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1. Introduction

An undirected hypergraph H is a pair H = (V,E) where V is a set of elements

called nodes or vertices and E is a non-empty subset of P(V ) (power set of V ) called

hyperedges. The degree of a vertex v ∈ V is the number of hyperedges incident with v.

A hypergraph is regular if all its vertices have the same degree; it is uniform if every

edge has cardinality k for some fixed k. Throughout this paper ∼ indicates adjacency,

gcd(a, b) is denoted using (a, b), the order of a using |a| and < b >= {bn | n ∈ Z}.
Figure 1 shows a hypergraph. Its degree sequence is (1, 1, 2, 2, 0, 1, 2, 2).

One important class of hypergraphs we will meet consists of the basis hypergraphs

of matroids. A basis of a matroid is a maximal independent set. The collection of

matroid bases is characterised by the two properties
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2 Hypergraphs defined on algebraic structures

Figure 1. A hypergraph H with 8 vertices and 4 hyperedges

• there is at least one basis;

• (the Exchange Axiom): if A,B are bases and b ∈ B \ A, then there exists

a ∈ A \B such that A \ {a} ∪ {b} is a basis.

It follows from the Exchange Axiom that any two bases have the same number of

elements; that is, the basis hypergraph is uniform.

Our algebraic structures will mostly be groups. There are three natural (overlapping)

ways we can form hypergraphs from groups:

• We can take all sets maximal with respect to some property (e.g. maximal sets

of pairwise commuting elements) or minimal with respect to some property (e.g.

minimal generating sets).

• We can take hypergraph edges to be maximal cliques in some graph associated

with G.

• We can take the family of proper subgroups ofG, or subgroups of some particular

type (for example, abelian).

We will give examples of all three methods. We make one elementary observation

here.

Definition 1. The open neighbourhood NH(v) of the vertex v in a hypergraph H is the set
of all vertices u 6= v such that u, v ∈ e, for some hyperedge e in G. The open neighbourhood
together with the vertex v is called the closed neighbourhood NH [v] of the vertex v in the
hypergraph H.

We warn readers not to confuse NH(v) with the group-theoretic notion of the nor-

malizer of a subset or subgroup of a group.

Proposition 1. If Γ is a finite graph and H is the hypergraph whose edges are maximal
cliques in Γ, then the neighbourhoods of any vertex v in Γ and H coincide.

This holds because any edge of a finite graph is contained in a maximal clique. For

more information on hypergraphs and matroids we suggest [6, 7].



P.J. Cameron, et al. 3

2. Commuting hypergraphs

Let S be a semigroup. The commuting hypergraph ComH(S) of S is an undirected

hypergraph with the set S of vertices and E ⊆ S is a hyperedge if and only if

(a) For every a, b ∈ E, ab = ba.

(b) There does not exists an E′ ⊃ E such that E′ satisfies (a).

Thus, the edges of the commuting hypergraph are the maximal cliques in the commut-

ing graph of S (the graph with vertex set S, in which x and y are joined if xy = yx).

So by Proposition 1, the neighbourhoods of a vertex in the commuting graph and

commuting hypergraph coincide.

Figure 2 shows the commuting hypergraph of the quaternion group Q8. The vertex

set is V = {1,−1, i,−i, j,−j, k,−k} and the edge set is

E = {e1, e2, e3} = {{1,−1, i,−i}, {1,−1, j,−j}, {1,−1, k,−k}}.

Figure 2. ComH(Q8)

Theorem 1. Let G be a group. The hyperedges of ComH(G) are the maximal abelian
subgroups of G, where maximality is taken over inclusion.

Proof. Let Ge be the subset of elements of G corresponding to the vertices of the

hyperedge e. Let x, y ∈ Ge. For every z ∈ Ge, xz = zx and yz = zy.

Now, z(xy) = (zx)y = (xz)y = x(zy) = x(yz) = (xy)z. Therefore, xy ∈ Ge.

Let x ∈ Ge. For every x ∈ e, xz = zx. Multiplying with x−1 on both sides and

simplifying, we get zx−1 = x−1z. Therefore, x−1 ∈ Ge.

Clearly, ze = ez, for every z ∈ e. So e ∈ Ge. Hence Ge is an abelian group.

Conversely, the elements of an abelian subgroup A commute with each other and

hence A is contained in a hyperedge. The maximality of the abelian group follows

from the second condition in the definition of hyperedge of ComH(G).

