[1] G. Chartrand, A graph-theoretic approach to a communications problem, SIAM J. Appl. Math. 14 (1966), 778-781.
[2] P. Dankelmann, A. Hellwig and L. Volkmann, Inverse degree and edgeconnectivity, Discrete Math. 309 (2009) 2943-2947.
[3] S. Fajtlowicz, On conjectures of graffiti II, Congr. Numer. 60 (1987) 189-197.
[4] D. Geller and F. Harary Connectivity in digraphs, in Recent Trends in Graph Theory, Proceedings of the First New York City Graph Theory Conference, 1970, Lecture Notes in Mathematics, vol. 186, 1971, pp. 105-115.
[5] I. Gutman and N. Trinajsti´c, Graph theory molecular orbitals. Total ϕelectron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535-538.
[6] A. Hellwig and L. Volkmann, Maximally edge-connected and vertexconnected graphs and digraphs: A survey, Discrete Math. 308 (2008) 3265-3296.
[7] L.B. Kier and L.H. Hall, The nature of structure-activity relationships and their relation to molecular connectivity, European J. Med. Chem. 12 (1977) 307-312.
[8] X. Li and J. Zheng, An unified approach to the extremal trees for different indices, MATCH Commun. Math. Comput. Chem. 54 (2005) 195-208.
[9] A. Lin, R. Luo and X. Zha, On sharp bounds of the zero-order Randić index of certain unicyclic graphs, Appl. Math. Lett. 22 (2009) 585-589.
[10] G. Su, L. Xiong and X. Su, Maximally edge-connected graphs and zerothorder general Randi´c index for 0 < α < 1, Discrete Appl. Math. 167 (2014) 261-268.
[11] G. Su, L. Xiong, X. Su and G. Li, Maximally edge-connected graphs and Zeroth-order general Randi´c index for α ≤ −1, J. Comb. Optim. Doi 10.1007/s10878-014-9728-y