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Abstract: The crossing number cr(G) of a graph G is the minimum number of edge

crossings over all drawings of G in the plane. In the paper, we extend known results

concerning crossing numbers of join products of two small graphs with cycles. The
crossing number of the join product G∗+Cn for the disconnected graph G∗ consisting

of the complete graph K4 and one isolated vertex is given, where Cn is the cycle on n
vertices. The proof of the main result is done with the help of lemma whose proof is

based on a special redrawing technique. Up to now, the crossing numbers of G + Cn

are done only for a few disconnected graphs G. Finally, by adding new edge to the
graph G∗, we are able to obtain the crossing number of G1 + Cn for one other graph

G1 of order five.
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1. Introduction

The problem of reducing the number of crossings is interesting in many areas. In

network visualizations, it can help to understand the network’s underlying structure

and identify important nodes and connections [1]. In electronic circuit design, min-

imizing the number of edge crossings is important for reducing signal interference

and improving circuit performance. Graph drawings with fewer crossings can lead to

more efficient and reliable circuit designs [20]. Crossing numbers were also studied
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2 The crossing numbers of join products of K4 ∪K1 with cycles

to improve the readability of hierarchical structures and automated graphs. The vi-

sualized graph should be easy to read and understand. For the sake of the clarity

of the graphical drawings, the reduction in crossings is likely the most important.

Therefore, the investigation on the crossing number of simple graphs is a classical

but very difficult problem. Garey and Johnson [6] proved that determining cr(G)

is an NP-complete problem. Nevertheless, many researchers are trying to solve this

problem. Note that the exact values of the crossing numbers are known for some

families of graphs, see Clancy et al. [4].

Let G be a simple graph (without loops or multiple edges). We use V (G) and E(G) to

denote the vertex set and the edge set of G, respectively. The used graph terminology

is taken from the book [31]. A drawing of G is a representation of G in the plane such

that its vertices are represented by distinct points and its edges by simple continuous

arcs connecting the corresponding point pairs. The crossing number cr(G) is the

smallest number of edge crossings over all drawings of G in the plane. It is easy to see

that a drawing with a minimum number of crossings (an optimal drawing) is always a

good drawing, meaning that no edge crosses itself, no two edges cross more than once,

and no two edges are incident with the same vertex cross. Let D be a good drawing

of the graph G. We denote the number of crossings in D by crD(G). Let Gi and Gj

be edge-disjoint subgraphs of G. We denote the number of crossings between edges of

Gi and edges of Gj by crD(Gi, Gj), and the number of crossings among edges of Gi

in D by crD(Gi). It is easy to see that for any three mutually edge-disjoint subgraphs

Gi, Gj , and Gk of G, the following equations hold:

crD(Gi ∪Gj) = crD(Gi) + crD(Gj) + crD(Gi, Gj) , (1.1)

crD(Gi ∪Gj , Gk) = crD(Gi, Gk) + crD(Gj , Gk) . (1.2)

It was Turán [30] who introduced the concept of crossing numbers. In his Brick

Factory Problem, he investigated the minimal number of crossings among edges of

the complete bipartite graphs Km,n. Kleitman in [9] showed that

cr(Km,n) =
⌊m

2

⌋⌊m− 1

2

⌋⌊n
2

⌋⌊n− 1

2

⌋
, if min{m,n} ≤ 6. (1.3)

The join product of two different graphs Gi and Gj , denoted Gi+Gj , is obtained from

vertex-disjoint copies of Gi and Gj by adding all edges between V (Gi) and V (Gj). For

|V (Gi)| = m and |V (Gj)| = n, the edge set of Gi+Gj is the union of the disjoint edge

sets of the graphs Gi, Gj , and the complete bipartite graph Km,n. Let Pn and Cn be

the path and the cycle on n vertices, respectively, and let Dn denote the discrete graph

