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Abstract: Let G be a simple graph. The elliptic Sombor index of G is defined as

ESO(G) =Y (du+dy)\/d2 + d2,

uv

where d,, denotes the degree of the vertex u, and the sum runs over the set of edges of G.
In this paper we solve the extremal value problem of ESO over the set of (connected)
chemical graphs and over the set of chemical trees, with equal number of vertices.
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Introduction

Let G be a simple graph with set of vertices V' and set of edges E. The degree of the
vertex u € V is defined as the number of vertices adjacent to u, and it is denoted by
d,,. If there is an edge from vertex u to vertex v, we indicate this by writing uv (or
vu). We denote by n; the number of vertices of degree ¢ and by m; ; the number of
edges connecting a vertex of degree ¢ to a vertex of degree j. We will assume that G

has no isolated vertices (i.e., vertices of degree 0).
Let ¢ (i,7) be a real bivariate symmetric function defined over N x N. A vertex-
degree-based (VDB, for short) topological index ¢ is defined on the graph G as
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2 Elliptic Sombor index of chemical graphs

(@)= p(dudy). (1.1)

uwveE

The general theory of VDB topological indices has been extensively studied [2, 6, 11,
12], they play an important role in chemical and pharmacological applications [5, 8, 9].
A new geometric approach to the theory was introduced in [3], and more recently in
[4], where the elliptic Sombor index was invented. It is denoted by ESO and defined
for the graph G as

P(G) = (du+dy)/d2 +d2. (1.2)

uwveE

In other words, £SO is a VDB topological index induced by the function

@ (i,5) = (0 +J) Vi* + 5>

We refer to [7, 10] for recent results on ESO.

Our main interest in this paper is to study the elliptic Sombor index over the set of
chemical graphs. More precisely, we solve the extremal value problem for ESO over
the set of (connected) graphs with equal number of vertices. Actually, our approach
works for a general VDB topological index ¢ which satisfies certain properties, so it
can be applied to many more VDB topological indices. Also, we solve the extremal
value problem of ESO over the set of chemical trees with a fixed number of vertices.

2. Elliptic Sombor index of chemical graphs

We are particularly interested in ¢ (G) when G is a chemical graph, i.e., a graph which
satisfies d,, < 4 for all vertices u € V. So let us assume that G is a chemical graph
with n vertices. In this special situation the following well known relations hold:

ni+ng +n3+ng =n, (2.1)
and

2my 1 +my2 +m13+mig=ni,
miz2 —+ 2m272 + ma 3 + mo 4 = QTLQ, (22)
mi,3 +mao 3+ 2m3 3 + m3 4 = 3ns,

mMi,4 + Mo 4 +m3 4+ 2my 4 = 4ny.

From (2.2) and (2.1) it easily follows that

S e, =, (2.3)

(z,y)EP Ty
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where
P={(z.y) eNxN| 1<z <y<4}.

Then from relation (1.1) we deduce that

(@)= > p@y)my. (24)

(z,y)eP
Let C = {(x,y) € P | (x,y) # (4,4)} and consider the following property on a VDB
topological index ¢:

W <20 (4, 4) (2.5)

for all (x,y) € C.

Theorem 1. Let ¢ be a VDB topological index satisfying (2.5) and let G be a chemical
graph with n vertices. Then,

P(G) <2p(4,4)n.

FEquality occurs if and only if G is a 4-regular graph.
Proof.  From relations (2.3), (2.4) and (2.5) we deduce

P(G) = ¢ (4,4) mas + Z @ (z,y) May
(z,y)eC

T+y
:QO(474) 2n —2 Z - Mgy | + Z (p(xay)mm,y

(z,y)eC (z,y)eC
r+y
=20(4,4)n+ Y. (30 (z,9) — 2p (4,4) = ) My < 20 (4,4)n.  (2.6)

(z,y)eC

If (G) = 2¢ (4,4) n, then from (2.6),

> (so (z,y) — 20 (4,4) m;f) My =0,

(z,y)eC

and from (2.5), my, = 0 for all (x,y) € C. In other words, G is a 4-regular graph.
Conversely, if G is a 4-regular graph, then

P(G) = (4 ) mas = p (4 m = p(4,4) 5 = 20 (4, ).
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Since ¢ (i,7) = (i + j) \/i% + j2 satisfies property (2.5), we can apply Theorem 1 to
the elliptic Sombor index,

Corollary 1. Let G be a chemical graph with n vertices. Then
ESO (G) < 64v2n.