Remark 1. Let C(v) denote the centralizer of an element v in a semigroup S. Then
C(v) = NH [v]. (This follows immediately from Proposition 1.)
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Remark 2. For any hyperedge E, we have E ⊆ C(v) for all v ∈ E, and in fact

E =
⋂
v∈E

C(v).

Theorem 2. Let S be a semigroup without zero divisors. Then the degree of a vertex in
ComH(S) can never be 2.

Proof. Suppose on the contrary that there exists a vertex z ∈ V (CH) such that

deg(z) = 2. Let x, y be two vertices adjacent to z (i.e., commutes with z) such that

they do not commute with each other i.e., x and y belongs to two different hyperedges

e1 and e2, respectively, containing z. Then

z(xy) = (zx)y = (xz)y = x(zy) = x(yz) = (xy)z =⇒ xy ∼ z.

If we show that xy does not belong to the hyperedges e1 or e2, we get a contradiction

to deg(z) = 2. Assume that xy ∈ e1, then

xxy = xyx =⇒ xy = yx. (Cancellation Law)

But this contradicts our choice of x and y. The proof of the case xy ∈ e2 is similar.

Remark 3. The proof of Theorem 2 will not work for semigroups with zero divisors. For

example, consider M2(R). Let B =

[
3 4
6 8

]
and C =

[
2 0
−3
4

1

]
∈ M2(R). Even though B

and C do not commute with each other, B and BC commutes with each other so that BC
belongs to the hyperedge that contains B.

3. Enhanced power hypergraphs

Before turning to the power hypergraphs, we will briefly outline the enhanced power

hypergraphs, bearing the same relation to the power hypergraphs as the enhanced

power graphs (defined in [1]) to the power graphs (defined in [2]).

Let S be a semigroup. The enhanced power hypergraph EPowH(S) of S is an undi-

rected hypergraph with the set S as the set of vertices and E ⊆ S is a hyperedge if

and only if

(a) For every a, b ∈ E, there exists c ∈ S such that both a and b are powers of c;

(b) There does not exist E′ ⊃ E such that E′ satisfies (a).

Another way of stating the first condition is that 〈a, b〉 is a cyclic (or 1-generator)

semigroup, since any subsemigroup of a cyclic semigroup is cyclic.

It is shown in [1, Lemma 32] that if a finite set X of elements in a group has the

property that any two of its elements generate a cyclic group, then X generates
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a cyclic group. We do not know the analogous result for semigroups, so we will

consider only groups in the remainder of this section. It follows from this fact that a

maximal set of elements of a group G, any two of which generate a cyclic subgroup, is

a maximal cyclic subgroup of G. Hence the hyperedges of EPowH(G) are the maximal

cyclic subgroups of G. In particular, EPowH(G) has a single hyperedge containing

all vertices if and only if G is a cyclic group.

Theorem 3. Let G = Zp × Zp × . . . × Zp where p is a prime, under addition
(+p,+p, . . . ,+p). Then the number of hyperedges in EPowH(G) is Φn(p), where n is the
number of direct factors of G and Φn(p) is the nth cyclotomic polynomial, pn−1 + pn−2 +
. . .+ p+ 1.

Proof. Hyperedges of EPowH(G) are the maximal cyclic subgroups of G. Here the

cyclic subgroups of G of order ‘p’ are maximal, since the maximum order of a cyclic

subgroup in G is p.

Number of maximal cyclic subgroups =
Number of elements of order p

φ(p)

=
pn − 1

p− 1

= pn−1 + pn−2 + . . .+ p+ 1

= Φn(p).

4. Power hypergraphs

Let S be a semigroup. The power hypergraph PowH(S) of S is an undirected hy-

pergraph with the set S as the set of vertices and E ⊆ S is a hyperedge if and only

if

(a) For every a, b ∈ E, am = b or bn = a for some m,n ∈ N.

(b) There does not exists an E′ ⊃ E such that E′ satisfies (a).

Example 1. Let S be Z2 × Z3 under addition (+2,+3). The vertex set of the power
hypergraph of S is V = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)} and the edge set is

E = {{(0, 0), (1, 1), (1, 2), (0, 1), (0, 2)}, {(0, 0), (1, 1), (1, 2), (1, 0)}}.

