y) > 1 foreachy € Y.
Then f(u) = 2 for at least one vertex u € Y. If w € Y with w # u, then it follows
that

w(f) = flwl+ > f) > k+k=2k

yeY —{w}

Finally, assume that f(z) = —1 for at least one vertex z € X and f(y) = —1 for at
least one vertex y € Y. We deduce that

w(f) = flal+ flyl = f(z) = fly) = 2k + 2.

Applying Observation 2, we obtain v* (K x) = 2k. O

Example 1 implies v 5 (Kj_1x-1) = 2k — 2 for k > 2.
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5. Cycles

Let C, be a cycle of length n > 3. In [1], the authors have shown that vsg(C,) =
[2n/3]. In addition, in [7] it is proved that v,sr(Cr) = [n/3] when n = 0,1 (mod 3)
and Yusr(Cn) = [n/3] +1 when n = 2 (mod 3). Now we determine 7% _,(C,,) as well
as vsr(Cy) for 2 < k <6.

Theorems 1 and 2 immediately lead to 75 _»(C,) = v5,(C,) = 2n. In addition,
according to Corollary 4 and Observation 2, we have 73 _.(C,) = v35(Cy) = n.

Example 3. Forn >3, we have v5,z(Crn) = v2r(Cy) = [3].

Proof.  Corollary 4 implies Y25 (Cp,) > 45 p(Cp) > [%"] For the converse inequality
Vosr(Cn) < V2R(Cr) < [5], we distinguish three cases.

Case 1. Assume that n = 3¢ with an integer ¢ > 1. Let C3; = vgvy ... v3;_1vg. Define
the function f : V(Cs) — {—1,1,2} by f(vs;) = 1 and f(vsit1) = f(vsiye) = 2
for 0 < i <t—1. Then f[v;] = 5 for each 0 < j < 3t — 1 and therefore f is an
SR5DF on Cy; of weight w(f) = 5t. Thus 72 (Cs:) < 755(Cst) < 5t. Consequently,
Yo sr(Cn) = ¥2R(Cy) = 5t = [22] in this case.

Case 2. Assume that n = 3t + 1 with an integer ¢t > 1. Let Cs;11 = vovy ... U3p.
Define the function f : V(Cgt+1) — {—17 1, 2} by f(?]gi) =1, f(’l)3i+1) = f(U3i+2) =
2for0 < i <t—1and f(vs;) = 2. Then f[v;] > 5 for each 0 < j < 3t and therefore f is
an SR5DF on Cs;41 of weight w(f) = 5t+2. Thus v 5 (Csi1) < V2p(Car1) < 5t+2.
Consequently, 73 »(Cp) = 125(Cy,) = 5t + 2 = [ 2] also in this case.

Case 3. Assume that n = 3t + 2 with an integer t > 1. Let Csyy2 = vov1 . .. U3t4100.
Define the function f : V(CgH_g) — {—1, 1, 2} by f(Ugi) =1, f(’l)3i+1) = f(U3i+2) =
2for 0<i<t—1and f(vs:) = f(vg41) = 2. Then flv;] > 5 foreach 0 < j <3t+1
and therefore f is an SR5DF on Csspo of weight w(f) = 5t +4. Thus 72 z(Csir2) <
V2r(Cse42) < 5t + 4. Consequently, 75, o (Cy) = v35(Cp) = 5t +4 = [32] also in the
last case. O

Example 4. Forn > 3, we have vy, (Cn) = 74r(Cn) = [£2].

Proof.  Corollary 4 implies v25(C),) > 72 1(C) > [4?"] For the converse inequality
vaor(Cn) < vEa(Cr) < [22], we distinguish three cases.

Case 1. Assume that n = 3t with an integer ¢ > 1. Let C3; = vgvy ... v3:_1vg. Define
the function f : V(C3) — {—1,1,2} by f(vs;) = f(vzir1) = 1 and f(vg42) = 2
for 0 < i <t—1. Then f[v;] = 4 for each 0 < j < 3t — 1 and therefore f is an
SR4DF on Cjy; of weight w(f) = 4t. Thus v 5(Cst) < v25(Cs;) < 4t. Consequently,
Ywsr(Cn) = Yap(Cn) = 4t = [].

