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Abstract: A total dominating set of a graph G is a set D ⊆ V (G) such that every

vertex of G is adjacent to some vertex in D. The total domination number γt(G) of G

is the minimum cardinality of a total dominating set. The γ-total dominating graph
TDγ(G) of G is the graph whose vertices are minimum total dominating sets, and

two minimum total dominating sets of TDγ(G) are adjacent if they differ by only one

vertex. In this paper, we determine the total domination numbers of lollipop graphs,
umbrella graphs, and coconut graphs, and especially their γ-total dominating graphs.
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1. Introduction

Let G be a graph whose vertex set is V (G) and edge set is E(G). For a vertex v ∈
V (G), the open and closed neighborhoods of v are N(v) = {u ∈ V (G) : uv ∈ E(G)}
and N [v] = N(v) ∪ {v}, respectively. For a set D ⊆ V (G), the open and closed

neighborhoods of D are N(D) =
⋃
v∈DN(v) and N [D] = N(D)∪D, respectively. We

write G[D] for the subgraph of G induced by D.

A dominating set of G is a set D ⊆ V (G) with N(v) ∩ D 6= ∅ for each v ∈
V (G) \ D. For a review of domination in graphs, see [12, 13]. The gamma graph
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2 γ-total dominating graphs

γ ·G of G, defined by Subramanian and Sridharan [22], is the graph where its vertices

are minimum dominating sets, and two vertices D1 and D2 of γ · G are adjacent if

D2 = (D1 \ {u}) ∪ {v} for some u ∈ D1 and v /∈ D1. For additional results on

γ · G, see [15, 20, 21]. Fricke et al. [9] also defined the gamma graph G(γ) of G to

be the graph where V (G(γ)) = V (γ · G), and two vertices D1 and D2 of G(γ) are

adjacent if D2 = (D1 \ {u}) ∪ {v} for some u ∈ D1, v /∈ D1, and uv ∈ E(G). Further

results concerning G(γ) can be found in [2, 4]. For the graphs using the other types of

domination with the same adjacency condition as γ ·G and G(γ), see [5–7, 18, 19, 24]

and [17], respectively.

Haas and Seyffarth [10] defined the k-dominating graph Dk(G) of G, as the

graph whose vertices are dominating sets with cardinality at most k, and two vertices

of Dk(G) are adjacent if they differ by either adding or deleting a single vertex. For

more details, see [11, 16, 23]. The k-total dominating graph [1] and the k-independent

dominating graph [8] are defined similarly using total dominating sets and independent

dominating sets, respectively.

A set D ⊆ V (G) is a total dominating set of G if N(v)∩D 6= ∅ for each v ∈ V (G).

The minimum cardinality of a total dominating set of G is called the total domination

number γt(G). A total dominating set D is a γt(G)-set if |D| = γt(G). The total

domination in graphs was introduced by Cockayne et al. [3]. The γ-total dominating

graph TDγ(G) of G, defined by Wongsriya and Trakultraipruk [24], is the graph

whose vertices are γt(G)-sets, and two γt(G)-sets D1 and D2 of TDγ(G) are adjacent

if D2 = (D1 \ {u}) ∪ {v} for some u ∈ D1 and v /∈ D1. In this paper, we determine

the total domination numbers of lollipop, umbrella, and coconut graphs in Section 3.

Then we study their γ-total dominating graphs in Sections 4 and 5.

2. Preliminary Results

In this section, we recall some definitions and results, which are used in our main

results.

A path and a complete graph with k vertices are denoted by Pk and Kk, respec-

tively. If v is adjacent to a vertex of degree one, then v is a support vertex. We first

provide a straightforward observation.

Observation 1. Each support vertex of a graph G is in every γt(G)-set.

The total domination numbers of paths established by Henning [14] are shown

in the following lemma.

Lemma 1 ([14]). Let k ≥ 2 be an integer. Then γt(Pk) = b k+2
4
c+ b k+3

4
c.

The Cartesian product of graphs G and H, denoted by G�H, is the graph with

V (G�H) = V (G) × V (H) where two vertices (u1, v1) and (u2, v2) of V (G�H) are
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adjacent if either u1 = u2 and v1v2 ∈ E(H), or v1 = v2 and u1u2 ∈ E(G).

In [24], the authors determined the γ-total dominating graphs of paths as listed

below.

Theorem 2 ([24]). Let k ≥ 1 be an integer. Then TDγ(P4k) ∼= P1.

