Research Article

$\gamma\text{-total}$ dominating graphs of lollipop, umbrella, and coconut graphs

Pannawat Eakawinrujee^{1,2, \dagger} and Nantapath Trakultraipruk^{2,*}

¹Thammasat Secondary School, Faculty of Learning Sciences and Education, Thammasat University, Pathum Thani 12121, Thailand [†]p.eakawinrujee@gmail.com

²Department of Mathematics and Statistics, Faculty of Science and Technology, Thammasat University, Pathum Thani 12120, Thailand *n.trakultraipruk@yahoo.com

> Received: 29 July 2022; Accepted: 5 April 2024 Published Online: 28 April 2024

Abstract: A total dominating set of a graph G is a set $D \subseteq V(G)$ such that every vertex of G is adjacent to some vertex in D. The total domination number $\gamma_t(G)$ of G is the minimum cardinality of a total dominating set. The γ -total dominating graph $TD_{\gamma}(G)$ of G is the graph whose vertices are minimum total dominating sets, and two minimum total dominating sets of $TD_{\gamma}(G)$ are adjacent if they differ by only one vertex. In this paper, we determine the total domination numbers of lollipop graphs, umbrella graphs, and coconut graphs, and especially their γ -total dominating graphs.

Keywords: total domination number, total dominating graph, gamma graph

AMS Subject classification: 05C69.

1. Introduction

Let G be a graph whose vertex set is V(G) and edge set is E(G). For a vertex $v \in V(G)$, the open and closed neighborhoods of v are $N(v) = \{u \in V(G) : uv \in E(G)\}$ and $N[v] = N(v) \cup \{v\}$, respectively. For a set $D \subseteq V(G)$, the open and closed neighborhoods of D are $N(D) = \bigcup_{v \in D} N(v)$ and $N[D] = N(D) \cup D$, respectively. We write G[D] for the subgraph of G induced by D.

A dominating set of G is a set $D \subseteq V(G)$ with $N(v) \cap D \neq \emptyset$ for each $v \in V(G) \setminus D$. For a review of domination in graphs, see [12, 13]. The gamma graph

^{*} Corresponding Author

^{© 2024} Azarbaijan Shahid Madani University

 $\gamma \cdot G$ of G, defined by Subramanian and Sridharan [22], is the graph where its vertices are minimum dominating sets, and two vertices D_1 and D_2 of $\gamma \cdot G$ are adjacent if $D_2 = (D_1 \setminus \{u\}) \cup \{v\}$ for some $u \in D_1$ and $v \notin D_1$. For additional results on $\gamma \cdot G$, see [15, 20, 21]. Fricke *et al.* [9] also defined the gamma graph $G(\gamma)$ of G to be the graph where $V(G(\gamma)) = V(\gamma \cdot G)$, and two vertices D_1 and D_2 of $G(\gamma)$ are adjacent if $D_2 = (D_1 \setminus \{u\}) \cup \{v\}$ for some $u \in D_1, v \notin D_1$, and $uv \in E(G)$. Further results concerning $G(\gamma)$ can be found in [2, 4]. For the graphs using the other types of domination with the same adjacency condition as $\gamma \cdot G$ and $G(\gamma)$, see [5–7, 18, 19, 24] and [17], respectively.

Haas and Seyffarth [10] defined the k-dominating graph $D_k(G)$ of G, as the graph whose vertices are dominating sets with cardinality at most k, and two vertices of $D_k(G)$ are adjacent if they differ by either adding or deleting a single vertex. For more details, see [11, 16, 23]. The k-total dominating graph [1] and the k-independent dominating graph [8] are defined similarly using total dominating sets and independent dominating sets, respectively.

A set $D \subseteq V(G)$ is a total dominating set of G if $N(v) \cap D \neq \emptyset$ for each $v \in V(G)$. The minimum cardinality of a total dominating set of G is called the total domination number $\gamma_t(G)$. A total dominating set D is a $\gamma_t(G)$ -set if $|D| = \gamma_t(G)$. The total domination in graphs was introduced by Cockayne et al. [3]. The γ -total dominating graph $TD_{\gamma}(G)$ of G, defined by Wongsriva and Trakultraipruk [24], is the graph whose vertices are $\gamma_t(G)$ -sets, and two $\gamma_t(G)$ -sets D_1 and D_2 of $TD_{\gamma}(G)$ are adjacent if $D_2 = (D_1 \setminus \{u\}) \cup \{v\}$ for some $u \in D_1$ and $v \notin D_1$. In this paper, we determine the total domination numbers of lollipop, umbrella, and coconut graphs in Section 3. Then we study their γ -total dominating graphs in Sections 4 and 5.

2. Preliminary Results

In this section, we recall some definitions and results, which are used in our main results.