(sometimes called empty graph) on n vertices. The crossings numbers of join products

of paths and cycles with all graphs of order at most four have been well-known for

a long time by Klešč [10, 12], and Klešč and Schrötter [15]. It is understandable that

our immediate aim is to establish exact values for crossing numbers of G + Pn and

G + Cn also for all graphs G of order five and six. Of course, the crossing numbers
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of G + Pn and G + Cn are already known for a lot of graphs G of order five and

six [2, 11, 13, 16, 18, 21, 27–29]. In all these cases, the graph G is connected and

usually contains at least one cycle. Note that cr(G+ Pn) and cr(G+ Cn) are known

only for some disconnected graphs G on five or six vertices [5, 17, 23–26]. To date, the

crossing number of K3∪2K1+Pn, K3∪2K1+Cn and K4∪K1+Cn can only be given

as a conjecture. The last open problem will be solved in our paper. For this purpose,

we present a new technique regarding the use of knowledge from the subgraphs whose

values of crossing numbers are already known. It is appropriate to combine this idea

with possibility of an existence of a separating cycle in some particular drawing of

investigated graph. In a good drawing D of some graph G, we say that a cycle C

separates some two different vertices of the subgraph G\C (obtained by removing all

vertices of C with their corresponding incident edges from G) if they are contained

in different components of R2 \ C, where R2 means a two-dimensional space. This

considered cycle C is said to be a separating cycle of the graph G in D.

LetG∗ be the disconnected graph consisting of the complete graphK4 and one isolated

vertex. The crossing numbers of the join products of G∗ with the discrete graphs Dn

were well-known by Staš [22] using a lot of properties of cyclic permutations. This

established result has been extended to the crossing number of G∗ + Pn thanks to

Staš and Švecová [24]. The main aim of the paper is to establish cr(G∗ + Cn) for all

n at least three. The crossing number of G∗ +Cn equal to 4
⌊
n
2

⌋⌊
n−1
2

⌋
+ n+

⌊
n
2

⌋
+ 3

is determined in Theorem 3 with the proof that is strongly based on Lemma 7. This

lemma with a very special innovative proof could also be used to establish crossing

numbers of other graphs. The paper concludes by giving the crossing numbers of

G1 + Cn in Corollary 4 for the graph G1 by adding one new edge to G∗, the result

of which has already been claimed by Li [19]. Since this paper does not seem to be

available in English, we have not been able to verify this result but we can certainly

say that the author’s result is incorrect for the graph G1 + P2 thanks to Theorem 2.

In the proofs of the paper, we will often use the term “region” also in nonplanar

subdrawings. In this case, crossings are considered to be vertices of the “map”.

2. The crossing numbers of G∗ +Dn and G∗ + Pn

Let G∗ = (V (G∗), E(G∗)) be the disconnected graph on five vertices consisting of the

complete graph K4 and one isolated vertex, and let also V (G∗) = {v1, v2, . . . , v5}. In

the rest of the paper, let v5 be the vertex notation of the isolated vertex of G∗ in all

considered good subdrawings of the graph G∗. In [22], three possible non isomorphic

drawings of G∗ were described. They are presented in Figure 1 with the corresponding

vertex notation.

We consider the join product of the graph G∗ with the discrete graph Dn, which

yields that G∗ + Dn (sometimes used notation G∗ + nK1) consists of just one copy

of G∗ and n vertices t1, t2, . . . , tn. Here, each vertex ti, i = 1, 2, . . . , n, is adjacent to

every vertex of the graph G∗. Let T i, 1 ≤ i ≤ n, denote the subgraph induced by five

edges incident with the fixed vertex ti. This means that the graph T 1 ∪ · · · ∪ Tn is
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Figure 1. Three possible non isomorphic drawings of the graph G∗.

isomorphic to the complete bipartite graph K5,n and

G∗ +Dn = G∗ ∪

(
n⋃

i=1

T i

)
. (2.1)

