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Abstract: Let R be an atomic domain such that R has at least two maximal ideals.

Let Irr(R) denote the set of all irreducible elements of R and let J(R) denote the

Jacobson radical of R. Let I(R) = {Rπ | π ∈ Irr(R)\J(R)}. In this paper, with R,
we associate an undirected graph denoted by CGI(R) whose vertex set is I(R) and

distinct vertices Rπ1 and Rπ2 are adjacent if and only if Rπ1 +Rπ2 = R. The aim of

this paper is to study the interplay between some graph properties of CGI(R) and the
algebraic properties of R.
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1. Introduction

The rings considered in this paper are commutative with identity. Let R be a ring.

The work done on the comaximal graph of R is motivated by the research work done

by Sharma and Bhatwadekar in [13]. With R, in [13], Sharma and Bhatwadekar

associated an undirected graph denoted by G(R) whose vertex set is the set of all

elements of R and distinct vertices a and b are adjacent if and only if Ra + Rb = R

and they explored mainly on the coloring of G(R). In [8], Maimani et al. called the

graph studied in [13] as the comaximal graph of R and denoted it by Γ(R). Let us

denote the group of units of R by U(R), the set of all non-units of R by NU(R),

and the Jacobson radical of R by J(R). In [8], some subgraphs of Γ(R) were also

∗ Corresponding Author



2 On the comaximal graph of a non-quasi-local atomic domain

investigated. Interesting among the subgraphs studied in [8] is the subgraph of Γ(R)

(where R admits at least two maximal ideals) induced by NU(R)\J(R). Several

other researchers have done work on the comaximal graphs of rings (see for example,

[5, 10, 12]).

Unless otherwise specified, the integral domains considered in this paper are not fields.

Let R be an integral domain. Let a ∈ R\{0} and b ∈ R. We say that a is a divisor

of b in R if b = ac for some c ∈ R. Let x, y ∈ R with x 6= 0. We say that x and y are

associates in R if x = uy for some u ∈ U(R). It is not hard to show that x and y are

associates in R if and only if Rx = Ry. Let π be a non-zero non-unit of R. Recall that

π is called an atom or irreducible element if π cannot be written as the product of two

non-units of R. The integral domain R is called an atomic domain if each non-zero

non-unit of R can be written as a (finite) product of irreducible elements of R [4]. An

atomic domain is also referred to as a factorization domain [[7], see page 155]. It is

well-known that if an integral domain satisfies the ascending chain condition (a.c.c.)

on principal ideals, then it is atomic [[7], Proposition 1.1.1, page 156], and so, any

Noetherian domain is atomic. In [[4], Section 1], Grams constructed an example of

an atomic domain A such that A does not satisfy a.c.c. on principal ideals.

Let R be a ring. We denote the set of all prime ideals of R by Spec(R) and the

set of all maximal ideals of R by Max(R). For a set A, we denote the cardinality

of A by |A|. The ring R is said to be quasi-local (respectively, semi-quasi-local) if

|Max(R)| = 1 (respectively, |Max(R)| <∞). Thus R is non-quasi-local if and only if

|Max(R)| ≥ 2. A Noetherian quasi-local (respectively, semi-quasi-local) ring is called

a local (respectively, semi-local) ring. If a set A is a subset of a set B and A 6= B,

then we denote it by A ⊂ B or B ⊃ A.

Let R be an atomic domain with |Max(R)| ≥ 2. Let Irr(R) denote the set of all

irreducible elements of R. Let I(R) = {Rπ | π ∈ Irr(R)\J(R)}. In this paper, with

R, we associate an undirected graph denoted by CGI(R) whose vertex set is I(R) and

distinct vertices Rπ and Rπ′ are adjacent if and only if Rπ +Rπ′ = R. The purpose

of this paper is to discuss some results on the connectedness of CGI(R), the girth of

CGI(R), and the clique number of CGI(R).

For definitions and notations from commutative ring theory that are used and left

undefined in this paper, the reader can refer any of the following books (for example,

[1, 3, 6, 9, 11]).

The graphs considered in this paper are undirected and simple. We use only some

basic definitions and basic results from graph theory. For definitions and notations

from graph theory that are not mentioned in this paper, the reader can refer [2].

Before we give a brief account of results that are proved in this paper, it is desirable

to mention the needed notations from graph theory. Let G = (V,E) be a connected

graph. For any distinct u, v ∈ V , we denote the distance between u and v in G by

dG(u, v) or d(u, v). The diameter of G is denoted by diam(G). For any v ∈ V , the

eccentricity of v in G is denoted by eG(v) or e(v). The radius of G is denoted by

r(G). For a graph G, we denote the vertex set of G by V (G) and the edge set of G

by E(G). We denote the girth of G by gr(G), the clique number of G by ω(G), and
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the chromatic number of G by χ(G). It is well-known that ω(G) ≤ χ(G). If G does

not contain any cycle, then we define gr(G) =∞.

This paper consists of three sections including the introduction. For an atomic domain

R with |Max(R)| ≥ 2, the following results are proved in Section 2. It is proved

that CGI(R) is connected and diam(CGI(R)) ≤ 3 (Proposition 1). A necessary

and sufficient condition is determined such that diam(CGI(R)) = 1 (Theorem 1)

(respectively, diam(CGI(R)) = 2 (Proposition 2), diam(CGI(R)) = 3 (Proposition

3)). A necessary and sufficient condition is determined such that r(CGI(R)) = 1

(Proposition 4). If 2 ≤ |Max(R)| < ∞, then a necessary and sufficient condition is

provided such that r(CGI(R)) = 2 (Proposition 5). In this section, some problems

are posed for which we are not aware of their solutions.

Let R be an atomic domain with |Max(R)| ≥ 2. In Section 3, we discuss some results

on ω(CGI(R)) and gr(CGI(R)). A necessary and sufficient condition is determined

such that ω(CGI(R)) < ∞ (Theorem 2). It is shown that gr(CGI(R)) ∈ {3, 4,∞}
(Corollaries 3 and 4). If |I(R)| < ∞, then R is characterized such that |I(R)| =

|Max(R)| (Proposition 9).

Several examples are given to illustrate the results proved in this paper.