A path and a complete graph with k vertices are denoted by P_k and K_k , respectively. If v is adjacent to a vertex of degree one, then v is a support vertex. We first provide a straightforward observation.

Observation 1. Each support vertex of a graph G is in every $\gamma_t(G)$ -set.

The total domination numbers of paths established by Henning [14] are shown in the following lemma.

Lemma 1 ([14]). Let $k \ge 2$ be an integer. Then $\gamma_t(P_k) = \lfloor \frac{k+2}{4} \rfloor + \lfloor \frac{k+3}{4} \rfloor$.

The Cartesian product of graphs G and H, denoted by $G\Box H$, is the graph with $V(G\Box H) = V(G) \times V(H)$ where two vertices (u_1, v_1) and (u_2, v_2) of $V(G\Box H)$ are

adjacent if either $u_1 = u_2$ and $v_1v_2 \in E(H)$, or $v_1 = v_2$ and $u_1u_2 \in E(G)$.

In [24], the authors determined the γ -total dominating graphs of paths as listed below.

Theorem 2 ([24]). Let $k \ge 1$ be an integer. Then $TD_{\gamma}(P_{4k}) \cong P_1$.

Theorem 3 ([24]). Let $k \ge 0$ be an integer. Then $TD_{\gamma}(P_{4k+3}) \cong P_{k+2}$.

Theorem 4 ([24]). Let $k \ge 0$ be an integer. Then $TD_{\gamma}(P_{4k+2}) \cong P_{k+1} \square P_{k+1}$.

Theorem 5 ([24]). Let $k \ge 1$ be an integer. Then $TD_{\gamma}(P_{4k+1}) \cong P_k$.

We denote $P_k : v_1 v_2 v_3 \cdots v_k$ to be the path. From the proofs of Theorems 3, 4, and 5, we can get Lemmas 2, 3, and 4 shown below, respectively.

Lemma 2. Let $k \ge 0$ be an integer and $TD_{\gamma}(P_{4k+3}) \cong P_{k+2} \cong D_1D_2\cdots D_{k+2}$, where D_x is a $\gamma_t(P_{4k+3})$ -set for all $x \in \{1, 2, \ldots, k+2\}$.

- (1) If $v_{4k+3} \in D_x$, then either x = 1 or x = k + 2.
- (2) If D_{k+2} contains the vertex v_{4k+3} , then $D_{k+2} = (D_{k+1} \setminus \{v_{4k+1}\}) \cup \{v_{4k+3}\}.$

We consider the $\gamma_t(P_{4k+2})$ -sets of $TD_{\gamma}(P_{4k+2}) \cong P_{k+1} \square P_{k+1}$ as the entries in a matrix.

Lemma 3. Let $k \ge 0$ be an integer and $D_{x,y}$ the $\gamma_t(P_{4k+2})$ -set at the position (x, y) (row x and column y) of $TD_{\gamma}(P_{4k+2}) \cong P_{k+1} \square P_{k+1}$ for all $x, y \in \{1, 2, \ldots, k+1\}$.

- (1) If $v_{4k+2} \in D_{x,y}$, then either x = 1, x = k+1, y = 1, or y = k+1.
- (2) If $D_{x,k+1}$ contains the vertex v_{4k+2} , then
 - (2.1) $D_{x,k+1} = (D_{x,k} \setminus \{v_{4k}\}) \cup \{v_{4k+2}\}$ for each $x \in \{1, 2, \dots, k+1\}$,
 - (2.2) $D_{k+1,k+1} = \{v_{4i+2}, v_{4i+3} : 0 \le i \le k-1\} \cup \{v_{4k+1}, v_{4k+2}\}, and$
 - (2.3) $D_{k+1,1}, D_{k+1,2}, \ldots, D_{k+1,k+1}$ are the only $\gamma_t(P_{4k+2})$ -sets containing the vertex v_{4k-1} .

Lemma 4. Let $k \ge 1$ be an integer. Then each $\gamma_t(P_{4k+1})$ -set does not contain the vertex v_{4k+1} .

3. Total Domination Numbers of Lollipop, Umbrella, and Coconut Graphs

The definitions of a lollipop graph, a umbrella graph, and a coconut graph are appeared in this section. In particular, the total domination numbers of those graphs are determined.

Let p and q be positive integers. A lollipop graph $L_{p,q}$ is obtained by affixing an endpoint of a path P_p to a vertex of a complete graph K_q . Throughout this paper, we let the vertices of $L_{p,q}$ be as shown in Figure 1.

