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Abstract: Let G be a simple graph. The elliptic Sombor index of G is defined as

ESO(G) =
∑
uv

(du + dv)
√

d2u + d2v ,

where du denotes the degree of the vertex u, and the sum runs over the set of edges of G.

In this paper we solve the extremal value problem of ESO over the set of (connected)
chemical graphs and over the set of chemical trees, with equal number of vertices.
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1. Introduction

Let G be a simple graph with set of vertices V and set of edges E. The degree of the

vertex u ∈ V is defined as the number of vertices adjacent to u, and it is denoted by

du. If there is an edge from vertex u to vertex v, we indicate this by writing uv (or

vu). We denote by ni the number of vertices of degree i and by mi,j the number of

edges connecting a vertex of degree i to a vertex of degree j. We will assume that G

has no isolated vertices (i.e., vertices of degree 0).

Let ϕ (i, j) be a real bivariate symmetric function defined over N × N. A vertex-

degree-based (VDB, for short) topological index ϕ is defined on the graph G as
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2 Elliptic Sombor index of chemical graphs

ϕ(G) =
∑
uv∈E

ϕ (du, dv) . (1.1)

The general theory of VDB topological indices has been extensively studied [2, 6, 11,

12], they play an important role in chemical and pharmacological applications [5, 8, 9].

A new geometric approach to the theory was introduced in [3], and more recently in

[4], where the elliptic Sombor index was invented. It is denoted by ESO and defined

for the graph G as

ϕ(G) =
∑
uv∈E

(du + dv)
√
d2u + d2v. (1.2)

In other words, ESO is a VDB topological index induced by the function

ϕ (i, j) = (i + j)
√

i2 + j2.

We refer to [7, 10] for recent results on ESO.

Our main interest in this paper is to study the elliptic Sombor index over the set of

chemical graphs. More precisely, we solve the extremal value problem for ESO over

the set of (connected) graphs with equal number of vertices. Actually, our approach

works for a general VDB topological index ϕ which satisfies certain properties, so it

can be applied to many more VDB topological indices. Also, we solve the extremal

value problem of ESO over the set of chemical trees with a fixed number of vertices.

2. Elliptic Sombor index of chemical graphs

We are particularly interested in ϕ (G) when G is a chemical graph, i.e., a graph which

satisfies du ≤ 4 for all vertices u ∈ V. So let us assume that G is a chemical graph

with n vertices. In this special situation the following well known relations hold:

n1 + n2 + n3 + n4 = n, (2.1)

and

2m1,1 + m1,2 + m1,3 + m1,4 = n1,

m1,2 + 2m2,2 + m2,3 + m2,4 = 2n2, (2.2)

m1,3 + m2,3 + 2m3,3 + m3,4 = 3n3,

m1,4 + m2,4 + m3,4 + 2m4,4 = 4n4.

From (2.2) and (2.1) it easily follows that∑
(x,y)∈P

x + y

xy
mx,y = n, (2.3)
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where

P = { (x, y) ∈ N× N | 1 ≤ x ≤ y ≤ 4} .

Then from relation (1.1) we deduce that

ϕ (G) =
∑

(x,y)∈P

ϕ (x, y)mx,y. (2.4)

Let C = { (x, y) ∈ P | (x, y) 6= (4, 4)} and consider the following property on a VDB

topological index ϕ:
xyϕ (x, y)

x + y
< 2ϕ (4, 4) (2.5)

for all (x, y) ∈ C.

Theorem 1. Let ϕ be a VDB topological index satisfying (2.5) and let G be a chemical
graph with n vertices. Then,

ϕ(G) ≤ 2ϕ (4, 4)n.

Equality occurs if and only if G is a 4-regular graph.

Proof. From relations (2.3), (2.4) and (2.5) we deduce

ϕ(G) = ϕ (4, 4)m4,4 +
∑

(x,y)∈C

ϕ (x, y)mx,y

= ϕ (4, 4)

2n− 2
∑

(x,y)∈C

x + y

xy
mx,y

+
∑

(x,y)∈C

ϕ (x, y)mx,y

= 2ϕ (4, 4)n +
∑

(x,y)∈C

(
ϕ (x, y)− 2ϕ (4, 4)

x + y

xy

)
mx,y ≤ 2ϕ (4, 4)n. (2.6)

If ϕ(G) = 2ϕ (4, 4)n, then from (2.6),

∑
(x,y)∈C

(
ϕ (x, y)− 2ϕ (4, 4)

x + y

xy

)
mx,y = 0,

and from (2.5), mx,y = 0 for all (x, y) ∈ C. In other words, G is a 4-regular graph.