Case 2. Assume that n = 3t + 1 with an integer ¢t > 1. Let Cs;11 = vov1 ... U3p.
Define the function f : V(Cgt+1) — {—1, 1,2} by f(UgZ') = f('U?)i—i-l) =1, f(U3i+2) =
2for 0 <4 <t—1and f(vs;) = 2. Then flv;] > 4 for each 0 < j < 3t and therefore f is
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an SR4ADF on Cs41 of weight w(f) = 4t+2. Thus visR(CgtH) < ’)/;lR(Cgt+1) < 4t+2.
Consequently, 72 -(Cy) = VIg(Cp) =4t +2 = [4?"]

Case 3. Assume that n = 3t + 2 with an integer t > 1. Let Csyp2 = vov1 . .. U31410.
Define the function f: V(Csiy2) — {—1,1,2} by f(vsi) = f(vsit1) =1, f(vsipe) =
2for 0 <i<t—1, f(vs) = 1and f(vsey1) = 2. Then flv;] > 4 foreach 0 < j < 3t+1
and therefore f is an SRADF on Cs49 of weight w(f) = 4t + 3. Thus visR(Cgt+2) <
V2R (Caiq2) < 4t + 3. Consequently, v, p(C) = vip(Cr) =4t + 3 = [22]. O

Examples 3 and 4 also show the sharpness of Corollary 4. In [5], we have determined

'VER(Cn)'

Example 5. ([5]) Forn >3, we have y2z(Cn) = [2?”—‘ + [%—‘ - {EJ .

Analogously to Example 5, one can determine the weak signed Roman 2-domination
number of a cycle.

Example 6. Forn > 3, we have v5,5(Cy) = [2?”-‘ + [g—‘ — {%J .

6. Trees

Let P, be a path of order n. Our aim in the section is to determine 7* . (P,), and
to establish lower bounds on the weak signed Roman k-domination number of a tree
for 2 < k < 4.

We start with the path P,. In [1] it is proved that vz(P,) = [%*] and in [7], the
author has shown that vu,sr(P2) = 1, Ywsr(Pn) = [n/3] when n = 1(mod3) and
Ywsr(Pn) = [1n/3]4+1 when n = 0,2 (mod 3) and n > 3. Now we determine v* . (P,)

for 2 < k < 4. In [5], one can find the following result.

Example 7. If2<n <7 then v2xr(Pn) =n, and if n > 8, then v25(Py) = [2n2].

If f is an SR2DF on P,, then f is also a WSR2DF on P,. Now assume that g is a
WSR2DF on P,. If g(v) = —1, then g[v] > 2 implies that v has a neighbor w with
g(w) = 2. Therefore g is also an SR2Df on P,. This observation and Example 7 lead
to the next result immediately.

Example 8. If2<n <7 then vi.r(Pn) =n, and if n > 8, then va r(Pn) = [2%52].

In [2], the authors have shown that v3;(P,) = n+ 2 when n > 4 and 724(P,) =
[%ﬂ + 2 when n > 3. The same arguments as above lead to 72 (P2) = n + 2 when
n >4 and vy, 5(P,) = [%] + 2 when n > 3.
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Observation 6. Let T be a tree of order n and let f be a WSR2DF on T. Then the
following holds.

(a) If v is a leaf or a support vertex in T, then f(v) > 1.

(b) If 2 < n < 5, then v2x(T) = n.