Figure 1. The lollipop graph $L_{p,q}$

An umbrella graph $U_{p,q}$ is obtained by appending an endpoint of a path P_p to the central vertex of a fan graph $K_1 \vee P_{q-1}$. A coconut graph $C_{p,q}$ is obtained by appending an endpoint of a path P_p to the support vertex of a complete bipartite graph $K_{1,q-1}$. We let the vertices of $U_{p,q}$ and $C_{p,q}$ be as shown in Figures 2 and 3, respectively.

Figure 2. The umbrella graph $U_{p,q}$

Note that $L_{p,1} \cong U_{p,1} \cong C_{p,1} \cong P_{p+1}$. By Lemma 1, $\gamma_t(L_{p,1}) = \gamma_t(U_{p,1}) = \gamma_t(C_{p,1}) = \lfloor \frac{p+3}{4} \rfloor + \lfloor \frac{p+4}{4} \rfloor$. For $q \ge 2$, we obtain the following theorem.

Theorem 6. Let $p \ge 1$ and $q \ge 2$ be integers. Then $\gamma_t(L_{p,q}) = \gamma_t(U_{p,q}) = \gamma_t(C_{p,q}) = \lfloor \frac{p+4}{4} \rfloor + \lfloor \frac{p+5}{4} \rfloor$.

Proof. If q = 2, then $L_{p,q} \cong P_{p+2}$, so $\gamma_t(L_{p,2}) = \gamma_t(P_{p+2}) = \lfloor \frac{p+4}{4} \rfloor + \lfloor \frac{p+5}{4} \rfloor$ by Lemma 1. Let $q \ge 3$ and P' be the graph obtained from $L_{p,q}$ by deleting the vertices u_3, u_4, \ldots, u_q . Clearly, $P' \cong P_{p+2}$ and then $\gamma_t(P') = \lfloor \frac{p+4}{4} \rfloor + \lfloor \frac{p+5}{4} \rfloor$. Let D be a

Figure 3. The coconut graph $C_{p,q}$

 $\gamma_t(L_{p,q})$ -set. We show that $|D| \geq \gamma_t(P')$. If $u_1 \in D$, then to dominate u_1 , D contains either v_p or, without loss of generality, u_2 . In both cases, D is a total dominating set of P', and thus $|D| \geq \gamma_t(P')$. On the other hand, we assume that $u_1 \notin D$. Since Dis a $\gamma_t(L_{p,q})$ -set, without loss of generality, D contain exactly two vertices u_2 and u_3 from $\{u_2, u_3, \ldots, u_q\}$. Then $D' = (D \setminus \{u_3\}) \cup \{u_1\}$ is a total dominating set of P', and hence $|D| = |D'| \geq \gamma_t(P')$. Therefore, $\gamma_t(L_{p,q}) = |D| \geq \gamma_t(P')$. Note that $U_{p,q}$ and $C_{p,q}$ are spanning subgraphs of $L_{p,q}$, so $\gamma_t(U_{p,q}) \geq \gamma_t(L_{p,q})$ and $\gamma_t(C_{p,q}) \geq \gamma_t(L_{p,q})$.

We next determine the upper bounds of $\gamma_t(L_{p,q}), \gamma_t(U_{p,q}), \text{ and } \gamma_t(C_{p,q})$. If $p \equiv 0, 1, 2 \pmod{4}$, let $D = \{v_i, v_{i+1} : i \equiv 2 \pmod{4}, i < p\} \cup \{v_p, u_1\}$; otherwise, let $D = \{v_i, v_{i+1} : i \equiv 2 \pmod{4}\} \cup \{u_1\}$. Then D is a total dominating set of $L_{p,q}$ with $|D| = \lfloor \frac{p+4}{4} \rfloor + \lfloor \frac{p+5}{4} \rfloor$, and hence $\gamma_t(L_{p,q}) \leq \lfloor \frac{p+4}{4} \rfloor + \lfloor \frac{p+5}{4} \rfloor$. Likewise, $\gamma_t(U_{p,q}) \leq \lfloor \frac{p+4}{4} \rfloor + \lfloor \frac{p+5}{4} \rfloor$ and $\gamma_t(C_{p,q}) \leq \lfloor \frac{p+4}{4} \rfloor$. The theorem follows. \Box

4. γ -Total Dominating Graphs of Lollipop Graphs

In this section, we study the γ -total dominating graph of a lollipop graph $L_{p,q}$. If q = 1, then $L_{p,q} \cong P_{p+1}$. Theorems 2 - 5 provide the results on $TD_{\gamma}(L_{p,1}) \cong TD_{\gamma}(P_{p+1})$. For $q \geq 2$, we divide the value of p into four cases. If p = 4k + 2, then we get the following theorem.

Theorem 7. Let $k \ge 0$ and $q \ge 2$ be integers. Then $TD_{\gamma}(L_{4k+2,q}) \cong P_1$.