Conversely, if G is a 4-regular graph, then

ϕ(G) = ϕ (4, 4)m4,4 = ϕ (4, 4)m = ϕ (4, 4)
4n

2
= 2ϕ (4, 4)n.
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Since ϕ (i, j) = (i + j)
√
i2 + j2 satisfies property (2.5), we can apply Theorem 1 to

the elliptic Sombor index,

Corollary 1. Let G be a chemical graph with n vertices. Then

ESO (G) ≤ 64
√
2n.

Equality holds if and only G is a 4-regular graph.

Next we study lower bounds for a VDB topological index ϕ on chemical graphs with

n vertices. Recall that two graphs are disjoint if they have no vertex in common. If

G and H are disjoint, their disjoint union graph denoted by G ∪ H, has vertex set

V (G ∪H) = V (G) ∪ V (H) and edge set E (G ∪H) = E (G) ∪ E (H). The disjoint

union of k copies of G is written as kG. Let A = { (x, y) ∈ P | (x, y) 6= (1, 1)} and

consider the following property on ϕ:

xyϕ (x, y)

x + y
>

1

2
ϕ (1, 1) (2.7)

for all (x, y) ∈ A. Also, given the set B = { (x, y) ∈ A | (x, y) 6= (1, 2)}, consider the

following property on ϕ:

3ϕ (1, 1) ≤ 4ϕ (1, 2) and
xyϕ (x, y)

x + y
>

2

3
ϕ (1, 2) (2.8)

for all (x, y) ∈ B.

Theorem 2. Let G be a chemical graph with n vertices.

1. If n is even and ϕ satisfies (2.7), then ϕ(G) ≥ ϕ(1,1)
2

n. Equality occurs if and only if
G ∼= n

2
P2.

2. If n is odd and ϕ satisfies (2.8), then ϕ(G) ≥ n−3
2

ϕ (1, 1) + 2ϕ (1, 2) . Equality occurs if
and only if G ∼= n−3

2
P2 ∪ P3.

Proof. 1. Assume that n is even. From relations (2.3), (2.4) and (2.7) we deduce

that

ϕ(G) = ϕ (1, 1)m1,1 +
∑

(x,y)∈A

ϕ (x, y)mx,y

= ϕ (1, 1)

1

2
n− 1

2

∑
(x,y)∈A

x + y

xy
mx,y

+
∑

(x,y)∈A

ϕ (x, y)mx,y

=
ϕ (1, 1)

2
n +

∑
(x,y)∈A

(
ϕ (x, y)− 1

2
ϕ (1, 1)

x + y

xy

)
mx,y ≥

ϕ (1, 1)

2
n. (2.9)
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If ϕ(G) = ϕ(1,1)
2 n, then from the inequality (2.9),

∑
(x,y)∈A

(
ϕ (x, y)− 1

2
ϕ (1, 1)

x + y

xy

)
mx,y = 0

and from property (2.7), it follows that mx,y = 0 for all (x, y) ∈ A. In other words,

G is a disjoint union of copies of P2, that is, G ∼= n
2P2. Conversely, if G ∼= n

2P2 then

ϕ(G) = n
2ϕ(P2) = n

2ϕ (1, 1).

2. Assume that n is odd. Since G has no isolated vertices, m1,1 ≤ n−3
2 . Then, from

relation (2.3),

2m1,1 +
3

2
m1,2 +

∑
(x,y)∈B

x + y

xy
mx,y = n,

and so

m1,2 =
2

3
n− 4

3
m1,1 −

2

3

∑
(x,y)∈B

x + y

xy
mx,y. (2.10)

Consequently, bearing in mind (2.10), (2.4) and (2.8),

ϕ(G) = ϕ (1, 1)m1,1 + ϕ (1, 2)m1,2 +
∑

(x,y)∈B

ϕ (x, y)mx,y

= ϕ (1, 1)m1,1 + ϕ (1, 2)

2

3
n− 4

3
m1,1 −

2

3

∑
(x,y)∈B

x + y

xy
mx,y


+

∑
(x,y)∈B

ϕ (x, y)mx,y

=

(
ϕ (1, 1)− 4

3
ϕ (1, 2)

)
m1,1 +

2

3
ϕ (1, 2)n

+
∑

(x,y)∈B

(
ϕ (x, y)− 2

3
ϕ (1, 2)

x + y

xy

)
mx,y

≥
(
ϕ (1, 1)− 4

3
ϕ (1, 2)

)
m1,1 +

2

3
ϕ (1, 2)n

≥
(
ϕ (1, 1)− 4

3
ϕ (1, 2)

)
n− 3

2
+

2

3
ϕ (1, 2)n

=
n− 3

2
ϕ (1, 1) + 2ϕ (1, 2) . (2.11)

If ϕ(G) = n−3
2 ϕ (1, 1) + 2ϕ (1, 2), then from inequality (2.11) and property (2.8),

m1,1 = n−3
2 , m1,2 = 2 and mx,y = 0 for all (x, y) ∈ B. Therefore, G ∼= n−3

2 P2 ∪ P3.

Conversely, if G ∼= n−3
2 P2 ∪ P3, then ϕ(G) = n−3

2 ϕ(P2) + ϕ(P3) = n−3
2 ϕ (1, 1) +

2ϕ (1, 2) .
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Since ϕ (i, j) = (i + j)
√
i2 + j2 satisfies properties (2.7) and (2.8), we can apply

Theorem 2 to the elliptic Sombor index.

