[1] J.A. Bondy and U.S.R. Murty, Graph theory with applications, The Macmillan Press Ltd., London, Basingstoke, 1976.
[2] A.A. Dobrynin, R. Entringer, and I. Gutman, Wiener index of trees: theory and applications, Acta Appl. Math. 66 (2001), no. 3, 211–249.
[3] A.A. Dobrynin, I. Gutman, S. Klavžar, and P. Zigert, ˇ Wiener index of hexagonal systems, Acta Appl. Math. 72 (2002), no. 3, 247–294.
[4] R.C. Entringer, D.E. Jackson, and D.A. Snyder, Distance in graphs, Czechoslovak Math. J. 26 (1976), no. 2, 283–296.
[5] I. Gutman, B. Furtula, and M. Petrović, Terminal wiener index, J. Math. Chem.
46 (2009), no. 2, 522–531.
[6] B. Horvat, T. Pisanski, and M. Randić, Terminal polynomials and star-like graphs, MATCH Commun. Math. Comput. Chem. 60 (2008), no. 2, 493–512.
[7] W. Imrich, S. Klavžar, and Douglas F.R., Topics in graph theory : Graphs and their cartesian product, Wiley-Interscience, New York, 2000.
[8] M. Randić and J. Zupan, Highly compact 2d graphical representation of dna sequences, SAR QSAR Environ. Res. 15 (2004), no. 3, 191–205.
[9] M. Randić, J. Zupan, and D. Vikić-Topić, On representation of proteins by starlike graphs, J. Mol. Graph. Modell. 26 (2007), no. 1, 290–305.
[10] E.A. Smolenskii, E.V. Shuvalova, L.K. Maslova, I.V. Chuvaeva, and M.S. Molchanova, Reduced matrix of topological distances with a minimum number of independent parameters: distance vectors and molecular codes, J. Math. Chem.
45 (2009), no. 4, 1004–1020.
[11] L. Volkmann, Fundamente der graphentheorie, Springer, Vienna, New York, 1996.
[12] H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947), no. 1, 17–20.
[13] K.A. Zaretskii, Constructing a tree on the basis of a set of distances between the hanging vertices, Spekhi Math. Nauk. 20 (1965), no. 6, 90–92.