Proof. By Theorem 6, we get $\gamma_t(L_{4k+2,q}) = 2k+2$. Then there is exactly one $\gamma_t(L_{4k+2,q})$ -set, which is $D = \{v_{4i+2}, v_{4i+3} : 0 \le i \le k-1\} \cup \{v_{4k+2}, u_1\}$.

Lemma 5. Let $k \ge 0$ and $q \ge 2$ be integers. Then each $\gamma_t(L_{4k+1,q})$ -set contains the vertex u_1 .

Proof. For q = 2, the vertex u_1 is a support vertex of $L_{4k+1,2} \cong P_{4k+3}$, and hence the lemma follows by Observation 1. Let $q \ge 3$ and suppose, contrary to the statement, that there exists a $\gamma_t(L_{4k+1,q})$ -set D that does not contain u_1 . Thus, D contains exactly two vertices u_i and u_j from $\{u_2, u_3, \ldots, u_q\}$. Let $S = \{v : v \notin N(\{u_i, u_j\})\}$, and then the induced subgraph $L_{4k+1,q}[S]$ is P_{4k+1} . By Theorem 6, |D| = 2k+2 and

thus the 2k remaining vertices of D must dominate all vertices in $L_{4k+1,q}[S]$, which is impossible.

Theorem 8. Let $k \ge 0$ and $q \ge 2$ be integers. Then $TD_{\gamma}(L_{4k+1,q}) \cong L_{k,q}$.

Proof. For each $i \in \{2, 3, \ldots, q\}$, let P^i be the subgraph of $L_{4k+1,q}$ induced by $\{v_1, v_2, \ldots, v_{4k+1}, u_1, u_i\}$, and then $P^i \cong P_{4k+3}$. By Theorem 3, for each $i \in \{2, 3, \ldots, q\}$, $TD_{\gamma}(P^i) \cong P_{k+2} \cong D_1^i D_2^i \cdots D_{k+2}^i$, where D_x^i is a $\gamma_t(P^i)$ -set for each $x \in \{1, 2, \ldots, k+2\}$, so by Observation 1, $u_1 \in D_x^i$. By Lemma 2(1), without loss of generality, we may assume that D_{k+2}^i contains u_i . If $x \neq k+2$, then $D_x^i = D_x^j$ for all $i, j \in \{2, 3, \ldots, q\}$, so we let $D_x = D_x^i$. Next, we claim that D_{k+2}^i and D_{k+2}^j are adjacent for all $i \neq j$. By Lemma 2(2), we get $D_{k+2}^i = (D_{k+1} \setminus \{v_{4k+1}\}) \cup \{u_i\} = [(D_{k+1} \setminus \{v_{4k+1}\}) \cup \{u_j\}] \setminus \{u_j\} \cup \{u_i\} = (D_{k+2}^j \setminus \{u_j\}) \cup \{u_i\}$, so the claim holds.

Note that $\gamma_t(P^i) = 2k + 2 = \gamma_t(L_{4k+1,q})$, and every $\gamma_t(P^i)$ -set is also a $\gamma_t(L_{4k+1,q})$ -set for each $i \in \{2, 3, \ldots, q\}$. Hence, $D_1, \ldots, D_{k+1}, D_{k+2}^2, \ldots, D_{k+2}^q$ are $\gamma_t(L_{4k+1,q})$ -sets containing u_1 . By Lemma 5, each $\gamma_t(L_{4k+1,q})$ -set contains u_1 , so it is a $\gamma_t(P^i)$ -set for some $i \in \{2, 3, \ldots, q\}$. Therefore, $D_1, \ldots, D_{k+1}, D_{k+2}^2, \ldots, D_{k+2}^q$ are the only $\gamma_t(L_{4k+1,q})$ -sets, and in addition they form the lollipop graph $L_{k,q}$ (see Figure 4).

Figure 4. The γ -total dominating graph of $L_{4k+1,q}$

The Johnson graph $J_{p,q}$ is the graph whose vertices correspond to the q-element subsets of $\{1, 2, \ldots, p\}$, where two vertices are adjacent when they meet in a (q-1)-element set. Clearly, $J_{p,q}$ has $\binom{p}{q}$ vertices. In Figure 5, we show the Johnson graph $J_{4,2}$.

Figure 5. The Johnson graph $J_{4,2}$

Note that $\gamma_t(K_p) = 2$. It follows from the definition that the γ -total domination graph of K_p is precisely the Johnson graph $J_{p,2}$, as stated the following theorem.

Theorem 9. Let $p \ge 2$ be an integer. Then $TD_{\gamma}(K_p) \cong J_{p,2}$.