Corollary 2. Let G be a chemical graph with n vertices.

1. If n is even, then ESO(G) ≥
√
2n. Equality occurs if and only if G ∼= n

2
P2.

2. If n is odd, then ESO(G) ≥ (n−3)
√
2+6
√
5. Equality occurs if and only if G ∼= n−3

2
P2∪P3.

For connected chemical graphs we have the following result.

Corollary 3. Let G be a connected chemical graph with n vertices. Then,

8
√
2(n− 3) + 6

√
5 ≤ ESO(G) ≤ 64

√
2n.

The equality in the left occurs if and only if G ∼= Pn. The equality on the right occurs if and
only if G is a connected 4-regular graph.

Proof. This result is a consequence of [4, Theorem 4] together with Corollary 1.

Note that minimal value of ESO over connected graphs was already determined in [4,

Theorem 4]. It is noteworthy to state that many of the well-known VDB topological

indices satisfy conditions given in (2.5), (2.7) and (2.8). Consequently, Theorems 1

and 2 can be used to recover in a unified form known results on extremal values of

VDB topological indices over chemical graphs, and can also be applied to study new

VDB topological indices.

3. Elliptic Sombor index of chemical trees

Next we consider the elliptic Sombor index among chemical trees. Let Cn denote the

set of all chemical trees with n vertices. In [4, Theorem 5], it was shown that Pn has

the minimal ESO-value among all n-vertex trees. Evidently, then Pn has minimal

ESO-value also among all n-vertex chemical trees. In spite of this, in order that the

present paper be self-contained, we state it for chemical trees.

Theorem 3. Let n be a positive integer. Among all chemical trees in Cn, the minimal
value of ESO is attained in the unique path tree Pn.

Next we consider the maximal value problem of ESO among chemical trees with n

vertices. Let ϕ (i, j) = (i + j)
√

i2 + j2 and consider the following functions:

f (p, q) = [ϕ (2, p)− ϕ (3, p)] + [ϕ (2, q)− ϕ (3, q)] ,
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g (p, q, r) = [ϕ (2, p)− ϕ (4, p)] + [ϕ (3, q)− ϕ (4, q)]

+ [ϕ (3, r)− ϕ (4, r)] ,

and

h (p, q, r, s) = [ϕ (3, p)− ϕ (4, p)] + [ϕ (3, q)− ϕ (2, q)]

+ [ϕ (3, r)− ϕ (4, r)] + [ϕ (3, s)− ϕ (4, s)] ,

where p, q, r, s are integers such that 4 ≥ p, q, r, s ≥ 1. Let us consider the following

subsets of Cn:

C00 (n) = {T ∈ Cn | n2(T ) = n3(T ) = 0} ,

C10 (n) = {T ∈ Cn | n2(T ) = 1, n3(T ) = 0} ,

and

C01 (n) = {T ∈ Cn | n2(T ) = 0, n3(T ) = 1} .

It was shown in [1] that exactly one of the sets C00 (n), C10 (n) , or C01 (n) is non-empty

for each positive integer n (see Figures 1, 2, and 3).

Theorem 4. Let n be a positive integer. Among all trees in Cn, the maximal value of
ESO is attained by any of the trees U , V , W , satisfying the conditions:

1. U ∈ C10 (n) such that m1,2 (U) = 1 if n ≡ 0 mod 3 and n ≥ 6;

2. V ∈ C01 (n) such that m1,3 (V ) = 2 if n ≡ 1 mod 3 and n ≥ 7;

3. W ∈ C00 (n) if n ≡ 2 mod 3 and n ≥ 5.

Proof. As we can see in Tables below, the following relations hold:

f (p, q) + ϕ (2, 2)− ϕ (1, 3) < 0 (3.1)

and

f (p, q) + 2ϕ (2, 4)− ϕ (1, 4)− ϕ (3, 4) < 0, (3.2)

for all 1 ≤ p ≤ q ≤ 4;

g (p, q, r) + ϕ (2, 3)− ϕ (1, 4) < 0 (3.3)

and

g (p, q, r) + ϕ (2, 4)− ϕ (1, 4) + ϕ (3, 4)− ϕ (4, 4) < 0, (3.4)

for all 1 ≤ p ≤ 4 and 1 ≤ q ≤ r ≤ 4;

h (p, q, r, s) + ϕ (3, 3)− ϕ (2, 4) < 0 (3.5)
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and

h (p, q, r, s) + 2ϕ (3, 4)− ϕ (2, 4)− ϕ (4, 4) < 0, (3.6)

in any of the following situations, where p 6= 2, q 6= 2, r 6= 2 and s 6= 2 :

p = r = 1 ; 1 ≤ q ≤ s ≤ 4;

3 ≤ p ≤ q ≤ 4 ; 1 ≤ r ≤ s ≤ 4.