The next result provided a lower bound on the weak signed Roman 2-domination
number of a tree in terms of its order.
Theorem 7. If T is a tree of order n > 4, then

n+4
5

’ngsR (T) Z

Proof. We proceed by induction on the order n > 4. If n = 4, then by Obser-
vation 6(b), v2x(T) = n = (n + 4)/2. This establishes the base case when n = 4.
Let n > 5 and suppose that if 7" is a tree of order n’ where 4 < n’ < n, then
V2p(T') > (0’ +4)/2. Let T be a tree of order n. Choose an optimal WSR2DF
fon T, and so v25(T) = w(f). If f(z) > 1 for each vertex x € V(T), then
w(f) >mn > (n+4)/2. Now suppose that there is a vertex v € V(T') with f(v) = —1.
Suppose that 7' — v is the disjoint union of r trees 11,75,...,T,. Let f; be the re-
striction of f on T; for 1 < ¢ < r. Clearly, f; is a WSR2DF on T; for 1 < ¢ < r. Since
by Observation 6(a) a leaf and its only neighbor has a positive label, r > 2 and each
T; has n; > 2 vertices. If n; = 2, then in fact w(f;) > 3 = (n; +4)/2, and if n; = 3,
then w(f;) =3 or w(f;) >4 > (n;+4)/2. If n; > 4, then by the induction hypothesis
w(fi) > (ni+4)/2. If w(f;) > (n; +4)/2 for all i, then since r > 2,

" ni+4 4r — 3 5
_1+Zn; :n+r >n+ .

W(f):—l‘F;W(fi)Z 5 >

i=1

Hence we may assume that for some %, n; = 3 and w(f;) = 3, for otherwise the desired
result follows. Assume that 77,T5,...,Ty, ¢ > 1, are exactly the trees with three
vertices and with w(f;) =3, 1 < i < g. We note that f(w) = 1 for each vertex w that
belongs to such a tree T; with w(f;) = 3. If r > ¢, then

T

-1+ Zw(fi) + Y w(fi)

1=q+1

T n,+4

—1+4+3q+ Z 5
1=q+1

n+4(r—q)+3(q—1)>n+4

2 - 27

w(f)

v

as desired. If r = ¢, then ¢ > 3, and we obtain

- y — 143g=n_2>"T4
w(f)=— JF;w(fi)** +3g=n—-22> 5
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since n > 10 in this case. This completes the proof. O

Corollary 8. ([5]) If T is a tree of order n > 4, then

n+4
Yer(T) > 5

In [2], one can find the following statement. If T is a tree of order n > 2, then
V3R(T) > 4"—5*7, with equality if and only if T' = P,. The next examples demonstrates
that this statement is not valid.

Example 9. Let P = vivs.. .V2pt+1 be a path of order 2p + 1 with p > 1. Now attach
two pendant edges to v1 and vapy1 and three pendant edges to vaiy1 for 1 <i <p—1. The
resulting tree Tspio is of order 5p + 2. Define the function f : V(Tspi2) — {—1,1,2} by
f(v2iz1) =2 for 0 <i<p, f(ve) =—1 for1 <i<p and f(z) =1 otherwise. Then f is an
SR3DF on Tsp12 of weight

An(T: 7
w(f)=2(p+1)—p+3p+1:4p+3=7”( 5”;2” :

Therefore v2g (Tspi2) < W Since f(u) + f(v) > 3 if v is a leaf and u its support
An(T5p42)+7 )

vertex, it easy to verify that v2g(Tspi2) = a

Example 10. Let Sa be a spider and w be a vertex of mazimum degree A > 1. In addition,
let v1,v2...,vA be the neighbors of w and u; # w be the neighbor of v; for 1 <i < A. Now
attach A+1 pendant edges to w and two pendant edges to u; for 1 <i < A. The resulting tree
H is of order 5A + 2. Define the function f: V(H) — {—1,1,2} by f(w) =2, f(u;)) =2
for 1 <i <A, f(v;) = -1 for1 <i<A and f(z) =1 otherwise. Then f is an SRSDF on
H of weight

An(H)+7

w(f) =48 +3= "2

Therefore v2p(H) = W.

I conjecture that the bound 35 (T) > 4"5+ T is really valid for each tree T of order

n > 2, however, I only can prove the following weaker bound.