Let $L_{p,q}^r = L_{p,q} \Box P_r$, where the vertices of $L_{p,q}^r$ are labeled as shown in Figure 6. For convenience, we write q-1 vertices $v_{r,p+2}, v_{r,p+3}, \ldots, v_{r,p+q}$ of $L_{p,q}^r$ for $u_1, u_2, \ldots, u_{q-1}$, respectively. Let $JL_{p,q}^r$ be the graph obtained from $L_{p,q}^r$ by adding the vertices $u_q, u_{q+1}, \ldots, u_{\binom{q}{2}}$ such that $u_1, u_2, \ldots, u_{q-1}, u_q, u_{q+1}, \ldots, u_{\binom{q}{2}}$ form the Johnson graph $J_{q,2}$. We illustrate the graph $JL_{5,4}^4$ in Figure 7.

Figure 6. The graph $L_{p,q}^r$

		•		•	•		$>\!\!\!>$		
	$v_{1,1}$	$v_{1,2}$	$v_{1,3}$	$v_{1,4}$	$v_{1,5}$	$v_{1,6}$	$v_{1,7}$	$v_{1,8}$	$v_{1,9}$
4							\sim		L
	$v_{2,1}$	$v_{2,2}$	$v_{2,3}$	$v_{2,4}$	$v_{2,5}$	$v_{2,6}$	$v_{2,7}$	$v_{2,8}$	$v_{2,9}$
•	$v_{3,1}$	$v_{3,2}$	$v_{3,3}$	$v_{3,4}$	$v_{3,5}$	$v_{3,6}$	$v_{3,7}$	$v_{3,8}$	$v_{3,9}$
							$\langle \rangle$		
•	$v_{4,1}$	$v_{4,2}$	$v_{4,3}$	$v_{4,4}$	$v_{4,5}$	$v_{4,6}$ u		u_2	u_3
							u	4	u_5
								Ń	
									u_6

Figure 7. The graph $JL_{5,4}^4$

Theorem 10. Let $k \ge 1$ and $q \ge 2$ be integers. Then $TD_{\gamma}(L_{4k,q}) \cong JL_{k-1,q}^{k+1}$.

Proof. For each $i \in \{2, 3, \ldots, q\}$, let P^i be the subgraph of $L_{4k,q}$ induced by $\{v_1, v_2, \ldots, v_{4k}, u_1, u_i\}$, so $TD_{\gamma}(P^i) \cong TD_{\gamma}(P_{4k+2}) \cong P_{k+1} \square P_{k+1}$ by Theorem 2. For each $i \in \{2, 3, \ldots, q\}$ and $x, y \in \{1, 2, \ldots, k+1\}$, let $D^i_{x,y}$ be the $\gamma_t(P^i)$ -set at the position (x, y) of $TD_{\gamma}(P^i)$. By Lemma 3(1), without loss of generality, we may assume that $D^i_{x,k+1}$ contains u_i . If $y \neq k+1$, then $D^i_{x,y} = D^j_{x,y}$ for all $i, j \in \{2, 3, \ldots, q\}$. Hence, for all $x \in \{1, 2, \ldots, k+1\}$, we let $D_{x,y} = D^i_{x,y}$ if $y \neq k+1$; otherwise, let $D^i_{x,k+1} = D_{x,k+i-1}$ for all $i \in \{2, 3, \ldots, q\}$. Note that $D_{x,k}$ is adjacent to $D_{x,k+i-1}$ for all $i \in \{2, 3, \ldots, q\}$. We next show that $D_{x,k+i-1}$ and $D_{x,k+j-1}$ are adjacent for all $i \neq j$. By Lemma 3(2.1), for each $x \in \{1, 2, \ldots, k+1\}$, we get $D_{x,k+i-1} = D^i_{x,k+1} = (D_{x,k} \setminus \{v_{4k}\}) \cup \{u_i\} = [(D_{x,k} \setminus \{v_{4k}\}) \cup \{u_j\}] \setminus \{u_j\} \cup \{u_i\} = (D^j_{x,k+1} \setminus \{u_j\}) \cup \{u_i\} = (D_{x,k+j-1} \setminus \{u_j\}) \cup \{u_i\}$

Note that $\gamma_t(P^i) = 2k+2 = \gamma_t(L_{4k,q})$, and a $\gamma_t(P^i)$ -set is a $\gamma_t(L_{4k,q})$ -set containing u_1 and vice versa. Thus, all $D_{x,y}$'s with $1 \le x \le k+1$ and $1 \le y \le k+q-1$ are the only $\gamma_t(L_{4k,q})$ -sets containing u_1 , and they form the graph $L_{k-1,q}^{k+1}$ in $TD_{\gamma}(L_{4k,q})$ (see Figure 8).