This is shown in Figure 3.
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Figure 3. PowH(Z2 × Z3)

Remark 4. Each hyperedge in PowH(G) is a clique (maximal complete) in Pow(G) and
is contained in a clique of the enhanced power graph, that is, a maximal cyclic subgroup
of G. So in order to understand PowH(G) for arbitrary groups, we must study it for cyclic
groups. Also, in [7], the clique hypergraph of a graph G is defined as the hypergraph with
same vertex set as that of G and the edge set is the family of vertex sets of maximal cliques in
the graph G. So, the power hypergraphs can also be viewed as the clique hypergraph of the
power graph of G. (Similarly, a commuting hypergraph can be viewed as clique hypergraph
of the commuting graph of G.)

A cyclic group G has a unique subgroup of each order dividing |G|, which is itself

cyclic. Thus, two elements of a cyclic group G are contained in a hyperedge of

PowH(G) if and only if the order of one divides the order of the other.

Let G = Zn. There are d(n) different orders of elements of G, where d is the divisor

function (d(n) is the number of divisors of n). If m divides n, then the number of

elements of order m is φ(m), where φ is the Euler’s function.

Theorem 4. Let G = Zn. Then the number of hyperedges of PowH(G) is equal to the
number of maximal chains in the lattice of divisors of n; the hyperedge corresponding to the
chain 1 = n0, n1, . . . , nr−1, nr = n has cardinality

∑r
i=0 φ(ni).

If n = pa1
1 pa2

2 · · · pas
s , then the number of maximal chains is equal to the multinomial coeffi-

cient (
a1 + a2 + · · ·+ as
a1, a2, . . . , as

)
=

(a1 + a2 + · · ·+ as)!

a1!a2! · · · as!
.

Proof. We only have to establish the formula. We note that there is a recurrence

relation for the number N(n) of maximal chains in the lattice of divisors of n, namely

N(1) = 1, N(n) =
∑
p|n

N(n/p),

where the sum is over all the distinct prime divisors of n, since the first step down

in such a chain must be from n to n/p for some p | n. It follows that N(n) does not

depend on the values of the prime divisors of n, but only on their number and their

exponents. If we set

f(a1, . . . , as) = N(pa1
1 p

a2
2 · · · pas

s ),
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then the recurrence is

f(0, 0, . . . , 0) = 1,

f(a1, a2, . . . , as) = f(a1 − 1, a2, . . . , as) + f(a1, a2 − 1, . . . , as) + · · ·
(a term is omitted if it involves a negative argument)

But this is exactly the recurrence for the multinomial coefficient, where we interpret

it as the number of ways of colouring 1, . . . , a1 + a2 + · · ·+ as so that there are ai of

colour i for all i.

Two special cases are worth remarking:

(a) If n is squarefree with s distinct prime divisors, then N(n) = s!.

(b) If n = paqb where p and q are distinct primes, then N(n) =

(
a+ b

a

)
, the number

of lattice paths from the origin to (a, b) which move only right and upwards at

each step.

The cardinality of the hyperedge corresponding to the chain (1 = n0, n1, . . . , nt = n)

is
t∑

i=0

φ(ni).

Theorem 5. Consider the group G = Zpn1 × Zpn2 × . . .× Zpnk where p is a prime and
n1 ≤ n2 ≤ . . . ≤ nk under addition (+pn1 ,+pn2 , . . . ,+pnk ). Then the number of hyperedges
in PowH(G) is greater than or equal to

1 + S1 + S2 + . . .+ Sk−1 where Si(n1, n2, . . . nk) =
∑

1≤j1<j2<...<ji≤k

nj1nj2 . . . nji . (4.1)

Proof. Define a set B as

B = {b ∈ G | for b = (y1, y2, . . . , yk), |yi| = pni for atleast one i, 1 ≤ i ≤ k and @ an

a = (x1, x2, . . . , xk) with 3 |xi| = |yi| ∀i}.
We will prove that the cardinality of B will be a lowerbound for the number of

hyperedges in PowH(G).

Claim 1. For each b1, b2 ∈ B, b1 and b2 belong to different hyperedges of PowH(G).

Without loss of generality assume that b1 = (y11, y12, . . . , y1k) and

b2 = (y21, y22, . . . , y2k) with order of yij to be psij .

Suppose that b1 and b2 belong to same hyperedge of PowH(G). Let b2 = b1
m for

some m ∈ N. Then (y21, y22, . . . , y2k) = (y11
m, y12

m, . . . , y1k
m).

ps2i = |y2i| = |y1im| =
|y1i|

(|y1i|,m)
=

ps1i

(ps1i ,m)
.
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Let li = (ps1i ,m). Then for each i,

ps1i = lip
s2i .