Theorem 8. If T is a tree of order n > 2, then

3n+6
Vor(T) > ~usr(T) > 1

Proof. Clearly, it is enogh to prove the right inequality. We proceed by induction
on the order n > 2. If n = 2, then 73 ,(T) = 3 = (3n +6)/4. If n = 3, then
73 r(T) =4 > (3n+6)/4. Let now n > 4 and suppose that if 7" is a tree of order n’/
where 2 < n' < n, then 73 _,(T") > (3n’ + 6)/4. Let T be a tree of order n. Choose
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an optimal WSR3DF f = (V_1,V;,V2) on T, and so 72 . p(T) = w(f). If f(z) > 1 for
each vertex € V(T'), then w(f) >n+1> (3n+6)/4.

Now suppose that there is a vertex v € V(T) with f(v) = —1. If |V_4| > 2, then
choose u,v € V_; such that d(u,v) is as large as possible. Suppose that T — v is
the disjoint union of r trees Ty,T5,...,T,. Let f; be the restriction of f on T; for
1 < i < r. Clearly, f; is a SWR3DF on T; for 1 < i < r. Since a leaf and its only
neighbor has a positive label, » > 2 and each T; has n; > 2 vertices.

If » > 3, then we deduce from the induction hypothesis that

W) = 14 Yz 14 3D
i=1 i=1

3n+6+6r—13 S 3n+6
4 4 4

Let now r = 2. By the choice of v and v, we observe that V_; N V(Ty) = 0 or
VoinV(Ty) =0, say Vo1 NV (Ty) = 0. Note that w(f;) =4 if n; = 2. If ny = 2 then
we deduce from the induction hypothesis that

w(f) +4-1

w(fi) +w(fz) —1>

3(n—3)+6+12 3n+6
4 - 4

3ni +6
4

If ny > 3 then, w(f2) > n2 + 1, and we deduce from the induction hypothesis that

3n, + 6

w(f) :w(fl)+w(f2)_1ZT+TL2+1—l
31 +6+4ny  3(ny+ng) +ny+6
= 1 — .
> 3(n1+n2+1)+6>3n+6,
2 1 22—
and the proof is complete. O

Observation 9. LetT be a tree, and let f be a WSR4{DF onT. Ifv is a leaf or a support
vertez in T, then f(v) = 2.

Theorem 10. If T is a tree of order n > 4, then vi,z(T) > n + 4.

Proof. We proceed by induction on the order n > 4. If n = 4, then by Observation
9, v3x(T) = 8 = n + 4. This establishes the base case when n = 4. Let n > 5 and
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suppose that if 7" is a tree of order n’ where 4 < n’ < n, then 'y;LR(T') >n' +4. Let
T be a tree of order n. Choose an optimal WSR4DF f on T, and so v2  »(T) = w(f).
Assume first that f(z) > 1 for each vertex x € V(T'). Since n > 5, the tree has at
least 4 leaves or support vertices vy, va,v3,v4. According to Observation 9, we note
that f(v1) = f(ve) = v(vs) = f(vg) = 2 and hence w(f) > 8+ n —4 = n+ 4 in this
case.

Now assume that there is a vertex v € V(T) with f(v) = —1. Suppose that T — v
is the disjoint union of r trees T3y,75,...,T,.. Let f; be the restriction of f on T;
for 1 < i < r. Clearly, f; is a WSR4ADF on T; for 1 < i < r. Since f[v] > 4, we
deduce that r > 3 and each T; has n; > 3 vertices. If n; = 3, then in fact w(f;) = 6,
and if n; > 4, then by the induction hypothesis w(f;) > n; + 4. Now assume that
n=nyg=...=n;=3for0<g<randn; >4for¢g+1<17<r. Wededuce from
the induction hypothesis that

T

-1+ Zw(fi) + Z w(f3)

1=q+1
~1+6g+ Y (ni+4)
1=q+1
—146¢g+(n—3¢—1)+4(r —q)
=n+3¢—2+4(r—q) >n+4

w(f)

v

Corollary 9. If T is a tree of order n > 4, then v25(T) > n + 4.

Note that if H € {K 3, P1, Ps, Ps}, then v p(H) = y2z(H) = n(H) + 4. Corollary
9 is an improvement of the bound v,(T) > n + 2, given in [2].
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