2. Some results on the connectedness of CGI(R)

Throughout this paper, unless otherwise specified, we use R to denote an atomic

domain with |Max(R)| ≥ 2. The aim of this section is to prove some results regarding

the connectedness of CGI(R). First, we state and prove some lemmas that are needed

in the proofs of main results of this section.

Lemma 1. If p ∈ Spec(R) is such that p 6⊆ J(R), then there exists π ∈ p such that
Rπ ∈ I(R).

Proof. Let a ∈ p\J(R). It is clear that a ∈ NU(R)\{0}. Since R is atomic,

a =
∏n

i=1 πi, where πi ∈ Irr(R) for each i ∈ {1, . . . , n}. By the choice of a, it follows

that πi /∈ J(R) for each i ∈ {1, . . . , n} and πj ∈ p for some j ∈ {1, . . . , n}. With

π = πj , it follows that π ∈ p and Rπ ∈ I(R).

Lemma 2. If Rπ1, Rπ2 ∈ I(R) are such that π1π2 /∈ m for some m ∈ Max(R), then
there exists π ∈ Irr(R) ∩m with Rπ ∈ I(R) and Rπ1 +Rπ = R = Rπ2 +Rπ.

Proof. As m ∈ Max(R) and π1π2 /∈ m by hypothesis, Rπ1π2 + m = R. Therefore,

there exist r ∈ R and m ∈ m such that rπ1π2 +m = 1. Hence, Rπ1π2 +Rm = R. It is

clear that m ∈ m\J(R). Since m ∈ Spec(R), the proof of Lemma 1 shows that there

exists π ∈ Irr(R) ∩ m such that π divides m in R and Rπ ∈ I(R). It follows from

Rπ1π2 +Rm = R that Rπ1π2 +Rπ = R. Therefore, Rπ1 +Rπ = R = Rπ2 +Rπ.
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Proposition 1. CGI(R) is connected and diam(CGI(R)) ≤ 3.

Proof. We use an argument found in the proof of [[8], Theorem 3.1]. Let Rπ1, Rπ2 ∈
I(R) be distinct. We can assume that Rπ1 and Rπ2 are not adjacent in CGI(R).

Hence, there exists m ∈ Max(R) such that Rπ1 + Rπ2 ⊆ m by [[1], Corollary 1.4].

We consider the following cases.

Case 1. π1π2 /∈ J(R).

Note that there exists n ∈Max(R) such that π1π2 /∈ n. Hence, we obtain from Lemma

2 that there exists π ∈ Irr(R) ∩ n with Rπ ∈ I(R) and Rπ1 +Rπ = R = Rπ2 +Rπ.

Therefore, Rπ1−Rπ−Rπ2 is a path of length two between Rπ1 and Rπ2 in CGI(R).

Case 2. π1π2 ∈ J(R).

Let i ∈ {1, 2}. As πi /∈ J(R), there exists mi ∈ Max(R) such that πi /∈ mi. As

π1π2 ∈ J(R), it follows that π1 ∈ m2 and π2 ∈ m1. Hence, it is clear that m1 6= m2.

Observe that Rπ1 + m1 = R and so, there exist s ∈ R and a1 ∈ m1 such that

sπ1 + a1 = 1. Thus Rπ1 + Ra1 = R. Note that m1 ∈ Spec(R) and a1 ∈ m1\J(R).

The proof of Lemma 1 shows that there exists π ∈ Irr(R)∩m1 such that π is a divisor

of a1 in R and Rπ ∈ I(R). It is clear that Rπ1 + Rπ = R. Hence, Rπ1 and Rπ are

adjacent in CGI(R). As π1 ∈ m2, we get that π /∈ m2. Observe that Rπ +Rπ2 ⊆ m1

and ππ2 /∈ m2. Hence, by Lemma 2, there exists π′ ∈ Irr(R) ∩ m2 with Rπ′ ∈ I(R)

such that Rπ − Rπ′ − Rπ2 is a path of length two between Rπ and Rπ2 in CGI(R).

Therefore, Rπ1 −Rπ −Rπ′ −Rπ2 is a path of length three between Rπ1 and Rπ2 in

CGI(R).

This proves that CGI(R) is connected and diam(CGI(R)) ≤ 3.

The following Lemmas 3 and 4 are needed in the proof of Theorem 1.

Lemma 3. If |Max(R)| ≥ n for some n ∈ N\{1}, then |I(R)| ≥ n.

Proof. Let {mi | i ∈ {1, 2, . . . , n}} ⊆ Max(R). Let i ∈ {1, 2, . . . , n}. Since distinct

maximal ideals of a ring are not comparable under inclusion, it follows from [[1],

Proposition 1.11(i)] that mi 6⊆
⋃

j∈Ai
mj , where Ai = {1, 2, . . . , n}\{i}. Let ai ∈

mi\(
⋃

j∈Ai
mj). Since R is an atomic domain, ai can be written as a (finite) product

of atoms of R. Note that no irreducible divisor of ai in R can belong to
⋃

j∈Ai
mj and

at least one irreducible divisor πi of ai in R such that πi ∈ mi. Thus πi /∈
⋃

j∈Ai
mj and

so, Rπi ∈ I(R). It is now evident that Rπi 6= Rπj for all distinct i, j ∈ {1, 2, . . . , n}.
From {Rπi | i ∈ {1, 2, . . . , n}} ⊆ I(R), it follows that |I(R)| ≥ n.

By Lemma 3, it follows that |I(R)| ≥ 2. As CGI(R) is connected by Proposition 1,

we get that 1 ≤ diam(CGI(R)).

Lemma 4. If diam(CGI(R)) = 1, then m is principal for each m ∈Max(R).
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Proof. Let m ∈ Max(R). As |Max(R)| ≥ 2, it follows that m 6⊆ J(R). Since

m ∈ Spec(R), it follows that there exists π ∈ Irr(R) ∩ m with Rπ ∈ I(R). Hence,

Rπ ⊆ m. Let a ∈ m\J(R). Observe that there exists an irreducible divisor π′ of a in R

such that π′ ∈ m and Rπ′ ∈ I(R). If Rπ′ 6= Rπ, then it follows from the assumption

diam(CGI(R)) = 1 that Rπ + Rπ′ = R. This is impossible, since Rπ + Rπ′ ⊆ m.