Since b2 ∈ B, there is atleast one i such that ps2i = pni for 1 ≤ i ≤ k. Let ps2j = pnj .

Consider ps1j = ljp
nj . Here s1j ≥ nj , which implies s1j = nj and lj = 1.

Since lj = 1 ,m and p have no common factors. Hence (ps1i ,m) = 1 ∀i, i.e., li = 1 ∀i
and so |y1i| = |y2i| ∀i; a contradiction since both are elements of B.

Claim 2. Each b ∈ B belong to a single hyperedge of PowH(G).

Suppose that ∃ a1, a2 such that a1 and a2 belong to distinct hyperedges of PowH(G)

containing b of B. The following cases may arise:

• bm1 = a1 and a2
m2 = b for some m1,m2 ∈ N.

Then a2
m1m2 = a1, a contradiction.

• b = a1
m1 and b = a2

m2 ,m1,m2 ∈ N.

Let b = (y1, y2, . . . , yk) with |b| = lcm(ps1 , ps2 , . . . psk)

a1 = (x11, x12, . . . , x1k) with |a1| = lcm(pr11 , pr12 , . . . , pr1k)

a1
m1 = b =⇒ (pr11 , pr12 , . . . , pr1k) = (l1p

s1 , l2p
s2 , . . . , lkp

sk) where l′is are

powers of prime p. As we have seen earlier we get li = 1 ∀ i. i.e., a1 ∈ B.

Similarly we will get a2 ∈ B, which is a contradiction.

• bm1 = a1, b
m2 = a2;m1,m2 ∈ N.

a1, a2 ∈< b >. In a cyclic group, if order of an element divides the order of the

other, then the former is a power of the latter. Here order of each element is

the power of the same prime p. So either a1 or a2 will be a power of the other,

a contradiction.

Now we are in a position to find the cardinality of set B. Let b = (y1, y2, . . . , yk) ∈ B.

If we fix the order of y1 to be pn1 , there are (n2 + 1)(n3 + 1) . . . (nk + 1) ways of

choosing {y2, y3, . . . , yk}. Same way we can find out the number of elements of B

when we fix the order of y2 to be pn2 , but we should exclude those elements with

|y1| = pn1 . We continue this process for each yi for 1 ≤ i ≤ k.

Number of elements of B = [(n2 + 1)(n3 + 1) . . . (nk + 1)] + [n1(n3 + 1) . . . (nk + 1)]

+ . . .+ [n1n2(n4 + 1) . . . (nk + 1)] + . . .+ [n1n2 . . . nk−1]

= 1 + [n1 + n2 + . . .+ nk] + [n1n2 + . . .+ nk−1nk] + . . .

+ [n1n2 . . . nk−1 + . . .+ n2n3 . . . nk]

= 1 + S1 + S2 + . . .+ Sk−1

where Si(n1, n2, . . . nk) =
∑

1≤j1<j2<...<ji≤k nj1nj2 . . . nji .

Remark 5. The bound is sharp. Consider the group G = Z2×Z4 under addition (+2,+4).
Let B = {(1, 0), (0, 1), (1, 1), (1, 2)}. The hyperedges of PowH(G) are {(1, 0), (0, 0)},
{(0, 1), (0, 2), (0, 3), (0, 0)}, {(1, 1), (0, 2), (1, 3), (0, 0)}, {(1, 2), (0, 0)}.
Number of hyperedges = 1 + 1 + 2 = 4.
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Remark 6. There are groups for which the bound is strict. Consider the group
G = Z3 × Z9 under addition (+3,+9). Let B = {(1, 0), (0, 1), (1, 1), (1, 3)}.
Cardinality(B) = 4. However there are 6 hyperedges in PowH(G). The hyperedges are
{(1, 0), (2, 0), (0, 0)}, {(0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7), (0, 8), (0, 0)},
{(1, 1), (2, 2), (0, 3), (1, 4), (2, 5), (0, 6), (1, 7), (2, 8), (0, 0)},
{(1, 2), (2, 4), (0, 6), (1, 8), (2, 1), (0, 3), (1, 5), (2, 7), (0, 0)},
{(1, 3), (2, 6), (0, 0)}, {(2, 3), (1, 6), (0, 0)}.

Definition 2. [3] A path in a hypergraph H = (V,E) between two distinct vertices x1
and xk is a sequence x1, e1, . . . , xk−1, ek−1, xk with the following properties:

(a) x1, . . . , xk are distinct vertices.

(b) e1, . . . , ek−1 are hyperedges (not necessarily distinct).

