[1] A. Ashrafi, T. Došlić, and A. Hamzeh, The Zagreb coindices of graph operations, Discrete Appl. Math. 158 (2010), no. 15, 1571–1578.
[2] B. Basavanagoud and S. Patil, A note on hyper-Zagreb index of graph operations, Iran. J. Math. Chem. 7 (2016), no. 1, 89–92.
[3] B. Borovicanin, K.C. Das, B. Furtula, and I. Gutman, Bounds for Zagreb indices, MATCH Commun. Math. Comput. Chem 78 (2017), no. 1, 17–100.
[4] R.M. Damerell, On Moore graphs, Proc. Cambridge Phil. Soc. 74 (1973), no. 2, 227–236.
[5] K.C. Das and I. Gutman, Some properties of the second Zagreb index, MATCH Commun. Math. Comput. Chem 52 (2004), no. 1, 103–112.
[6] T. Došlić, Vertex-weighted Wiener polynomials for composite graphs, Ars Math. Contemp. 1 (2008), no. 1, 66–80.
[7] M. Eliasi, A. Iranmanesh, and I. Gutman, Multiplicative versions of first Zagreb index, MATCH Commun. Math. Comput. Chem. 68 (2012), no. 1, 217–230.
[8] B. Furtula, I. Gutman, and M. Dehmer, On structure-sensitivity of degree-based topological indices, Appl. Math. Comput. 219 (2013), no. 17, 8973–8978.
[9] I. Gutman, Multiplicative Zagreb indices of trees, Bull. Soc. Math. Banja Luka 18 (2011), 17–23.
[10] I. Gutman, Degree-based topological indices, Croat. Chem. Acta 86 (2013), no. 4, 351–361.
[11] I. Gutman and K.C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem 50 (2004), 83–92.
[12] I. Gutman, B. Furtula, K. Vukićević, and G. Popivoda, On Zagreb indices and coindices, MATCH Commun. Math. Comput. Chem 74 (2015), no. 1, 5–16.
[13] I. Gutman, B. Ruščić, N. Trinajstić, and C.F. Wilcox, Graph theory and molecular orbitals. XII. acyclic polyenes, J. Chem. Phys. 62 (1975), no. 9, 3399–3405.
[14] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total ϕelectron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972), no. 4, 535–538.
[15] F. Harary, Graph Theory, Addison-Wesley, Reading, 1969.
[16] A. Ilić and D. Stevanović, On comparing Zagreb indices, MATCH Commun. Math. Comput. Chem. 62 (2009), no. 3, 681–687.
[17] A. Ilić and B. Zhou, On reformulated Zagreb indices, Discrete Appl. Math. 160 (2012), no. 3, 204–209.
[18] M.H. Khalifeh, H. Yousefi-Azari, and A. Ashrafi, The first and second Zagreb indices of some graph operations, Discrete Appl. Math. 157 (2009), no. 4, 804–811.
[19] A. Miličević, S. Nikolić, and N. Trinajstić, On reformulated Zagreb indices, Mol.
Diversity 8 (2004), no. 4, 393–399.
[20] S. Nikolić, G. Kovačević, A. Miličević, and N. Trinajstić, The Zagreb indices 30 years after, Croat. Chem. Acta 76 (2003), no. 2, 113–124.
[21] K. Pattabiraman and M. Vijayaragavan, Hyper Zagreb indices and its coindices of graphs, Bull. Int. Math. Virt. Inst. 7 (2017), no. 1, 31–41.
[22] N.D. Soner and A.M. Naji, The k-distance neighborhood polynomial of a graph, Int. J. Math. Comput. Sci. WASET Conference Proceedings, San Francico, USA, Sep 26-27, 3 (2016), no. 9, part XV, 2359–2364.
[23] K. Xu and K.C. Das, Trees, unicyclic, and bicyclic graphs extremal with respect to multiplicative sum Zagreb index, MATCH Commun. Math. Comput. Chem. 68 (2012), no. 1, 257–272.
[24] K. Xu, K.C. Das, and K. Tang, On the multiplicative Zagreb coindex of graphs, Opuscula Math. 33 (2013), no. 1, 191–204.
[25] K. Xu and H. Hua, A unified approach to extremal multiplicative Zagreb indices for trees, unicyclic and bicyclic graphs, MATCH Commun. Math. Comput. Chem. 68 (2012), no. 1, 241–256.
[26] S. Yamaguchi, Estimating the Zagreb indices and the spectral radius of triangleand quadrangle-free connected graphs, Chem. Phys. Lett. 458 (2008), no. 4, 396–398.