Therefore, Rπ′ = Rπ. Note that a ∈ Rπ′ = Rπ. This shows that m ⊆ Rπ∪J(R) and

so, m ⊆ Rπ. Therefore, m = Rπ is principal.

Theorem 1. For an atomic domain R with |Max(R)| ≥ 2, the following statements are
equivalent:

(1) diam(CGI(R)) = 1.

(2) R is a PID.

Proof. (1) ⇒ (2). Assume that diam(CGI(R)) = 1. Let p ∈ Spec(R), p 6= (0). We

claim that p is principal. Let m ∈ Max(R) be such that p ⊆ m. Observe that there

exists π ∈ Irr(R) such that m = Rπ by the proof of Lemma 4. Let a ∈ p\{0}. Since

a ∈ NU(R) and R is atomic, there exists an irreducible element π′ of R such that

π′ is a divisor of a in R and π′ ∈ p. From p ⊆ m = Rπ, we obtain that π′ = uπ for

some u ∈ U(R). Hence, π = u−1π′ ∈ p. Therefore, Rπ = m ⊆ p and so, p = m = Rπ

is principal. This proves that any prime ideal of R is principal and hence, we obtain

from [[6], Exercise 10, page 8] that R is a PID.

(2) ⇒ (1). Assume that R is a PID. Let π ∈ Irr(R). Note that p = Rπ ∈ Spec(R)

and p 6= (0) and so, we obtain from [[1], Example 3, page 5] that Rπ = p ∈Max(R).

As |Max(R)| ≥ 2, |I(R)| ≥ 2 by Lemma 3. Let Rπ,Rπ′ ∈ I(R) be distinct. Since

Rπ,Rπ′ are distinct members of Max(R), we obtain that Rπ+Rπ′ = R. This shows

that Rπ and Rπ′ are adjacent in CGI(R) and so, diam(CGI(R)) = 1.

In Proposition 2, we determine a necessary and sufficient condition in order that

diam(CGI(R)) = 2. We use the following lemma in its proof.

Lemma 5. If π1π2 ∈ J(R) for some distinct Rπ1, Rπ2 ∈ I(R), then there does not exist
any Rπ ∈ I(R) such that Rπ is adjacent to both Rπ1 and Rπ2 in CGI(R).

Proof. Let Rπ ∈ I(R) be such that Rπ1 and Rπ are adjacent in CGI(R). Then

Rπ1 + Rπ = R. Let m ∈ Max(R) be such that π ∈ m. Hence, π1 /∈ m. Note that

π1π2 ∈ J(R) ⊂ m. Therefore, π2 ∈ m and so, Rπ2 + Rπ ⊆ m. Hence, Rπ2 and Rπ

are not adjacent in CGI(R).

Proposition 2. With R as in the statement of Theorem 1, the following statements are
equivalent:

(1) diam(CGI(R)) = 2.
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(2) R is not a PID and π1π2 /∈ J(R) for any distinct Rπ1, Rπ2 ∈ I(R) such that Rπ1 and
Rπ2 are not adjacent in CGI(R).

Proof. (1)⇒ (2). Assume that diam(CGI(R)) = 2. By (2)⇒ (1) of Theorem 1, we

get that R is not a PID. Let Rπ1, Rπ2 ∈ I(R) be distinct. If they are not adjacent in

CGI(R), then there exists Rπ ∈ I(R) such that Rπ is adjacent to both Rπ1 and Rπ2
in CGI(R). Hence, we obtain from Lemma 5 that π1π2 /∈ J(R).

(2)⇒ (1). Assume that R is not a PID and π1π2 /∈ J(R) for any distinct Rπ1, Rπ2 ∈
I(R) such that they are not adjacent in CGI(R). It follows from (1)⇒ (2) of Theorem

1 that diam(CGI(R)) ≥ 2. Let Rπ1, Rπ2 ∈ I(R) be distinct. If they are not adjacent

in CGI(R), then π1π2 /∈ J(R) by assumption. It follows from the proof of Case(1) of

Proposition 1 that there exists a path of length two between Rπ1 and Rπ2 in CGI(R).

This proves that diam(CGI(R)) ≤ 2 and so, diam(CGI(R)) = 2.

If R is not a PID, then in the following corollary, we provide a condition on J(R)

such that the statement (2) of Proposition 2 holds.

Corollary 1. Let R be as in the statement of Theorem 1. If R is not a PID and
J(R) ∈ Spec(R), then diam(CGI(R)) = 2.

Proof. Assume that R is not a PID and J(R) ∈ Spec(R). Then for any a, b ∈
R\J(R), ab /∈ J(R). As π /∈ J(R) for any Rπ ∈ I(R), we obtain from (2) ⇒ (1) of

Proposition 2 that diam(CGI(R)) = 2.

We provide Example 1 to illustrate J(R) ∈ Spec(R) is not necessary to ensure that

diam(CGI(R)) = 2. We use the following corollary in its verification.

Corollary 2. With R as in the statement of Theorem 1, if R is not a PID and |Max(R)| =
2, then diam(CGI(R)) = 2.

Proof. Let Max(R) = {mi | i ∈ {1, 2}}. It is clear that J(R) =
⋂2

i=1 mi. Note

that V (CGI(R)) =
⋃2

i=1 Vi, where V1 = {Rπ ∈ I(R) | π ∈ m1\m2} and V2 = {Rπ′ ∈
I(R) | π′ ∈ m2\m1}. It follows from the proof of Lemma 3 that Vi 6= ∅ for each

i ∈ {1, 2}. For any Rπ ∈ V1 and Rπ′ ∈ V2, it is evident that Rπ + Rπ′ = R and so,

Rπ and Rπ′ are adjacent in CGI(R). Let Rπ1, Rπ2 ∈ I(R) be distinct. If Rπ1 and

Rπ2 are not adjacent in CGI(R), then both Rπ1 and Rπ2 must be in either V1 or V2.

Without loss of generality, we can assume that both Rπ1 and Rπ2 are in V1. Observe

that π1π2 /∈ m2 and so, π1π2 /∈ J(R). As R is not a PID by assumption, it follows

from (2)⇒ (1) of Proposition 2 that diam(CGI(R)) = 2.