Theorem 3 ([24]). Let k ≥ 0 be an integer. Then TDγ(P4k+3) ∼= Pk+2.

Theorem 4 ([24]). Let k ≥ 0 be an integer. Then TDγ(P4k+2) ∼= Pk+1�Pk+1.

Theorem 5 ([24]). Let k ≥ 1 be an integer. Then TDγ(P4k+1) ∼= Pk.

We denote Pk : v1v2v3 · · · vk to be the path. From the proofs of Theorems 3, 4,

and 5, we can get Lemmas 2, 3, and 4 shown below, respectively.

Lemma 2. Let k ≥ 0 be an integer and TDγ(P4k+3) ∼= Pk+2
∼= D1D2 · · ·Dk+2, where

Dx is a γt(P4k+3)-set for all x ∈ {1, 2, . . . , k + 2}.

(1) If v4k+3 ∈ Dx, then either x = 1 or x = k + 2.

(2) If Dk+2 contains the vertex v4k+3, then Dk+2 = (Dk+1 \ {v4k+1}) ∪ {v4k+3}.

We consider the γt(P4k+2)-sets of TDγ(P4k+2) ∼= Pk+1�Pk+1 as the entries in a

matrix.

Lemma 3. Let k ≥ 0 be an integer and Dx,y the γt(P4k+2)-set at the position (x, y) (row
x and column y) of TDγ(P4k+2) ∼= Pk+1�Pk+1 for all x, y ∈ {1, 2, . . . , k + 1}.

(1) If v4k+2 ∈ Dx,y, then either x = 1, x = k + 1, y = 1, or y = k + 1.

(2) If Dx,k+1 contains the vertex v4k+2, then

(2.1) Dx,k+1 = (Dx,k \ {v4k}) ∪ {v4k+2} for each x ∈ {1, 2, . . . , k + 1},
(2.2) Dk+1,k+1 = {v4i+2, v4i+3 : 0 ≤ i ≤ k − 1} ∪ {v4k+1, v4k+2}, and
(2.3) Dk+1,1, Dk+1,2, . . . , Dk+1,k+1 are the only γt(P4k+2)-sets containing the vertex

v4k−1.

Lemma 4. Let k ≥ 1 be an integer. Then each γt(P4k+1)-set does not contain the vertex
v4k+1.
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3. Total Domination Numbers of Lollipop, Umbrella, and Co-
conut Graphs

The definitions of a lollipop graph, a umbrella graph, and a coconut graph are ap-

peared in this section. In particular, the total domination numbers of those graphs

are determined.

Let p and q be positive integers. A lollipop graph Lp,q is obtained by affixing an

endpoint of a path Pp to a vertex of a complete graph Kq. Throughout this paper,

we let the vertices of Lp,q be as shown in Figure 1.

u1

u2 u3

uq−1uq

v1 v2 v3 vp−1 vp

Figure 1. The lollipop graph Lp,q

An umbrella graph Up,q is obtained by appending an endpoint of a path Pp to

the central vertex of a fan graph K1 ∨ Pq−1. A coconut graph Cp,q is obtained by

appending an endpoint of a path Pp to the support vertex of a complete bipartite

graph K1,q−1. We let the vertices of Up,q and Cp,q be as shown in Figures 2 and 3,

respectively.

u2

u3

u4

uq−1

uq

v1 v2 v3 vp−1 vp u1

Figure 2. The umbrella graph Up,q

Note that Lp,1 ∼= Up,1 ∼= Cp,1 ∼= Pp+1. By Lemma 1, γt(Lp,1) = γt(Up,1) =

γt(Cp,1) = bp+3
4 c+ bp+4

4 c. For q ≥ 2, we obtain the following theorem.

Theorem 6. Let p ≥ 1 and q ≥ 2 be integers. Then γt(Lp,q) = γt(Up,q) = γt(Cp,q) =
b p+4

4
c+ b p+5

4
c.

