[1] M. Azari and A. Iranmanesh, Some inequalities for the multiplicatiove sum zagreb index of graph operations, J Math. Inequal. 9 (2015), 727–738.
[2] A. T. Balaban, I. Motoc, D. Bonchev, and O. Mekenyan, Topological indices for structure-activity correlations, Topics Curr. Chem. 114 (1983), 21–55.
[3] C. Bey, An upper bound on the sum of squares of degrees in a hypergraph, Discrete Math. 269 (2003), 259–263.
[4] K.C. Das, Sharp bounds for the sum of the squares of the degrees of a graph, Kragujevac J. Math. 25 (2003), 31–49.
[5] D. de Caen, An upper bound on the sum of squares of degrees in a graph, Discrete Math. 185 (1998), 245–248.
[6] M. Eliasi, A. Iranmanesh, and I. Gutman, Multiplicative versions of first zagreb index, MATCH Commun. Math. Comput. Chem. 68 (2012), 217–230.
[7] M. Eliasi and D. Vukicević, Comparing the multiplicative zagreb indices, MATCH Commun. Math. Comput. Chem. 69 (2013), 765–773.
[8] I. Gutman, Graphs with smallest sum of squares of vertex degrees, MATCH Commun. Math. Comput. Chem. 25 (2003), 51–54.
[9] I. Gutman and K. C. Das, The first zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004), 83–92.
[10] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. total p-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972), 535–538.
[11] S. Nikolić, G. Kovacević, Milićević, and A. N. Trinajstić, The zagreb indices 30 years after, Croat. Chem. Acta 76 (2003), 113–124.
[12] R. Todeschini, D. Ballabio, and V. Consonni, Novel molecular descriptors based on functions of new vertex degrees. in:i. gutman and b. furtula (eds.), novel molecular structure descriptors-theory and applicationsi, Univ. Kragujevac (2010), 73–100.
[13] R. Todeschini and V. Consonni, Handbook of molecular descriptors, WileyVCH Weinheim, 2000.
14] R. Todeschini and V. Consonni, New local vertex invariants and molecular descriptors based on functions of the vertex degrees, MATCH Commun. Math. Comput. Chem. 64 (2010), 359–372.
[15] H. Wang and H. Bao, A note on multiplicative sum zagreb index, South Asian J. Math. 2 (2012), 578–583.
[16] K. Xu, Trees with the seven smallest and eight greatest harary indices, Discrete Appl. Math. 160 (2012), 321–331.
[17] K. Xu and K. Das, Trees, unicyclic and bicyclic graphs extremal with respect to multiplicative sum zagreb index, MATCH Commun. Math. Comput. Chem. 68 (2012), 257–272.