[1] M. Aouchiche, G. Caporossi, and P. Hansen. Variable Neighbourhood Search for Extremal Graphs, 20 Automated Comparison of Graph Invariants. MATCH Commun. Math. Comput. Chem. 58 (2007), 365-384.
[2] M. Aouchiche and P. Hansen. Nordhaus-Gaddum relations for proximity and remoteness in graphs. Comput. Math. Appl. 59(no. 8) (2010), 2827-2835.
[3] M. Aouchiche, P. Hansen. Proximity and remoteness in graphs: results and conjectures. Networks 58 (no. 2) (2011), 95-102.
[4] C.A. Barefoot, R.C. Entringer, and L.A. Sz´ekely. Extremal values for ratios of distances in trees. Discrete Appl. Math. 80 (1997), 37-56.
[5] P. Dankelmann,G. Dlamini, and H.C. Swart. Uppper bounds on distance measures in K2,l-free graphs. (manuscript)
[6] P. Dankelmann. Proximity, remoteness, and minimum degree. Discrete Appl. Math. 184 (2015), 223-228.
[7] G. Dlamini. Aspects of distances in graphs, Ph.D. Thesis, University of Natal, Durban, 2003. [8] R.C. Entringer, D.E. Jackson, and D.A. Snyder. Distance in graphs. Czechoslovak Math. J. 26 (101) no. 2 (1976), 283-296.
[9] P. Erd¨os, J. Pach,R. Pollack, and Z. Tuza. Radius, diameter, and minimum degree. J. Combin. Theory Ser. B 47 (1989) 73-79.
[10] B. Ma, B. Wu, and W. Zhang. Proximity and average eccentricity of a graph. Inform. Process. Lett. 112(no. 10) (2012), 392-395.
[11] B. Wu and W. Zhang. Average distance, radius and remoteness of a graph. Ars Math. Contemp. 7 (2014), 441-452.
[12] B. Zelinka. Medians and peripherians of trees. Arch. Math. (Brno) 4 (1968), 87-95.