For any ring R, we denote the polynomial ring in one variable X over R by R[X].

Example 1. If T = Z[X], m1 = T2 + TX, m2 = T3 + TX, and S = T\(
⋃2

i=1 mi), then
R = S−1T is a unique factorization domain (UFD), |Max(R)| = 2 and diam(CGI(R)) = 2.
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Proof. It is well-known that T is a UFD. Observe that S is a multiplicatively closed

subset (m.c. subset) of T . It follows from [[1], Proposition 3.11(iv)] and [[6], The-

orem 5] that R = S−1T is a UFD and so, R is an atomic domain. Observe that

m1,m2 ∈ Max(T ) and are distinct. As {mi | i ∈ {1, 2}} is the set of prime ide-

als of T maximal with respect to not meeting S, it follows from [[1], Proposition

3.11(iv)] that Max(R) = {S−1mi | i ∈ {1, 2}}. Hence, |Max(R)| = 2. Observe

that T2 ∈ Spec(T ) and S−1T2 ∈ Spec(R) with (0) ⊂ S−1T2 ⊂ S−1m1. Hence,

p = S−1T2 ∈ Spec(R)\Max(R). As p 6= (0), it follows from [[1], Example (3), page

5] that R is not a PID. Therefore, it follows from Corollary 2 that diam(CGI(R)) = 2.

Note that (2 +X)(3 +X) ∈
⋂2

i=1 S
−1mi = J(R) but neither 2 +X nor 3 +X belongs

to J(R). Hence, J(R) /∈ Spec(R).

In Proposition 3, we determine a necessary and sufficient condition in order that

diam(CGI(R)) = 3. We use the following lemma in its proof.

Lemma 6. Let Rπ1, Rπ2 ∈ I(R) be distinct. Then d(Rπ1, Rπ2) = 3 in CGI(R) if and
only if Rπ1 and Rπ2 are not adjacent in CGI(R) and π1π2 ∈ J(R).

Proof. Assume that d(Rπ1, Rπ2) = 3 in CGI(R). It is clear that Rπ1 and Rπ2 are

not adjacent in CGI(R). If π1π2 /∈ J(R), then we know from the proof of Case(1)

of Proposition 1 that d(Rπ1, Rπ2) = 2 in CGI(R). This is a contradiction and so,

π1π2 ∈ J(R).

Conversely, assume that Rπ1 and Rπ2 are not adjacent in CGI(R) and π1π2 ∈ J(R).

It follows from Lemma 5 that d(Rπ1, Rπ2) ≥ 3 in CGI(R). Since diam(CGI(R)) ≤ 3

by Proposition 1, we obtain that d(Rπ1, Rπ2) = 3 in CGI(R).

Proposition 3. Let R be as in the statement of Theorem 1. Then diam(CGI(R)) = 3 if
and only if there exist distinct Rπ1, Rπ2 ∈ I(R) such that Rπ1 and Rπ2 are not adjacent in
CGI(R) and π1π2 ∈ J(R).

Proof. Note that diam(CGI(R)) ≤ 3 by Proposition 1. Hence, it is clear that

diam(CGI(R)) = 3 if and only if there exist distinct Rπ1, Rπ2 ∈ I(R) such that

d(Rπ1, Rπ2) = 3 in CGI(R). Therefore, the proof of this proposition follows immedi-

ately from Lemma 6.

The following example illustrates Proposition 3.

Example 2. Let n ≥ 3 and let p3, . . . , pn be distinct odd prime numbers. If T = Z[X],
m1 = T2 + T (X − 1), m2 = T2 + TX, mj = Tpj + TX for each j ∈ {3, . . . , n}, and
S = T\(

⋃n
i=1 mi), then R = S−1T is a UFD and diam(CGI(R)) = 3.

Proof. It is clear that mi ∈ Max(T ) for each i ∈ {1, 2, 3, . . . , n} and mi 6= mj for

all distinct i, j ∈ {1, 2, 3, . . . , n}. Observe that S is a m.c. subset of T . Since T is a
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UFD, it follows as in Example 1 that R = S−1T is a UFD. Therefore, R is an atomic

domain. As distinct maximal ideals of a ring are not comparable under inclusion,

it follows from [[1], Proposition 1.11(i)] that {mi | i ∈ {1, 2, 3, . . . , n}} is the set of

prime ideals of T maximal with respect to not meeting S. Hence, it follows from

[[1], Proposition 3.11(iv)] that Max(R) = {S−1mi | i ∈ {1, 2, 3, . . . , n}}. Note that

2, X are non-associate prime elements of T and T2 ∩ S = TX ∩ S = ∅. Hence, 2, X

are non-associate prime elements of R. Observe that 2 /∈ S−1m3 and X /∈ S−1m1

and so, 2, X /∈ J(R). Hence, R2, RX ∈ I(R). It is clear that R2 + RX = S−1m2

and so, R2 and RX are not adjacent in CGI(R). Note that 2X ∈ J(R). Therefore,

diam(CGI(R)) = 3 by Proposition 3.

We do not know whether or not there exists an atomic domain R with an infinite

number of maximal ideals such that diam(CGI(R)) = 3.

We next discuss some results on r(CGI(R)). In the following proposition, we deter-

mine a necessary and sufficient condition in order that r(CGI(R)) = 1.

Proposition 4. Let R be as in the statement of Theorem 1. Then r(CGI(R)) = 1 if and
only if there exists m ∈Max(R) such that m is principal.

Proof. Assume that r(CGI(R)) = 1. Then there exists Rπ ∈ I(R) such that

e(Rπ) = 1 in CGI(R). Thus implies that Rπ is adjacent to all Rπ′ ∈ I(R)\{Rπ}
in CGI(R). Let m ∈ Max(R) be such that π ∈ m. Since Rπ is adjacent to all the

other vertices in CGI(R), it follows as shown in the proof of Lemma 4 that m = Rπ

is principal.

Conversely, if there exists m ∈ Max(R) such that m is principal, then there exists

Rπ ∈ I(R) such that m = Rπ. Let Rπ′ ∈ I(R)\{Rπ}. As π and π′ are non-associates

in R, it follows that π′ /∈ Rπ = m. Hence, Rπ +Rπ′ = R. Therefore, Rπ is adjacent

to all Rπ′ ∈ I(R)\{Rπ} in CGI(R). This proves that e(Rπ) = 1 in CGI(R) and so,

r(CGI(R)) = 1.