Proof. If q = 2, then Lp,q ∼= Pp+2, so γt(Lp,2) = γt(Pp+2) = bp+4
4 c + bp+5

4 c by

Lemma 1. Let q ≥ 3 and P ′ be the graph obtained from Lp,q by deleting the vertices

u3, u4, . . . , uq. Clearly, P ′ ∼= Pp+2 and then γt(P
′) = bp+4

4 c + bp+5
4 c. Let D be a
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u2

u3

u4

uq−1

uq

v1 v2 v3 vp−1 vp u1

Figure 3. The coconut graph Cp,q

γt(Lp,q)-set. We show that |D| ≥ γt(P ′). If u1 ∈ D, then to dominate u1, D contains

either vp or, without loss of generality, u2. In both cases, D is a total dominating set

of P ′, and thus |D| ≥ γt(P
′). On the other hand, we assume that u1 /∈ D. Since D

is a γt(Lp,q)-set, without loss of generality, D contain exactly two vertices u2 and u3
from {u2, u3, . . . , uq}. Then D′ = (D\{u3})∪{u1} is a total dominating set of P ′, and

hence |D| = |D′| ≥ γt(P
′). Therefore, γt(Lp,q) = |D| ≥ γt(P

′). Note that Up,q and

Cp,q are spanning subgraphs of Lp,q, so γt(Up,q) ≥ γt(Lp,q) and γt(Cp,q) ≥ γt(Lp,q).
We next determine the upper bounds of γt(Lp,q), γt(Up,q), and γt(Cp,q). If p ≡

0, 1, 2 (mod 4), let D = {vi, vi+1 : i ≡ 2 (mod 4), i < p} ∪ {vp, u1}; otherwise, let

D = {vi, vi+1 : i ≡ 2 (mod 4)} ∪ {u1}. Then D is a total dominating set of Lp,q
with |D| = bp+4

4 c+ bp+5
4 c, and hence γt(Lp,q) ≤ bp+4

4 c+ bp+5
4 c. Likewise, γt(Up,q) ≤

bp+4
4 c+ bp+5

4 c and γt(Cp,q) ≤ bp+4
4 c+ bp+5

4 c. The theorem follows.

4. γ-Total Dominating Graphs of Lollipop Graphs

In this section, we study the γ-total dominating graph of a lollipop graph Lp,q. If q =

1, then Lp,q ∼= Pp+1. Theorems 2 - 5 provide the results on TDγ(Lp,1) ∼= TDγ(Pp+1).

For q ≥ 2, we divide the value of p into four cases. If p = 4k + 2, then we get the

following theorem.

Theorem 7. Let k ≥ 0 and q ≥ 2 be integers. Then TDγ(L4k+2,q) ∼= P1.

Proof. By Theorem 6, we get γt(L4k+2,q) = 2k + 2. Then there is exactly one

γt(L4k+2,q)-set, which is D = {v4i+2, v4i+3 : 0 ≤ i ≤ k − 1} ∪ {v4k+2, u1}.

Lemma 5. Let k ≥ 0 and q ≥ 2 be integers. Then each γt(L4k+1,q)-set contains the
vertex u1.

Proof. For q = 2, the vertex u1 is a support vertex of L4k+1,2
∼= P4k+3, and hence the

lemma follows by Observation 1. Let q ≥ 3 and suppose, contrary to the statement,

that there exists a γt(L4k+1,q)-set D that does not contain u1. Thus, D contains

exactly two vertices ui and uj from {u2, u3, . . . , uq}. Let S = {v : v /∈ N({ui, uj})},
and then the induced subgraph L4k+1,q[S] is P4k+1. By Theorem 6, |D| = 2k+ 2 and
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thus the 2k remaining vertices of D must dominate all vertices in L4k+1,q[S], which

is impossible.

Theorem 8. Let k ≥ 0 and q ≥ 2 be integers. Then TDγ(L4k+1,q) ∼= Lk,q.

Proof. For each i ∈ {2, 3, . . . , q}, let P i be the subgraph of L4k+1,q induced

by {v1, v2, . . . , v4k+1, u1, ui}, and then P i ∼= P4k+3. By Theorem 3, for each

i ∈ {2, 3, . . . , q}, TDγ(P i) ∼= Pk+2
∼= Di

1D
i
2 · · ·Di

k+2, where Di
x is a γt(P

i)-set for

each x ∈ {1, 2, . . . , k + 2}, so by Observation 1, u1 ∈ Di
x. By Lemma 2(1), without

loss of generality, we may assume that Di
k+2 contains ui. If x 6= k+ 2, then Di

x = Dj
x

for all i, j ∈ {2, 3, . . . , q}, so we let Dx = Di
x. Next, we claim that Di

k+2 and Dj
k+2

are adjacent for all i 6= j. By Lemma 2(2), we get Di
k+2 = (Dk+1 \ {v4k+1})∪ {ui} =

[(Dk+1 \ {v4k+1}) ∪ {uj}] \ {uj} ∪ {ui} = (Dj
k+2 \ {uj}) ∪ {ui}, so the claim holds.