Figure 8. The γ -total dominating graph of $L_{4k,q}$

Finally, we find all $\gamma_t(L_{4k,q})$ -sets that do not contain u_1 . Then such a set contains 2k vertices from $\{v_1, v_2, \ldots, v_{4k}\}$ and two vertices from $\{u_2, u_3, \ldots, u_q\}$. Thus, it is the union of $D = \{v_{4i+2}, v_{4i+3} : 0 \le i \le k-1\}$ and $\{u_i, u_j\}$ for some distinct $i, j \in \{2, 3, \ldots, q\}$. By Lemma 3(2.2), for each $i \in \{2, 3, \ldots, q\}$, $D_{k+1,k+i-1} = D_{k+1,k+1}^i = \{v_{4i+2}, v_{4i+3} : 0 \le i \le k-1\} \cup \{u_1, u_i\} = D \cup \{u_1, u_i\}$. For all $1 \le i < j \le q$, let $D^{i,j} = D \cup \{u_i, u_j\}$. Theorem 10 implies that all $D^{i,j}$'s form the Johnson graph $J_{q,2}$ in $TD_{\gamma}(L_{4k,q})$ (see Figure 8). Moreover, for all $2 \le i < j \le q$, $D^{i,j}$ is not adjacent to

 $D_{x,y}$ for all $y \leq k$, which does not contain u_2, u_3, \ldots, u_q . By Lemma 3(2.3), for each $x \neq k+1$ and $y \in \{2, 3, \ldots, q\}$, $D_{x,k+y-1} = D_{x,k+1}^y$ contains u_1 and u_y but not v_{4k-1} , so $D_{x,k+y-1} \setminus \{u_1\} \cup \{u_j\}$ is not a total dominating set for all $j \notin \{1, y\}$ since v_{4k} is not dominated. This means that $D_{x,k+y-1}$ with $x \neq k+1$ is not adjacent to $D^{i,j}$ for all $2 \leq i < j \leq q$. This completes the proof.

Lemma 6. Let $k \ge 1$ and $q \ge 2$ be integers. Then each $\gamma_t(L_{4k-1,q})$ -set does not contain the vertex u_i for all $i \in \{2, 3, \ldots, q\}$.

Proof. Assume on contrary that there exists a $\gamma_t(L_{4k-1,q})$ -set D containing u_i for some $i \in \{2, 3, \ldots, q\}$. To dominate u_i , we need at least one vertex $u_j \in D$ for some $j \in \{1, 2, \ldots, q\}$ with $j \neq i$. Let $S = \{v : v \notin N(\{u_i, u_j\})\}$. If j = 1, then the induced subgraph $L_{4k-1,q}[S] \cong P_{4k-2}$; otherwise, $L_{4k-1,q}[S] \cong P_{4k-1}$. Note that |D| = 2k+1, so Lemma 1 implies that the 2k - 1 remaining vertices of D cannot dominate all vertices in $L_{4k-1,q}[S]$, a contradiction.

Theorem 11. Let $k \ge 1$ and $q \ge 2$ be integers. Then $TD_{\gamma}(L_{4k-1,q}) \cong P_k$.

Proof. For each $i \in \{2, 3, ..., q\}$, let P^i be the subgraph of $L_{4k-1,q}$ induced by $\{v_1, v_2, \ldots, v_{4k-1}, u_1, u_i\}$, and then by Theorem 5, $TD_{\gamma}(P^i) \cong P_k \cong D_1^i D_2^i \cdots D_k^i$, where D_x^i is a $\gamma_t(P^i)$ -set for all $x \in \{1, 2, \ldots, k\}$. By Lemma 4, $D_1^i, D_2^i, \ldots, D_k^i$ do not contain u_i for each $i \in \{2, 3, \ldots, q\}$, so without loss of generality, we may assume that $D_x^i = D_x^j$ for all $i, j \in \{2, 3, \ldots, q\}$, and we let $D_x = D_x^i$. Since $\gamma_t(P^i) = 2k+1 = \gamma_t(L_{4k-1,q})$ and every $\gamma_t(P^i)$ -set is a $\gamma_t(L_{4k-1,q})$ -set for all $i \in \{2, 3, \ldots, q\}$, we get D_1, D_2, \ldots, D_k are $\gamma_t(L_{4k-1,q})$ -sets. Lemma 6 implies that each $\gamma_t(L_{4k-1,q})$ -set is also a $\gamma_t(P^i)$ -set for some $i \in \{2, 3, \ldots, q\}$. Therefore, D_1, D_2, \ldots, D_k are the only $\gamma_t(L_{4k-1,q})$ -sets, and they form the path with k vertices in $TD_{\gamma}(L_{4k-1,q})$.