(c) xj , xj+1 ∈ ej for j = 1, 2, . . . , k − 1.

If there is no ambiguity regarding the hyperedge chosen, this path is denoted by
P (x1, x2, . . . , xk).

Definition 3. [3] A cycle in a hypergraph H = (V,E) is a sequence x1, e1, . . . , xk, ek, x1
with the following properties:

(a) k ≥ 3 is a positive integer.

(b) x1, e1, . . . , xk−1, ek−1, xk is a path from x1 to xk.

(c) e1, . . . , ek are hyperedges (not necessarily distinct).

(d) xj , xj+1 ∈ ej for j = 1, 2, . . . , k − 1, where addition of indices is taken modulo k.

If there is no ambiguity regarding the hyperedge chosen, this cycle is denoted by
C(x1, x2, . . . , xk).

Definition 4. A hypergraph is Hamiltonian if it has a spanning cycle.

Theorem 6. The power hypergraph of a cyclic group is Hamiltonian.

Proof. The hyperedges of the power hypergraph are the maximal cliques of the

power graph. So it is enough to show that power graph is Hamiltonian and this was

already done in [2].

Note

There is an alternate definition for paths and cycles of hypergraphs in [7] in which

all the hyperedges in the sequence are distinct. In a hypergraph H = (X,E), an

alternating sequence

µ = x0e0x1e1x2 . . . xt−1et−1xt

of distinct vertices x0, x1, x2, . . . , xt−1 and distinct edges e0, e1, e2, . . . et−1 satisfying

xi, xi+1 ∈ ei, i = 0, 1, 2, . . . , t − 1 is called a path connecting the vertices x0 and xt
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and it is called a cycle if xt = x0.

If this definition of cycles is used to define Hamiltonian hypergraphs, then all power

hypergraphs need not be Hamiltonian. There are hypergraphs for which the number of

hyperedges are less than the number of vertices. In particular, the power hypergraph

of cyclic group of prime power order has only one hyperedge. The smallest n for

which the number of edges in the power hypergraph of the cyclic group of order n is

greater than n is n = 29.36.53.72.11.13. Therefore, there are no Hamiltonian power

hypergraphs of order less than n = 29.36.53.72.11.13. However, the characterization

problem is open.

Question 1. Characterize Hamiltonian power hypergraphs.

In [2], few results regarding connectedness of power graph is proved. The following

results are the extension of those results to power hypergraphs. Since the proof

techniques are exactly the same, we have omitted the proof of these results. Interested

readers may refer to [2].

Let S be a finite semigroup. An element e ∈ S is called an idempotent if e2 = e. We

denote the set of all idempotents of S by E(S). Since S is finite, for each a ∈ S, there

exists m ∈ N such that am is an idempotent. Also if am = e and an = f for some

e, f ∈ E(S), then e = amn = f . Let us define a binary relation ρ on S by

aρb ⇐⇒ am = bm (4.2)

for some m ∈ N .

Theorem 7. Let S be a finite semigroup and ρ be the binary relation defined by equation
(4.2) then for any a, b ∈ S, aρb if and only if am1 = bm2 = e for some m1,m2 ∈ N, e ∈ E(S).

Theorem 8. Let S be a finite semigroup and a, b ∈ S such that a 6= b, then a and b are
connected by a path in the hypergraph PowH(S) if and only if aρb.

Theorem 9. The components of the graph PowH(S) are precisely

Ce = {a ∈ S | aρe} = {a ∈ S | am = e} (4.3)

for some m ∈ N and e ∈ E(S). Each component Ce contains the unique idempotent e.

Proof. We notice the following:

• Every vertex in PowH(S) is adjacent to one and only one idempotent in S.

• No two idempotents are connected by a path.
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• Each component of PowH(S) contains a unique idempotent to which every other

vertices of that component are adjacent.

Corollary 1. Let S be a finite semigroup, then PowH(S) is connected if and only if S
contains a single idempotent.

Corollary 2. If G is a finite group then PowH(G) is always connected.

Theorem 10. Let G be a group. Then PowH(G) is connected if and only if every element
of G is of finite order (i.e., G is a periodic group).

5. Generating hypergraphs

Let S be a finite semigroup. The generating hypergraph GenH(S) of S is an undirected

hypergraph with vertex set S and E ⊆ S is a hyperedge if and only if E generates S

and none of the proper subsets of E generates S.