For a ring T, we denote T\{0} by T ∗. For any f(X) ∈ T [X]\{0}, we denote the

degree of f(X) by deg(f(X)). The following example illustrates Proposition 4.

Example 3. Let T = Q[X]. If R = Q[X2, X3], then diam(CGI(R)) = 2 and r(CGI(R)) =
1.

Proof. It follows from [[1], Corollary 7.7] that R is Noetherian. Therefore, R is an

atomic domain. Observe that R = Q + X2Q[X]. It follows from [[1], Exercise 2(i),

page 11] that U(T ) = Q∗ and so, U(R) = Q∗. Let r ∈ J(R). Then 1 − r ∈ U(R)

by [[1], Proposition 1.9]. Hence, 1− r = α for some α ∈ Q∗. Therefore, r = 1− α ∈
Q ∩ J(R) = (0) and so, J(R) = (0). We claim that X2, X3 are irreducible elements

of R. Let k ∈ {2, 3}. Let Xk = r1r2 for some r1, r2 ∈ R. Then k = deg(r1) + deg(r2).

Since k > 0, it follows that deg(ri) > 0 for some i ∈ {1, 2}. Without loss of generality,

we can assume that deg(r1) > 0. Since R does not contain any g(X) ∈ T with
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deg(g(X)) = 1, it follows that deg(r1) ≥ 2. As k ∈ {2, 3}, we get that deg(r1) = k and

so, deg(r2) = 0. Hence, r2 ∈ U(R). This shows that X2, X3 are irreducible elements

of R and it is clear that they are non-associates in R. Therefore, RX2 +RX3 is not a

principal ideal of R. Hence, R is not a PID. From J(R) = (0), it follows that Max(R)

is infinite. As R is not a PID and J(R) ∈ Spec(R), we obtain from Corollary 1 that

diam(CGI(R)) = 2.

We next show that r(CGI(R)) = 1. Let i ∈ C be such that i2 = −1. Note that

the mapping φ : T → Q(i) defined by φ(f(X)) = f(i) for any f(X) ∈ T is an

onto ring homomorphism with T (X2 + 1) as its kernal. It is not hard to verify that

T (X2 + 1)∩R = R(X2 + 1). The restriction of φ to R maps R onto Q with its kernel

equals R(X2 + 1). Therefore, R
R(X2+1)

∼= Q as rings and so, R(X2 + 1) ∈ Max(R).

Thus R admits a principal maximal ideal and so, we obtain from Proposition 4 that

r(CGI(R)) = 1.

In the following example, we provide a UFD R with |Max(R)| = 2 and

diam(CGI(R)) = 2 = r(CGI(R)).

Example 4. Let T,R be as in the statement of Example 1. Then R is a UFD, |Max(R)| =
2 and diam(CGI(R)) = 2 = r(CGI(R)).

Proof. In the notation of the statement of Example 1, T = Z[X], R = S−1T , where

S = T\(
⋃2

i=1 mi) with m1 = T2 + TX and m2 = T3 + TX. It is already noted in

the proof of Example 1 that R is a UFD and Max(R) = {S−1mi | i ∈ {1, 2}}. Thus

|Max(R)| = 2. It is verified in the proof of Example 1 that diam(CGI(R)) = 2 and

so, r(CGI(R)) ≤ 2. Note that S−1m1 = R2 + RX. As R2, RX are distinct prime

ideals of R, it follows that S−1m1 is not principal. Similarly, since S−1m2 = R3+RX,

R3, RX are distinct prime ideals of R, we get that S−1m2 is not principal. Hence by

Proposition 4, r(CGI(R)) ≥ 2 and so, r(CGI(R)) = 2.

We do not know any necessary and sufficient condition in order that r(CGI(R)) = 2.

For an atomic domain R with 2 ≤ |Max(R)| < ∞, in the following proposition, we

provide a necessary and sufficient condition in order that r(CGI(R)) = 2.

Proposition 5. For an atomic domain R with 2 ≤ |Max(R)| < ∞, r(CGI(R)) = 2 if
and only if m is not principal for each m ∈Max(R).

Proof. Assume that r(CGI(R)) = 2. Then m is not principal for each m ∈Max(R)

by Proposition 4. (For this part of the proof, we do not need the assumption that

|Max(R)| <∞.)

Conversely, assume that m is not principal for each m ∈ Max(R). Let Max(R) =

{mi | i ∈ {1, 2, . . . , n}}. It follows from Proposition 4 that r(CGI(R)) ≥ 2. We know

from the proof of Lemma 3 that there existsRπ1 ∈ I(R) such that π1 ∈ m1\(
⋃n

j=2 mj).

Let Rπ ∈ I(R) be such that Rπ 6= Rπ1. We claim that d(Rπ1, Rπ) ≤ 2 in CGI(R).

We can assume that Rπ1 and Rπ are not adjacent in CGI(R). It follows from the
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choice of π1 that π ∈ m1. As π /∈ J(R), we get that π /∈ mj for some j ∈ {2, . . . , n}.
Hence, π1π /∈ mj and so, we obtain from Lemma 2 that there exists Rπ′ ∈ I(R) such

that Rπ1 −Rπ′ −Rπ is a path of length two between Rπ1 and Rπ in CGI(R). This

shows that e(Rπ1) ≤ 2 in CGI(R) and so, r(CGI(R)) ≤ 2. Therefore, r(CGI(R)) =

2.

If diam(CGI(R)) = 2 and if no maximal ideal of R is principal, then it follows from

Proposition 4 that r(CGI(R)) ≥ 2 and so, r(CGI(R)) = 2. In the following example,

we provide such an atomic domain.

Example 5. If T = Z[X], then diam(CGI(T )) = 2 = r(CGI(T )).