Note that γt(P
i) = 2k + 2 = γt(L4k+1,q), and every γt(P

i)-set is also a

γt(L4k+1,q)-set for each i ∈ {2, 3, . . . , q}. Hence, D1, . . . , Dk+1, D
2
k+2, . . . , D

q
k+2 are

γt(L4k+1,q)-sets containing u1. By Lemma 5, each γt(L4k+1,q)-set contains u1, so it

is a γt(P
i)-set for some i ∈ {2, 3, . . . , q}. Therefore, D1, . . . , Dk+1, D

2
k+2, . . . , D

q
k+2

are the only γt(L4k+1,q)-sets, and in addition they form the lollipop graph Lk,q (see

Figure 4).

Dk+1

D2
k+2 D3

k+2

D
q−1
k+2

D
q
k+2

D1 D2 D3 Dk−1 Dk

Figure 4. The γ-total dominating graph of L4k+1,q

The Johnson graph Jp,q is the graph whose vertices correspond to the q-element

subsets of {1, 2, . . . , p}, where two vertices are adjacent when they meet in a (q − 1)-

element set. Clearly, Jp,q has
(
p
q

)
vertices. In Figure 5, we show the Johnson graph

J4,2.

{1, 2}
{1, 3}

{1, 4}

{2, 3}

{1, 4}

{3, 4}

Figure 5. The Johnson graph J4,2
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Note that γt(Kp) = 2. It follows from the definition that the γ-total domination

graph of Kp is precisely the Johnson graph Jp,2, as stated the following theorem.

Theorem 9. Let p ≥ 2 be an integer. Then TDγ(Kp) ∼= Jp,2.

Let Lrp,q = Lp,q�Pr, where the vertices of Lrp,q are labeled as shown in Fig-

ure 6. For convenience, we write q − 1 vertices vr,p+2, vr,p+3, . . . , vr,p+q of Lrp,q for

u1, u2, . . . , uq−1, respectively. Let JLrp,q be the graph obtained from Lrp,q by adding

the vertices uq, uq+1, . . . , u(q
2)

such that u1, u2, . . . , uq−1, uq, uq+1, . . . , u(q
2)

form the

Johnson graph Jq,2. We illustrate the graph JL4
5,4 in Figure 7.

v1,1 v1,2 v1,3 v1,p v1,p+1 v1,p+2 v1,p+q

v2,1 v2,2 v2,3 v2,p v2,p+1 v2,p+2 v2,p+q

vr,1 vr,2 vr,3 vr,p vr,p+1 vr,p+2 vr,p+q
q
u1

q
uq−1

Figure 6. The graph Lr
p,q

v1,1 v1,2 v1,3 v1,4 v1,5 v1,6 v1,7 v1,8 v1,9

v2,1 v2,2 v2,3 v2,4 v2,5 v2,6 v2,7 v2,8 v2,9

v3,1 v3,2 v3,3 v3,4 v3,5 v3,6 v3,7 v3,8 v3,9

v4,1 v4,2 v4,3 v4,4 v4,5 v4,6 u1 u2 u3

u4 u5

u6

Figure 7. The graph JL4
5,4
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Theorem 10. Let k ≥ 1 and q ≥ 2 be integers. Then TDγ(L4k,q) ∼= JLk+1
k−1,q.

Proof. For each i ∈ {2, 3, . . . , q}, let P i be the subgraph of L4k,q induced by

{v1, v2, . . . , v4k, u1, ui}, so TDγ(P i) ∼= TDγ(P4k+2) ∼= Pk+1�Pk+1 by Theorem 2.