Moreover,

ϕ (1, 2)− ϕ (1, 4) + ϕ (4, 4)− ϕ (2, 4) > 0 (3.7)

and

ϕ (4, 4)− ϕ (1, 4) + ϕ (1, 3)− ϕ (3, 4) > 0. (3.8)

Now the result follows from [1, Theorem 3.2].

. . .

Figure 1. Trees in C00(n) when n ≡ 2 mod 3.

. . .

Figure 2. Trees in C10(n) when n ≡ 0 mod 3

. . .

Figure 3. Trees in C01(n) when n ≡ 1 mod 3.
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Table 1. Approximate values of the left hand side of conditions (3.1) and (3.2).
p q Value (3.1) Value (3.2)

1 1 -13.217 -13.831

1 2 -13.990 -14.604

1 3 -14.704 -15.318

1 4 -15.443 -16.057

2 2 -14.763 -15.377

2 3 -15.477 -16.092

2 4 -16.216 -16.831

3 3 -16.191 -16.806

3 4 -16.930 -17.545

4 4 -17.669 -18.284

Table 2. Approximate values of the left hand side of conditions (3.3) and (3.4).
p q r Value (3.3) Value (3.4)

1 1 1 -32.427 -33.877

1 1 2 -33.266 -34.716

1 1 3 -34.005 -35.455

1 1 4 -34.716 -36.166

1 2 2 -34.105 -35.554

1 2 3 -34.844 -36.294

1 2 4 -35.554 -37.004

1 3 3 -35.583 -37.033

1 3 4 -36.294 -37.743

1 4 4 -37.004 -38.454

2 1 1 -34.039 -35.489

2 1 2 -34.878 -36.328

2 1 3 -35.617 -37.067

2 1 4 -36.328 -37.777

2 2 2 -35.716 -37.166

2 2 3 -36.456 -37.905

2 2 4 -37.166 -38.616

2 3 3 -37.195 -38.644

2 3 4 -37.905 -39.355

2 4 4 -38.616 -40.066

3 1 1 -35.492 -36.942

3 1 2 -36.331 -37.781

3 1 3 -37.070 -38.520

3 1 4 -37.781 -39.231

3 2 2 -37.170 -38.619

3 2 3 -37.909 -39.359

3 2 4 -38.619 -40.069

3 3 3 -38.648 -40.098

3 3 4 -39.359 -40.808

3 4 4 -40.069 -41.519

4 1 1 -36.942 -38.392

4 1 2 -37.781 -39.231

4 1 3 -38.520 -39.970

4 1 4 -39.231 -40.680

4 2 2 -38.619 -40.069

4 2 3 -39.359 -40.808

4 2 4 -40.069 -41.519

4 3 3 -40.098 -41.547

4 3 4 -40.808 -42.258

4 4 4 -41.519 -42.969
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Table 3. Approximate values of the left hand side of conditions (3.5) and (3.6).
p q r s Value (3.5) Value (3.6)

1 1 1 1 -19.335 -20.045

1 1 1 3 -20.913 -21.623

1 1 1 4 -21.623 -22.334

1 3 1 3 -19.425 -20.136

1 3 1 4 -20.136 -20.847

1 4 1 4 -19.397 -20.108

3 3 1 1 -19.425 -20.136

3 3 1 3 -21.003 -21.714

3 3 1 4 -21.714 -22.424

3 3 3 3 -22.581 -23.292

3 3 3 4 -23.292 -24.002

3 3 4 4 -24.002 -24.713

3 4 1 1 -18.686 -19.397

3 4 1 3 -20.264 -20.975

3 4 1 4 -20.975 -21.685

3 4 3 3 -21.842 -22.552

3 4 3 4 -22.552 -23.263

3 4 4 4 -23.263 -23.974

4 4 1 1 -19.397 -20.108

4 4 1 3 -20.975 -21.685

4 4 1 4 -21.685 -22.396

4 4 3 3 -22.552 -23.263

4 4 3 4 -23.263 -23.974

4 4 4 4 -23.974 -24.684

Table 4. Approximate values of the left hand side of conditions (3.7) and (3.8).

Value (3.7) Value (3.8)

4.514 2.288
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