Proof. It is well-known that T is a UFD and so, T is an atomic domain. As T2+TX

is not principal, it follows that T is not a PID. It follows from [[1], Exercise 4, page 11]

that J(T ) = (0) ∈ Spec(T ). Hence, Max(T ) is infinite and it follows from Corollary

1 that diam(CGI(T )) = 2. It is well-known that any maximal ideal of T is of the

form Tp+Tf(X), where p is a prime number and f(X) ∈ T is such that f(X)+pT is

irreducible modulo Z
pZ . Since Tp ∈ Spec(T ) and f(X) /∈ Tp, we get that Tp+Tf(X)

is not principal. Thus no maximal ideal of T is principal and so, r(CGI(T )) ≥ 2 and

therefore, diam(CGI(T )) = 2 = r(CGI(T )).

In the following example, we mention a UFD R with diam(CGI(R)) = 3 and

r(CGI(R)) = 2.

Example 6. If T, S,R are as in the statement of Example 2, then diam(CGI(R)) = 3
and r(CGI(R)) = 2.

Proof. In the notation of Example 2, T = Z[X], S = T\(
⋃n

i=1 mi) with m1 =

T2 + T (X − 1), m2 = T2 + TX, mj = Tpj + TX (j ∈ {3, . . . , n}), where p3, . . . , pn
are distinct odd prime numbers, and R = S−1T . It is noted in the proof of Example

2 that R is a UFD and Max(R) = {S−1mi | i ∈ {1, 2, 3, . . . , n}}. Hence, 3 ≤
|Max(R)| = n <∞. It is shown in the proof of Example 2 that diam(CGI(R)) = 3.

Note that 2, p3, . . . , pn, X,X − 1 are pairwise non-associate prime elements of T with

T2 ∩ S = TX ∩ S = T (X − 1) ∩ S = Tpj ∩ S = ∅ for each j ∈ {3, . . . , n} and so,

2, X,X − 1, pj (j ∈ {3, . . . , n}) are pairwise non-associate prime elements of R. From

2, X − 1 ∈ S−1m1, 2, X ∈ S−1m2, and pj , X ∈ S−1mj(j ∈ {3, . . . , n}), we obtain that

S−1mi is not principal for each i ∈ {1, 2, 3, . . . , n}. It now follows from Proposition 5

that r(CGI(R)) = 2.

We do not know whether there exists an atomic domain R with Max(R) is infinite

such that diam(CGI(R)) = 3 and r(CGI(R)) = 2 (respectively, diam(CGI(R)) = 3 =

r(CGI(R))).
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3. Some results on gr(CGI(R)) and ω(CGI(R))

As in Section 2, unless otherwise specified, we use R to denote an atomic domain

with |Max(R)| ≥ 2. In this section, we discuss some results on gr(CGI(R)) and

ω(CGI(R)). In Theorem 2, we determine a necessary and sufficient condition in order

that ω(CGI(R)) <∞. We use the following proposition in its proof.

Proposition 6. Let n ∈ N\{1}. If {mi | i ∈ {1, 2, . . . , n}} ⊆ Max(R), then there exists
Rπi ∈ I(R) with πi ∈ mi for each i ∈ {1, 2, . . . , n} such that the subgraph of CGI(R) induced
by {Rπi | i ∈ {1, 2, . . . , n}} is a clique.

Proof. We prove this proposition using induction on n. Suppose that n = 2. As

m1 + m2 = R, there exist a1 ∈ m1 and a2 ∈ m2 such that Ra1 + Ra2 = R. Let

i ∈ {1, 2} and let πi ∈ Irr(R) ∩ mi be a divisor of ai in R. Then it is clear that

Rπ1, Rπ2 ∈ I(R) and Rπ1 + Rπ2 = R and so, the subgraph of CGI(R) induced by

{Rπ1, Rπ2} is a clique. Let n ≥ 3 and assume by induction that this proposition

is true for n − 1. Hence, by induction hypothesis, there exists Rπi ∈ I(R) with

πi ∈ mi for each i ∈ {1, 2, . . . , n − 1} such that the subgraph of CGI(R) induced by

{Rπi | i ∈ {1, 2, . . . , n− 1}} is a clique. We need to consider the following cases.

Case 1.
∏n−1

i=1 πi /∈ mn.

Since mn ∈Max(R), it follows that R(
∏n−1

i=1 πi) + mn = R. Hence, there exist r ∈ R
and mn ∈ mn such that r(

∏n−1
i=1 πi) + mn = 1. Therefore, R(

∏n−1
i=1 πi) + Rmn = R.

As R is atomic and mn ∈ Spec(R), it follows that there exists πn ∈ Irr(R)∩mn such

that πn is a divisor of mn in R and R(
∏n−1

i=1 πi) +Rπn = R. Note that Rπn ∈ I(R).

Thus for each i ∈ {1, 2, . . . , n}, there exists Rπi ∈ I(R) with πi ∈ mi such that the

subgraph of CGI(R) induced by {Rπi | i ∈ {1, 2, . . . , n}} is a clique.

Case 2.
∏n−1

i=1 πi ∈ mn.

Since Rπs +Rπt = R for all distinct s, t ∈ {1, 2, . . . , n−1}, it follows that there exists

a unique s ∈ {1, 2, . . . , n− 1} such that πs ∈ mn. Let us denote {1, 2, . . . , n− 1}\{s}
by A and the element

∏
i∈A πi by a. Observe that a /∈ mn, ms 6= mn, and so, it

follows that msa 6⊆ mn. Therefore, msa + mn = R and so, there exist elements

ys ∈ ms and yn ∈ mn such that ysa + yn = 1. Hence, R(ysa) + Ryn = R. Since R

is atomic and ms,mn ∈ Spec(R), it follows that there exist π′s ∈ Irr(R) ∩ ms and

πn ∈ Irr(R)∩mn such that π′s is a divisor of ys in R and πn is a divisor of yn in R and

R(π′sa) +Rπn = R. Observe that Rπ′s, Rπn ∈ I(R). Note that aπn /∈ ms. Therefore,

R(aπn) + ms = R. Hence, there exist r ∈ R and ms ∈ ms such that raπn +ms = 1.