For each i ∈ {2, 3, . . . , q} and x, y ∈ {1, 2, . . . , k + 1}, let Di
x,y be the γt(P

i)-set

at the position (x, y) of TDγ(P i). By Lemma 3(1), without loss of generality, we

may assume that Di
x,k+1 contains ui. If y 6= k + 1, then Di

x,y = Dj
x,y for all

i, j ∈ {2, 3, . . . , q}. Hence, for all x ∈ {1, 2, . . . , k+1}, we let Dx,y = Di
x,y if y 6= k+1;

otherwise, let Di
x,k+1 = Dx,k+i−1 for all i ∈ {2, 3, . . . , q}. Note that Dx,k is adja-

cent to Dx,k+i−1 for all i ∈ {2, 3, . . . , q}. We next show that Dx,k+i−1 and Dx,k+j−1
are adjacent for all i 6= j. By Lemma 3(2.1), for each x ∈ {1, 2, . . . , k + 1}, we get

Dx,k+i−1 = Di
x,k+1 = (Dx,k \ {v4k}) ∪ {ui} = [(Dx,k \ {v4k}) ∪ {uj}] \ {uj} ∪ {ui} =

(Dj
x,k+1 \ {uj}) ∪ {ui} = (Dx,k+j−1 \ {uj}) ∪ {ui}, as desired.

Note that γt(P
i) = 2k+2 = γt(L4k,q), and a γt(P

i)-set is a γt(L4k,q)-set contain-

ing u1 and vice versa. Thus, all Dx,y’s with 1 ≤ x ≤ k + 1 and 1 ≤ y ≤ k + q − 1 are

the only γt(L4k,q)-sets containing u1, and they form the graph Lk+1
k−1,q in TDγ(L4k,q)

(see Figure 8).

D1,1 D1,k−1 D1,k D1,k+q−1

D2,1 D2,k−1 D2,k D2,k+q−1

Dk+1,1 Dk+1,k−1 Dk+1,k Dk+1,k+q−1 = D1,q

D2,3 D2,q

D3,4 D3,q

Dq−1,q

Lk+1
k−1,q

Jq,2

Figure 8. The γ-total dominating graph of L4k,q

Finally, we find all γt(L4k,q)-sets that do not contain u1. Then such a set contains

2k vertices from {v1, v2, . . . , v4k} and two vertices from {u2, u3, . . . , uq}. Thus, it is

the union of D = {v4i+2, v4i+3 : 0 ≤ i ≤ k − 1} and {ui, uj} for some distinct i, j ∈
{2, 3, . . . , q}. By Lemma 3(2.2), for each i ∈ {2, 3, . . . , q}, Dk+1,k+i−1 = Di

k+1,k+1 =

{v4i+2, v4i+3 : 0 ≤ i ≤ k − 1} ∪ {u1, ui} = D ∪ {u1, ui}. For all 1 ≤ i < j ≤ q, let

Di,j = D ∪ {ui, uj}. Theorem 10 implies that all Di,j ’s form the Johnson graph Jq,2
in TDγ(L4k,q) (see Figure 8). Moreover, for all 2 ≤ i < j ≤ q, Di,j is not adjacent to
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Dx,y for all y ≤ k, which does not contain u2, u3, . . . , uq. By Lemma 3(2.3), for each

x 6= k+1 and y ∈ {2, 3, . . . , q}, Dx,k+y−1 = Dy
x,k+1 contains u1 and uy but not v4k−1,

so Dx,k+y−1 \ {u1} ∪ {uj} is not a total dominating set for all j /∈ {1, y} since v4k is

not dominated. This means that Dx,k+y−1 with x 6= k + 1 is not adjacent to Di,j for

all 2 ≤ i < j ≤ q. This completes the proof.

Lemma 6. Let k ≥ 1 and q ≥ 2 be integers. Then each γt(L4k−1,q)-set does not contain
the vertex ui for all i ∈ {2, 3, . . . , q}.

Proof. Assume on contrary that there exists a γt(L4k−1,q)-set D containing ui for

some i ∈ {2, 3, . . . , q}. To dominate ui, we need at least one vertex uj ∈ D for some

j ∈ {1, 2, . . . , q} with j 6= i. Let S = {v : v /∈ N({ui, uj})}. If j = 1, then the induced

subgraph L4k−1,q[S] ∼= P4k−2; otherwise, L4k−1,q[S] ∼= P4k−1. Note that |D| = 2k+1,

so Lemma 1 implies that the 2k − 1 remaining vertices of D cannot dominate all

vertices in L4k−1,q[S], a contradiction.

Theorem 11. Let k ≥ 1 and q ≥ 2 be integers. Then TDγ(L4k−1,q) ∼= Pk.