Equality holds if and only G is a 4-regular graph.

Next we study lower bounds for a VDB topological index ¢ on chemical graphs with
n vertices. Recall that two graphs are disjoint if they have no vertex in common. If
G and H are disjoint, their disjoint union graph denoted by G U H, has vertex set
V(GUH) =V (G)UV (H) and edge set E(GUH) = E(G)U E (H). The disjoint
union of k copies of G is written as kG. Let A = {(z,y) € P | (z,y) # (1,1)} and
consider the following property on ¢:

zyp (z,y) 1
I S Z (1,1 2.
s >2¢(,) (2.7)

for all (z,y) € A. Also, given the set B = {(x,y) € A | (x,y) # (1,2)}, consider the
following property on ¢:

w > g(p (1,2) (2.8)

3p(1,1) <4p (1,2 d
P(L1)<4p(12) and TS D

for all (x,y) € B.

Theorem 2. Let G be a chemical graph with n vertices.

1. If n is even and ¢ satisfies (2.7), then o(G) > “0“ 2@V Bquality occurs if and only if
G = %Pz.

2. If n is odd and ¢ satisfies (2.8), then ¢(G) > "53¢ (1,1) 4+ 2 (1,2) . Equality occurs if
and only if G = "T_SPQ U Ps.

Proof. 1. Assume that n is even. From relations (2.3), (2.4) and (2.7) we deduce
that

PG =, )mii+ Y, ©@,y)mey

(z,y)€A
1 1 r+y
= 50(1’ 1) in - 5 Z Ty Mgy | + Z J) y My .y
(z,y)€A (z,y)€A

l)n + Z ((p (x,y) — %cp(l, 1) x;—yy) Mgy > (,0(;, 1)n. (2.9)

(z,y)€A
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If p(G) = @n, then from the inequality (2.9),

> <<p () - %cp(l, 1) x;;’) Moy = 0

(z,y)€A

and from property (2.7), it follows that m, , = 0 for all (z,y) € A. In other words,
G is a disjoint union of copies of P, that is, G = Z%. Conversely, if G = § P, then

e(G) = 3p(P2) = 3¢ (1,1).
2. Assume that n is odd. Since G has no isolated vertices, my,; < ”773 Then, from
relation (2.3),

3 r+y
2ma+ 5me + > oy v =™
(z,y)€B
and so
2 4 2 r+y
myi2 = g’l’L — gml,l - g Z ?ymx,y. (210)
(z,y)€B

Consequently, bearing in mind (2.10), (2.4) and (2.8),

P(G) =9, )mi1+¢(1,2)mi2+ Z @ (@,y) may
(z,y)€EB

2 4 2 z+y
=p(L,1)m1+¢(1,2) 3T 3MiT g Z oy My y
(z,y)eB

+ Y @) may

(z,y)eB
4 2
— (#) - 3002 ma+ Zo 020
2 T+y
Ty
(z,y)eB

> <<p (1,1) — %w (1,2)) mi1 + %cp(l,?) n

> (e - 300.2) 524 So0.2n

n—3
2

¢(1,1) +2¢(1,2). (2.11)

If (G) = 2520 (1,1) 4 2¢(1,2), then from inequality (2.11) and property (2.8),
miq = %‘3, mi,2 = 2 and my, = 0 for all (x,y) € B. Therefore, G = "T_?’PQ U Ps.
Conversely, if G = 3P, U P3, then ¢(G) = 2520(P) + o(P3) = 2530 (1,1) +

20 (1,2). O
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Since ¢ (i,7) = (i+J)+/i? + j2 satisfies properties (2.7) and (2.8), we can apply
Theorem 2 to the elliptic Sombor index.