Since R is atomic and ms ∈ Spec(R), there exists π′′s ∈ Irr(R) ∩ ms such that π′′s
divides ms in R and R(aπn) + Rπ′′s = R. It is clear that Rπ′′s ∈ I(R). Now, the

elements {πi | i ∈ {1, 2, . . . , n−1}\{s}}∪{π′′s }∪{πn} ⊆ Irr(R) are such that πi ∈ mi

for each i ∈ {1, 2, . . . , n − 1}\{s}, π′′s ∈ ms, πn ∈ mn, and the subgraph of CGI(R)

induced by {Rπi | i ∈ A} ∪ {Rπ′′s , Rπn} is a clique, where A = {1, 2, . . . , n− 1}\{s}.
This completes the proof.
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Theorem 2. For an atomic domain R with |Max(R)| ≥ 2, ω(CGI(R)) <∞ if and only
if |Max(R)| <∞. Moreover, if |Max(R)| <∞, then ω(CGI(R)) = χ(CGI(R)) = |Max(R)|.

Proof. Assume that ω(CGI(R)) < ∞. Let ω(CGI(R)) = t. We assert that

|Max(R)| ≤ t. Suppose that |Max(R)| ≥ t + 1. Then Proposition 6 implies that

ω(CGI(R)) ≥ t + 1. This is a contradiction. Therefore, |Max(R)| ≤ t and so,

|Max(R)| <∞.

Conversely, assume that |Max(R)| < ∞. Let |Max(R)| = n and let Max(R) =

{mi | i ∈ {1, 2, . . . , n}}. It is clear that n ≥ 2. Let i ∈ {1, 2, . . . , n}. We know

from the proof of Lemma 3 that there exists πi ∈ Irr(R) ∩ (mi\(
⋃

j∈Ai
mj)), where

Ai = {1, 2, . . . , n}\{i}. It is clear from the choice of the elements π1, π2, . . . , πn that

Rπi + Rπj = R for all distinct i, j ∈ {1, 2, . . . , n}. Hence, the subgraph of CGI(R)

induced by {Rπi | i ∈ {1, 2, . . . , n}} is a clique. Therefore, ω(CGI(R)) ≥ n. We next

verify that χ(CGI(R)) ≤ n. Let {c1, c2, . . . , cn} be a set of n distinct colors. We now

color the vertices of CGI(R) as follows: Let Rπ ∈ V (CGI(R)) = I(R). It is clear that

NU(R) =
⋃n

i=1 mi. If i ∈ {1, 2, . . . , n} is the least positive integer such that π ∈ mi,

then color Rπ using the color ci. Let Rπ,Rπ′ ∈ I(R) be such that they are adjacent

in CGI(R). Then Rπ +Rπ′ = R. Let i ∈ {1, 2, . . . , n} be least such that π ∈ mi and

let j ∈ {1, 2, . . . , n} be least such that π′ ∈ mj . As Rπ + Rπ′ = R, we obtain that

mi 6= mj and so, i 6= j. In the above assignment of colors to the vertices of CGI(R),

Rπ receives the color ci and Rπ′ receives the color cj . As i 6= j, it follows that ci 6= cj .

This shows that the above assignment of colors to the vertices of CGI(R) is a proper

vertex coloring of CGI(R). Thus the vertices of CGI(R) can be properly colored

using a set of n distinct colors. So, we obtain that n ≤ ω(CGI(R)) ≤ χ(CGI(R)) ≤ n.

Hence, we get that ω(CGI(R)) = χ(CGI(R)) = n = |Max(R)|.
If |Max(R)| < ∞, then it is already verified in the previous paragraph that

ω(CGI(R)) = χ(CGI(R)) = |Max(R)|.

If T = Z[X], then it is already noted in the proof of Example 5 that Max(T ) is infinite.

Hence, ω(CGI(T )) is not finite by Theorem 2. Let n,R be as in the statement of

Example 2. It is shown in the proof of Example 2 that R is a UFD and |Max(R)| = n.

Therefore, ω(CGI(R)) = χ(CGI(R)) = n by the moreover part of Theorem 2.

If |Max(R)| 6<∞, then we do not know whether CGI(R) contains an infinite clique.

In the following proposition, we provide a condition under which CGI(R) contains an

infinite clique.

Proposition 7. If J(R) ∈ Spec(R), then CGI(R) admits an infinite clique.

Proof. Assume that J(R) ∈ Spec(R). It is clear that Max(R) is infinite. Let n ≥ 2.

Let {mi | i ∈ {1, 2, . . . , n}} ⊂ Max(R). Then we know from Proposition 6 that for

each i ∈ {1, 2, . . . , n}, there exists Rπi ∈ I(R) with πi ∈ mi such that the subgraph

of CGI(R) induced by {Rπi | i ∈ {1, 2, . . . , n}} is a clique. (For this part of the proof,

we do not need the assumption that J(R) ∈ Spec(R).) Since J(R) ∈ Spec(R) by
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assumption, it follows that
∏n

i=1 πi /∈ J(R). Hence, there exists mn+1 ∈ Max(R)

such that
∏n

i=1 πi /∈ mn+1. It is clear that mn+1 /∈ {mi | i ∈ {1, 2, . . . , n}}. Observe

that R(
∏n

i=1 πi) + mn+1 = R. Hence, there exist r ∈ R and an+1 ∈ mn+1 such that

r(
∏n

i=1 πi) + an+1 = 1. Since R is atomic, there exists πn+1 ∈ Irr(R) ∩ mn+1 such

that πn+1 is a divisor of an+1 in R. It is clear that R(
∏n

i=1 πi) +Rπn+1 = R and so,

Rπn+1 ∈ I(R). Note that Rπi + Rπn+1 = R for each i ∈ {1, 2, . . . , n}. Therefore,

the subgraph of CGI(R) induced by {Rπi | i ∈ {1, 2, . . . , n + 1}} is a clique. The

above procedure can be repeated thereby yielding for each j ∈ N, mj ∈Max(R) and

Rπj ∈ I(R) with πj ∈ mj such that the subgraph of CGI(R) induced by {Rπj | j ∈ N}
is an infinite clique.

We next discuss some results on gr(CGI(R)).

Corollary 3. If |Max(R)| ≥ 3, then gr(CGI(R)) = 3.

Proof. Assume that |Max(R)| ≥ 3. Then Proposition 6 implies that ω(CGI(R)) ≥
3. Therefore, gr(CGI(R)) = 3.

If |Max(R)| = 2, then with the help of the following proposition, we show in Corollary

4 that gr(CGI(R)) ∈ {4,∞}. In the following proposition, we determine a necessary

and sufficient condition in order that CGI(R) is a bipartite graph.