There have been many investigations of the generating graph, especially for a finite

group. Of course, if the group cannot be generated by two elements, this graph is

null; so attention has focussed on almost simple groups. (We know from the Clas-

sification of Finite Simple Groups that any finite simple group can be generated by

two elements.) Some replacements which work for larger number of generators have

been proposed by Lucchini and co-authors [4, 5]. However, hypergraphs may be more

natural to use in this situation.

Figure 4 shows the generating hypergraph of the Klein 4-group G = {e, a, b, c}. Any

2-element subset not containing the identity is an edge of the hypergraph.

Figure 4. Generating hypergraph of the Klein 4-group

Finite groups may have minimal generating sets with different cardinalities, so the

generating hypergraph is not uniform in general. However, there is a particular case

when it is:
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Theorem 11. Let G be a finite group whose order is a power of the prime p. Then the
generating hypergraph of G is the basis hypergraph of a matroid.

Proof. Let Φ(G) be the Frattini subgroup of G. Then G/Φ(G) is an elementary

abelian p-group. By the Burnside basis theorem, a subset S of G is a minimal gener-

ating set if and only if the set {Φ(G)s : s ∈ S} is a minimal generating set of G/Φ(G).

So the edges of the generating hypergraph of G are obtained from those of G/Φ(G)

by choosing one element from each of the corresponding cosets. So it is enough to

prove the result for an elementary abelian p-group.

Now, as noted above, G/Φ(G) is elementary abelian, and so it can be identified with a

vector space over the field with p elements. The minimal generating sets are precisely

the bases of this vector space, which (as is well known) form a matroid. Then edges

of the generating hypergraph for G are obtained from this matroid by replacing each

element by a set of |Φ(G)| parallel elements.

This property does not characterise groups of prime power order.

Example 2. Consider the symmetric group S3 of order 6. Every pair of non-identity
elements except for the two elements of order 3 generates the group. So the generating
hypergraph is the basis of the matroid obtained from the uniform matroid U2,4 (whose bases
are all 2-subsets of a 4-set) by adding a loop and replacing one non-loop by a pair of parallel
elements.

Moreover, it is not true that, if we take the generating sets of minimum size as

hyperedges, then they form the bases of a matroid.

Example 3. Let the cyclic group Z6 be generated by elements a and b of orders 3 and
2 respectively. Take the direct product of two copies of this group, where the factors are
generated by {a1, b1} and {a2, b2}. Then {(a1b1, 1), (1, a2b2)} and {(a1, b2), (b1, a2)} are both
minimal generating sets for Z6×Z6. However, if we replace an element of the first generating
set by one from the second set, we do not get a generating set for the group. For example,
the group generated by {(a1b1, 1), (a1, b2)} does not contain (1, a2).

Question 2. Is it possible to describe groups whose generating hypergraph is the basis
hypergraph of a matroid?

6. Concluding Remarks

In this paper we have extended the concept of graphs defined on algebraic struc-

tures to four types of hypergraphs. There are many other graphs defined from

algebraic structures, say for example identity graphs in which two vertices x and

y are made adjacent, if x.y = e in the group G, where e is the identity element

of G. This can be extended to identity hypergraphs where E = {x1, x2, . . . , xn}
is a hyperedge if x1.x2 . . . .xn = e. The group under consideration must be
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abelian, since otherwise, the question of order in which elements are to be op-

erated comes into picture. We may impose maximality or minimality condition

on the hyperedge E. If we apply maximality condition, then the groups without

involutions and the groups having more than one involution, will have only one

hyperedge E which contains all the vertices of G. Therefore, this definition will

be interesting only for finite abelian groups having exactly one involution. For

example, if we consider the group (Z8,+8), then the hyperedges of the maximal

identity hypergraph will be {0, 1, 4, 5, 6}, {0, 2, 3, 4, 7}, {0, 1, 2, 3, 4, 6}, {0, 2, 4, 5, 6, 7}
and {0,1,2,3,5,6,7}. If we are imposing minimality condition for the hyperedge

E, then {e} will be a hyperedge, an element (which is not an involution) to-

gether with its inverse will be a hyperedge and the remaining hyperedges will

be determined by the involutions, if any, present in the group. Again, if we

consider (Z8,+8), then the hyperedges of the minimal identity hypergraph will be

{0}, {1, 7}, {2, 6}, {3, 5}, {1, 2, 5}, {3, 6, 7}, {1, 3, 4}, {4, 5, 7}, {1, 4, 5, 6} and {2, 3, 4, 7}.
We expect that there is much more to explore in this direction.
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