Proof. For each i ∈ {2, 3, . . . , q}, let P i be the subgraph of L4k−1,q induced by

{v1, v2, . . . , v4k−1, u1, ui}, and then by Theorem 5, TDγ(P i) ∼= Pk ∼= Di
1D

i
2 · · ·Di

k,

where Di
x is a γt(P

i)-set for all x ∈ {1, 2, . . . , k}. By Lemma 4, Di
1, D

i
2, . . . , D

i
k do

not contain ui for each i ∈ {2, 3, . . . , q}, so without loss of generality, we may assume

that Di
x = Dj

x for all i, j ∈ {2, 3, . . . , q}, and we let Dx = Di
x. Since γt(P

i) = 2k+1 =

γt(L4k−1,q) and every γt(P
i)-set is a γt(L4k−1,q)-set for all i ∈ {2, 3, . . . , q}, we get

D1, D2, . . . , Dk are γt(L4k−1,q)-sets. Lemma 6 implies that each γt(L4k−1,q)-set is

also a γt(P
i)-set for some i ∈ {2, 3, . . . , q}. Therefore, D1, D2, . . . , Dk are the only

γt(L4k−1,q)-sets, and they form the path with k vertices in TDγ(L4k−1,q).

5. γ-Total Dominating Graphs of Umbrella and Coconut
Graphs

Let p and q be positive integers. If q = 1, then we immediately get TDγ(Up,1) ∼=
TDγ(Pp+1) ∼= TDγ(Cp,1) by Theorems 2 - 5. For q = 2, we determine TDγ(Up,q) and

TDγ(Cp,q) in Theorem 12 (below) by the following discussions.

If p = 4k + 2 for some k ≥ 0, then we can verify that {v4i+2, v4i+3 : 0 ≤ i ≤ k −
1}∪ {v4k+2, u1} is the only γt(Up,q)-set and the only γt(Cp,q)-set, so TDγ(U4k+2,q) ∼=
P1
∼= TDγ(C4k+2,q). Theorem 6 shows that γt(Up,q) = γt(Lp,q) = γt(Cp,q). For

p = 4k + 1, the similar proof of Lemma 5 provide that u1 is in every γt(U4k+1,q)-set.

Observation 1 also give that u1 is in every γt(C4k+1,q)-set. Then we follow the steps

in the proof of Theorem 8, so TDγ(U4k+1,q) ∼= Lk,q ∼= TDγ(C4k+1,q).

If q ∈ {2, 3}, then U4k,q
∼= L4k,q, so by Theorem 10, TDγ(U4k,q) ∼= JLk+1

k−1,q. We

observe that every γt(U4k,q)-set is a γt(L4k,q)-set, but the converse is not necessarily
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true. From the proof of Theorem 10, we know that Di,j = {v4l+2, v4l+3 : 0 ≤ l ≤
k − 1} ∪ {ui, uj} is a γt(L4k,q)-set for 2 ≤ i < j ≤ q. If q = 4, then D2,4 is the only

γt(L4k,4)-set that is not a γt(U4k,4)-set, and thus TDγ(U4k,4) ∼= TDγ(L4k,4)−{D2,4}.
Similarly, for q = 5, TDγ(U4k,5) ∼= TDγ(L4k,5)− {D2,3, D2,4, D2,5, D3,5, D4,5}. Note

that u1 is in every γt(U4k,q)-set for all q ≥ 6 and in every γt(C4k,q)-set for all q ≥ 2,

so TDγ(U4k,q) ∼= Lk+1
k−1,q for all q ≥ 6, and TDγ(C4k,q) ∼= Lk+1

k−1,q for all q ≥ 2 by

following the first two paragraphs in the proof of Theorem 10.

Similar to Lemma 6, we can easily prove that each γt(U4k−1,q)-set (and

γt(C4k−1,q)-set) does not contain ui for all i ∈ {2, 3, . . . , q}. Then we follow the

steps in the proof of Theorem 11, so TDγ(U4k−1,q) ∼= Pk ∼= TDγ(C4k−1,q).

Theorem 12. Let p and q be positive integers. Then

TDγ(Up,q) ∼=


P1 if p = 4k + 2, q ≥ 2;

Lk,q if p = 4k + 1, q ≥ 2;

Lk+1
k−1,q if p = 4k, q ≥ 6;

Pk if p = 4k − 1, q ≥ 2;

and

TDγ(Cp,q) ∼=


P1 if p = 4k + 2, q ≥ 2;

Lk,q if p = 4k + 1, q ≥ 2;

Lk+1
k−1,q if p = 4k, q ≥ 2;

Pk if p = 4k − 1, q ≥ 2.
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