5. γ -Total Dominating Graphs of Umbrella and Coconut Graphs

Let p and q be positive integers. If q = 1, then we immediately get $TD_{\gamma}(U_{p,1}) \cong TD_{\gamma}(P_{p+1}) \cong TD_{\gamma}(C_{p,1})$ by Theorems 2 - 5. For q = 2, we determine $TD_{\gamma}(U_{p,q})$ and $TD_{\gamma}(C_{p,q})$ in Theorem 12 (below) by the following discussions.

If p = 4k + 2 for some $k \ge 0$, then we can verify that $\{v_{4i+2}, v_{4i+3} : 0 \le i \le k - 1\} \cup \{v_{4k+2}, u_1\}$ is the only $\gamma_t(U_{p,q})$ -set and the only $\gamma_t(C_{p,q})$ -set, so $TD_{\gamma}(U_{4k+2,q}) \cong P_1 \cong TD_{\gamma}(C_{4k+2,q})$. Theorem 6 shows that $\gamma_t(U_{p,q}) = \gamma_t(L_{p,q}) = \gamma_t(C_{p,q})$. For p = 4k + 1, the similar proof of Lemma 5 provide that u_1 is in every $\gamma_t(U_{4k+1,q})$ -set. Observation 1 also give that u_1 is in every $\gamma_t(C_{4k+1,q})$ -set. Then we follow the steps in the proof of Theorem 8, so $TD_{\gamma}(U_{4k+1,q}) \cong L_{k,q} \cong TD_{\gamma}(C_{4k+1,q})$.

If $q \in \{2,3\}$, then $U_{4k,q} \cong L_{4k,q}$, so by Theorem 10, $TD_{\gamma}(U_{4k,q}) \cong JL_{k-1,q}^{k+1}$. We observe that every $\gamma_t(U_{4k,q})$ -set is a $\gamma_t(L_{4k,q})$ -set, but the converse is not necessarily

true. From the proof of Theorem 10, we know that $D^{i,j} = \{v_{4l+2}, v_{4l+3} : 0 \leq l \leq k-1\} \cup \{u_i, u_j\}$ is a $\gamma_t(L_{4k,q})$ -set for $2 \leq i < j \leq q$. If q = 4, then $D^{2,4}$ is the only $\gamma_t(L_{4k,4})$ -set that is not a $\gamma_t(U_{4k,4})$ -set, and thus $TD_{\gamma}(U_{4k,4}) \cong TD_{\gamma}(L_{4k,4}) - \{D^{2,4}\}$. Similarly, for q = 5, $TD_{\gamma}(U_{4k,5}) \cong TD_{\gamma}(L_{4k,5}) - \{D^{2,3}, D^{2,4}, D^{2,5}, D^{3,5}, D^{4,5}\}$. Note that u_1 is in every $\gamma_t(U_{4k,q})$ -set for all $q \geq 6$ and in every $\gamma_t(C_{4k,q})$ -set for all $q \geq 2$, so $TD_{\gamma}(U_{4k,q}) \cong L_{k-1,q}^{k+1}$ for all $q \geq 2$ by following the first two paragraphs in the proof of Theorem 10.

Similar to Lemma 6, we can easily prove that each $\gamma_t(U_{4k-1,q})$ -set (and $\gamma_t(C_{4k-1,q})$ -set) does not contain u_i for all $i \in \{2, 3, \ldots, q\}$. Then we follow the steps in the proof of Theorem 11, so $TD_{\gamma}(U_{4k-1,q}) \cong P_k \cong TD_{\gamma}(C_{4k-1,q})$.

Theorem 12. Let p and q be positive integers. Then

$$TD_{\gamma}(U_{p,q}) \cong \begin{cases} P_1 & \text{if } p = 4k+2, q \ge 2; \\ L_{k,q} & \text{if } p = 4k+1, q \ge 2; \\ L_{k-1,q}^{k+1} & \text{if } p = 4k, q \ge 6; \\ P_k & \text{if } p = 4k-1, q \ge 2; \end{cases}$$

and

$$TD_{\gamma}(C_{p,q}) \cong \begin{cases} P_1 & \text{if } p = 4k+2, q \ge 2; \\ L_{k,q} & \text{if } p = 4k+1, q \ge 2; \\ L_{k-1,q}^{k+1} & \text{if } p = 4k, q \ge 2; \\ P_k & \text{if } p = 4k-1, q \ge 2. \end{cases}$$

Acknowledgements. The authors would like to thank the reviewers and editors for their valuable comments and suggestions. This research was supported by a Ph.D. scholarship from Thammasat University, 1/2018.

Conflict of interest. The authors declare that they have no conflict of interest.

