TY - JOUR
ID - 14751
TI - Elliptic Sombor index of chemical graphs
JO - Communications in Combinatorics and Optimization
JA - CCO
LA - en
SN - 2538-2128
AU - Espinal, Carlos
AU - Gutman, Ivan
AU - Rada, Juan
AD - Universidad de Antioquia
AD - University of Kragujevac
Y1 - 2024
PY - 2024
VL -
IS -
SP -
EP -
KW - Elliptic Sombor index
KW - Chemical graph
KW - Vertex-degree-based topological index
DO - 10.22049/cco.2024.29404.1977
N2 - Let $G$ be a simple graph. The elliptic Sombor index of $G$ is defined as$$ ESO(G) = \sum_{uv} \left(d_{u}+ d_{v} \right)\sqrt{d^{2}_{u}+d^{2}_{v}},$$ where $d_{u}$ denotes the degree of the vertex $u$, and the sum runs over the set of edges of $G$. In this paper we solve the extremal value problem of $ESO$ over the set of (connected) chemical graphs and over the set of chemical trees, with equal number of vertices.
UR - https://comb-opt.azaruniv.ac.ir/article_14751.html
L1 - https://comb-opt.azaruniv.ac.ir/article_14751_33749bb5fb26201daa58c23438dc54b9.pdf
ER -