Proposition 8. With R as in the statement of Theorem 1, the following statements are
equivalent:

(1) CGI(R) is a bipartite graph.

(2) |Max(R)| = 2.

Moreover, if |Max(R)| = 2, then CGI(R) is a complete bipartite graph.

Proof. (1) ⇒ (2). Assume that CGI(R) is a bipartite graph. If |Max(R)| ≥ 3,

then we know from Corollary 3 that CGI(R) contains a cycle of length three. This is

impossible by [[2], Theorem 1.5.10]. Therefore, |Max(R)| = 2.

(2) ⇒ (1). Assume that |Max(R)| = 2. Let Max(R) = {mi | i ∈ {1, 2}}. It is

already noted in the proof of Corollary 2 that V (CGI(R)) =
⋃2

i=1 Vi, where V1 =

{Rπ ∈ I(R) | π ∈ m1\m2} and V2 = {Rπ′ ∈ I(R) | π′ ∈ m2\m1} and Vi 6= ∅ for each

i ∈ {1, 2}. It is clear that V1 ∩ V2 = ∅. Moreover, it is noted in the proof of Corollary

2 that no two vertices of Vi are adjacent in CGI(R) for each i ∈ {1, 2} and for any

Rπ ∈ V1, Rπ′ ∈ V2, Rπ and Rπ′ are adjacent in CGI(R). This proves that CGI(R) is

a complete bipartite graph with vertex partition V1 and V2.

If |Max(R)| = 2, then it is already verified in the previous paragraph that CGI(R) is

a complete bipartite graph.
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Corollary 4. If |Max(R)| = 2, then gr(CGI(R)) ∈ {4,∞}. Moreover, gr(CGI(R)) =∞
if and only if at least one maximal ideal of R is principal.

Proof. Assume that |Max(R)| = 2. We know from the moreover part of Proposition

8 that CGI(R) is a complete bipartite graph. Hence, gr(CGI(R)) ∈ {4,∞}.
For any complete bipartite graph G, gr(G) = ∞ if and only if r(G) = 1. Hence, it

follows that gr(CGI(R)) =∞ if and only if r(CGI(R)) = 1. Therefore, by Proposition

4, we obtain that gr(CGI(R)) = ∞ if and only if at least one maximal ideal of R is

principal.

The following example illustrates Proposition 8 and Corollary 4.

Example 7. (1) Let T,R be as in Example 1. Then CGI(R) is a complete bipartite
graph and gr(CGI(R)) = 4.

(2) Let T,R be as in the statement of Example 3. Let S = R\(
⋃2

i=1 mi), where m1 =
RX2 +RX3 and m2 = R(X2 + 1). Let R1 = S−1R. Then R1 is a Noetherian domain
and gr(CGI(R1)) =∞.

Proof. (1) It is already noted in the proof of Example 1 that R is a UFD and

|Max(R)| = 2. Hence, CGI(R) is a complete bipartite graph by the moreover

part of Proposition 8. It is shown in the proof of Example 4 that both the

maximal ideals of R are not principal. Hence, we obtain from Corollary 4 that

gr(CGI(R)) = 4.

(2) In the notation of the statement of Example 3, T = Q[X] and R = Q[X2, X3].

Note that R = Q+X2Q[X] and it is not hard to verify that X2Q[X] = RX2 +

RX3. Since R
X2Q[X]

∼= Q as rings, it follows that m1 = RX2 +RX3 ∈Max(R).

It is already shown in the proof of Example 3 that m2 = R(X2 + 1) ∈Max(R).

Hence, S is a m.c. subset of R. As R is Noetherian by [[1], Corollary 7.7], it

follows from [[1], Proposition 7.3] that R1 = S−1R is Noetherian. Hence, R1 is

an atomic domain. It is clear that {mi | i ∈ {1, 2}} is the set of prime ideals

of R maximal with respect to not meeting S. Therefore, it follows from [[1],

Proposition 3.11(iv)] that Max(R1) = {S−1mi | i ∈ {1, 2}}. Thus |Max(R1)| =
2. Since m2 is a principal ideal of R, it follows that S−1m2 is a principal ideal

of R1. Hence, we obtain from Corollary 4 that gr(CGI(R1)) =∞.

If CGI(R) is a finite graph, then I(R) is finite. It follows from Lemma 3 that

|Max(R)| ≤ |I(R)|. With the assumption |I(R)| < ∞, in the following proposition,

we characterize R such that |Max(R)| = |I(R)|.

Proposition 9. For an atomic domain R with |Max(R)| ≥ 2 and |I(R)| < ∞,
|Max(R)| = |I(R)| if and only if R is a semi-local PID.
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Proof. Assume that |Max(R)| = |I(R)|. Suppose that |I(R)| = n. Let Max(R) =

{mi | i ∈ {1, 2, . . . , n}}. For each i ∈ {1, 2, . . . , n}, we know from the proof of Lemma

3 that there exists πi ∈ Irr(R) ∩ (mi\(
⋃

j∈Ai
mj)), where Ai = {1, 2, . . . , n}\{i}.

Note that for all distinct t, s ∈ {1, 2, . . . , n}, Rπt + Rπs = R. As |I(R)| = n

and Rπ1, Rπ2 . . . , Rπn ∈ I(R) are distinct, it follows that I(R) = {Rπi | i ∈
{1, 2, . . . , n}}. From Rπi + Rπj = R for all distinct i, j ∈ {1, 2, . . . , n}, it follows

that diam(CGI(R)) = 1. Therefore, we obtain from (1) ⇒ (2) of Theorem 1 that R

is a PID. Since |Max(R)| = n, it is clear that R is semi-local.

Conversely, assume that R is a semi-local PID. Let |Max(R)| = n and let Max(R) =

{mi | i ∈ {1, 2, . . . , n}}. We know from (2)⇒ (1) of Theorem 1 that diam(CGI(R)) =

1. Note that ω(CGI(R)) = |Max(R)| = n by the moreover part of Theorem 2.

Therefore, CGI(R) is a complete graph with n vertices. As V (CGI(R)) = I(R), it

follows that |Max(R)| = |I(R)|.
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