Corollary 2. Let G be a chemical graph with n vertices.
1. If n is even, then ESO(G) > v/2n. Equality occurs if and only if G = 5P
2. If n is odd, then ESO(G) > (n—3)v/2+6v/5. Equality occurs if and only if G = ™53 P,UPs.

For connected chemical graphs we have the following result.
Corollary 3. Let G be a connected chemical graph with n vertices. Then,
8v2(n — 3) 4+ 6v5 < ESO(G) < 64v/2n.

The equality in the left occurs if and only if G = P,. The equality on the right occurs if and
only if G is a connected 4-regular graph.

Proof. This result is a consequence of [4, Theorem 4] together with Corollary 1. O

Note that minimal value of ESO over connected graphs was already determined in [4,
Theorem 4]. It is noteworthy to state that many of the well-known VDB topological
indices satisfy conditions given in (2.5), (2.7) and (2.8). Consequently, Theorems 1
and 2 can be used to recover in a unified form known results on extremal values of
VDB topological indices over chemical graphs, and can also be applied to study new
VDB topological indices.

3. Elliptic Sombor index of chemical trees

Next we consider the elliptic Sombor index among chemical trees. Let C,, denote the
set of all chemical trees with n vertices. In [4, Theorem 5], it was shown that P, has
the minimal ESO-value among all n-vertex trees. Evidently, then P, has minimal
ESO-value also among all n-vertex chemical trees. In spite of this, in order that the
present paper be self-contained, we state it for chemical trees.

Theorem 3. Let n be a positive integer. Among all chemical trees in C,, the minimal
value of ESO is attained in the unique path tree P,.

Next we consider the maximal value problem of £SO among chemical trees with n
vertices. Let ¢ (i,7) = (i 4+ j) /i? + j2 and consider the following functions:

fa)=1p2p)—¢Bp)]+[r(29 —¢(3,9)],
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g (pa q,?’) = [90 (271)) - ¢ (4,]9)] + [90 (37 q) Z (47(])}
Tl @) — e 4,7)],

and

h (pa%ra S) = [90 (37p) - 90(4,17)] + [90 (37(]) — ¢ (27Q)]
+leBr) =) +[p3,s) — ¢4 s)],

where p, q,r, s are integers such that 4 > p,q,r,s > 1. Let us consider the following
subsets of Cy,:
Coo (n) ={T €C, | n2(T) =n3(T) =0},
Cio (TL) = {T eC, | ng(T) =1, ﬂg(T) = 0},

and
Co1 (n) = {T eC, | ’I’LQ(T) =0, ng(T) = 1}.

It was shown in [1] that exactly one of the sets Cyg (n), C19 (n), or Cp; (n) is non-empty
for each positive integer n (see Figures 1, 2, and 3).

Theorem 4. Let n be a positive integer. Among all trees in Cn, the mazimal value of
ESO is attained by any of the trees U, V., W, satisfying the conditions:

1. U € Cio (n) such that mi12(U) =1 4 n=0 mod 3 and n > 6;

2.V €Co1(n) such that mi,3(V)=24ifn=1 mod 3 andn >7;

3. W €Coo(n) ifn =2 mod 3 andn > 5.

Proof. As we can see in Tables below, the following relations hold:

fa)+¢(2,2) —¢(1,3) <0 (3.1)
and
f0,0) +20(2,4) = (1,4) —¢(3,4) <0, (3-2)
forall 1 <p<qg<4;
9(P,¢,7) +¢(2,3) —p(1,4) <0 (3-3)
and
g@:ar)+¢(2,4) = (1,4) + ¢ (3,4) — ¢ (4,4) <0, (3.4)

foralll1<p<4and1<q<r <4

h(p,q,m,8)+¢(3,3) —¢(2,4) <0 (3.5)
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and
h(p,q,’l",S)+2g0(3,4) 7@(274) 7@(474) < Oa

in any of the following situations, where p # 2, ¢ # 2, r %22 and s # 2 :