Data Availability. Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

- S. Alikhani, D. Fatehi, and C.M. Mynhardt, On k-total dominating graphs, Australas. J. Combin. 73 (2019), no. 2, 313—333.
- [2] A. Bień, Gamma graphs of some special classes of trees, Ann. Math. Sil. 29 (2015), no. 1, 25—34. https://doi.org/10.1515/amsil-2015-0003.

- [3] E.J. Cockayne, R.M. Dawes, and S.T. Hedetniemi, *Total domination in graphs*, Networks **10** (1998), no. 3, 211–219. https://doi.org/10.1002/net.3230100304.
- [4] E. Connelly, K.R. Hutson, S.T. Hedetniemi, and T.W. Haynes, A note on γgraphs, AKCE Int. J. Graphs Comb. 8 (2011), no. 1, 23–31.
- [5] P. Eakawinrujee and N. Trakultraipruk, γ-paired dominating graphs of cycles, Opusc. Math. 42 (2022), no. 1, 31–54. https://doi.org/10.7494/OpMath.2022.42.1.31.
- [6] _____, γ-paired dominating graphs of paths, Int. J. Math. Comput. Sci. 17 (2022), no. 2, 739–752.
- [7] <u>_____</u>, γ-paired dominating graphs of lollipop, umbrella and coconut graphs, Electron. J. Graph Theory Appl. **11** (2023), no. 1, 65–79. http://dx.doi.org/10.5614/ejgta.2023.11.1.6.
- [8] D. Fatehi, S. Alikhani, and A.J.M. Khalaf, The k-independent graph of a graph, Adv. Appl. Discrete Math. 18 (2017), no. 1, 45–56. http://dx.doi.org/10.17654/DM018010045.
- [9] G. Fricke, S. Hedetniemi, S. Hedetniemi, and K. Hutson, γ-graphs of graphs, Discuss. Math. Graph Theory **31** (2011), no. 3, 517–531. https://doi.org/10.7151/dmgt.1562.
- [10] R. Haas and K. Seyffarth, The k-dominating graph, Graphs Combin. 30 (2014), 609–617.

https://doi.org/10.1007/s00373-013-1302-3.

- [11] _____, Reconfiguring dominating sets in some well-covered and other classes of graphs, Discrete Math. 340 (2017), no. 8, 1802–1817. https://doi.org/10.1016/j.disc.2017.03.007.
- [12] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, *Domination in Graphs: Advanced Topics*, Marcel Dekker, New York, 1998.
- [13] _____, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
- [14] M.A. Henning, Graphs with large total domination number, J. Graph Theory 35 (2000), no. 1, 21–45.
- [15] S.A. Lakshmanan, A. Vijayakumar, and S. Arumugam, The gamma graph of a graph, AKCE Int. J. Graphs Comb. 7 (2010), no. 1, 53–59.
- [16] C.M. Mynhardt, A. Roux, and L.E. Teshima, *Connected k-dominating graphs*, Discrete Math. **342** (2019), no. 1, 145–151. https://doi.org/10.1016/j.disc.2018.09.006.
- [17] C.M. Mynhardt and L.E. Teshima, A note on some variations of the γ-graph, J. Comb. Math. Comb. Comput. 104 (2018), 217—-230.
- [18] R. Samanmoo, N. Trakultraipruk, and N. Ananchuen, γ-independent dominating graphs of paths and cycles, Maejo Int. J. Sci. Technol. 13 (2019), no. 3, 245–256.
- [19] S. Sanguanpong and N. Trakultraipruk, γ-induced-paired dominating graphs of paths and cycles, Discrete Math. Algorithms Appl. 14 (2022), no. 8, Article ID: 2250047.

https://doi.org/10.1142/S1793830922500471.

- [20] N. Sridharan, S. Amutha, and S.B. Rao, Induced subgraphs of gamma graphs, Discrete Math. Algorithms Appl. 5 (2013), no. 03, Article ID: 1350012. https://doi.org/10.1142/S1793830913500122.
- [21] N. Sridharan and K. Subramanian, Trees and unicyclic graphs are γ-graphs, J. Comb. Math. Comb. Comput. 69 (2009), 231–236.
- [22] K. Subramanian and N. Sridharan, γ-graph of a graph, Bull. Kerala Math. Assoc. 5 (2008), no. 1, 17–34.
- [23] A. Suzuki, A.E. Mouawad, and N. Nishimura, *Reconfiguration of dominating sets*,
 J. Comb. Optim. **32** (2016), no. 4, 1182–1195. https://doi.org/10.1007/s10878-015-9947-x.
- [24] A. Wongsriya and N. Trakultraipruk, γ-total dominating graphs of paths and cycles, Sci. Asia. 43 (2017), no. 5, 326–333. https://doi.org/10.2306/scienceasia1513-1874.2017.43.326.