=r=1;1<q¢g<s<4
3<p<qg<4 ; 1<r<s<4
Moreover,
50(172)_90(1a4)+90(4v4)_%0(2’4)>O
and

@(474)_¢(1ﬂ4)+@(1ﬂ3)_@(374) > 0.

Now the result follows from [1, Theorem 3.2].

Figure 1. Trees in Coo(n) when n =2 mod 3.

[ ] [ )
| |
o——o—©0 o —O—0——© oT—O0—0—0——0
| -
® [ ] [ J
Figure 2. Trees in Ci9(n) when n =0 mod 3
[ [ [ [ [ ] [ ]
| || ]
o——@©O *o——0—0 *e—O0—0——0
| | L
® [ J ® [ J o [ ]

Figure 3. Trees in Cp1(n) when n =1 mod 3.

(3.6)
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Table 1. Approximate values of the left hand side of conditions (3.1) and (3.2).
p ¢ Value (3.1) Value (3.2)
11 -13217  -13.831
12 -13.990  -14.604
13 -14704 -15318
14 -15443  -16.057
22 -14763  -15.377
23 -15477  -16.092
24 -16216  -16.831
33 -16191  -16.806
34 -16.930 -17.545
44 -17669  -18.284

Table 2. Approximate values of the left hand side of conditions (3.3) and (3.4).
p ¢ r Value (3.3) Value (3.4)

111 -32.427 -33.877
112 -33.266 -34.716
113 -34.005 -35.455
114 -34.716 -36.166
122 -34.105 -35.554
123 -34.844 -36.294
124 -35.554 -37.004
133 -35.583 -37.033
134 -36.294 -37.743
144 -37.004 -38.454
211 -34.039 -35.489
212 -34.878 -36.328
213 -35.617 -37.067
214 -36.328 -37.777
222 -35.716 -37.166
223 -36.456 -37.905
224 -37.166 -38.616
233 -37.195 -38.644
234 -37.905 -39.355
244 -38.616 -40.066
311 -35.492 -36.942
312 -36.331 -37.781
313 -37.070 -38.520
314 -37.781 -39.231
322 -37.170 -38.619
323 -37.909 -39.359
324 -38.619 -40.069
333 -38.648 -40.098
334 -39.359 -40.808
344 -40.069 -41.519
411 -36.942 -38.392
412 -37.781 -39.231
413 -38.520 -39.970
414 -39.231 -40.680
422 -38.619 -40.069
423 -39.359 -40.808
424 -40.069 -41.519
433 -40.098 -41.547
434 -40.808 -42.258
444 -41.519 -42.969




10 Elliptic Sombor index of chemical graphs

Table 3. Approximate values of the left hand side of conditions (3.5) and (3.6).
p g v s Value (3.5) Value (3.6)
T111 -19.335  -20.045
1113 20913 -21.623
1114 21623 22334
1313 -19425  -20.136
1314 -20136  -20.847
1414 -19397  -20.108
3311 -10425  -20.136
3313 -21.003 -21.714
3314 -20.714 22424
3333 -22581  -23.202
3334 -23.292  -24.002
3344 -24002 24713
3411 -18686  -19.397
3413 -20264 20975
3414 -20975  -21.685
3433 -21.842 22552
3434 -22552  -23.263
3444 -23263 23974
4411 -19397  -20.108
4413 20975 -21.685
4414 -21.685  -22.396
4433 -22552  -23.263
4434 -23263  -23.974
4444 -239T4 24634

Table 4. Approximate values of the left hand side of conditions (3.7) and (3.8).

Value (3.7) Value (3.8)
4.514 2.288
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