The obtained equality (2.1) together with the crossing property (1.1) produce

crD(G∗ +Dn) = crD(G∗) + crD

(
n⋃

i=1

T i

)
+ crD

(
G∗,

n⋃
i=1

T i

)
(2.2)

for all good drawings D of G∗ + Dn. The graph G∗ + Pn contains G∗ + Dn as a

subgraph, and therefore let P ∗n denote the path induced on n vertices of G∗ +Pn not

belonging to the subgraph G∗. The path P ∗n consists of the vertices t1, t2, . . . , tn and

n− 1 edges titi+1 for i = 1, 2, . . . , n− 1, and thus

G∗ + Pn = G∗ ∪

(
n⋃

i=1

T i

)
∪ P ∗n . (2.3)

Similarly, the graph G∗ +Cn contains both G∗ +Dn and G∗ + Pn as subgraphs. Let

C∗n denote the subgraph of G∗ + Cn induced on the vertices t1, t2, . . . , tn. Therefore,

G∗ + Cn = G∗ ∪

(
n⋃

i=1

T i

)
∪ C∗n. (2.4)

We consider a good drawing D of G∗ + Dn. The rotation rotD(ti) of a vertex ti in

the drawing D as the cyclic permutation that records the (cyclic) counter-clockwise

order in which the edges leave ti have been defined by Hernández-Vélez et al. [8] or

Woodall [32]. We use the notation (12345) if the counter-clockwise order the edges

incident with the vertex ti is tiv1, tiv2, tiv3, tiv4, and tiv5. We recall that rotation

is a cyclic permutation. In the given drawing D, it is highly desirable to separate

n subgraphs T i into three mutually disjoint subsets of subgraphs depending on the

number of crossings between T i and G∗ in D. Let us denote by RD and SD the set

of subgraphs for which crD(G∗, T i) = 0 and crD(G∗, T i) = 1, respectively. Every

other subgraph T i crosses G∗ at least twice in D. For T i ∈ RD ∪ SD, let F i denote
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the subgraph G∗ ∪ T i, i ∈ {1, 2, . . . , n}, of G∗ +Dn and let D(F i) be its subdrawing

induced by D. Clearly, this idea of dividing all subgraphs T i into three mentioned

subsets of subgraphs will be also retained in all drawings of the join products G∗+Pn

and G∗ + Cn.

The crossing numbers of G∗ + Dn equal to 4
⌊
n
2

⌋⌊
n−1
2

⌋
+ n +

⌊
n
2

⌋
were established

by Staš [22]. Using the results of Staš and Švecová [24], the crossing numbers of the

graphs G∗ + Pn have already been well-known for any n ≥ 2.

Theorem 1 ([22], Theorem 3.1). cr(G∗ +Dn) = 4
⌊
n
2

⌋⌊
n−1
2

⌋
+ n+

⌊
n
2

⌋
for n ≥ 1.

Figure 2. The drawing of G∗ + Pn with 4
⌊

n
2

⌋⌊
n−1
2

⌋
+ n +

⌊
n
2

⌋
+ 1 crossings for n ≥ 3.

Theorem 2 ([24], Lemma 2.2, Theorem 2.4). cr(G∗+P2) = 3 and cr(G∗+Pn) =
4
⌊
n
2

⌋⌊
n−1
2

⌋
+ n+

⌊
n
2

⌋
+ 1 for n ≥ 3.

Due to Theorem 2, the good drawing of G∗ +Pn in Figure 2 is optimal. To date, the

crossing number of G∗ + Cn can only be given as a conjecture. This open problem

will be solved in the next section.

3. The crossing number of G∗ + Cn

For the vertices v1, v2, . . . , v5 of the graph G∗, let T vi denote the subgraph induced

by n edges joining the vertex vi with n vertices of C∗n. The edges joining the vertices

of G∗ with the vertices of C∗n form the complete bipartite graph K5,n, and so

G∗ + Cn = G∗ ∪

(
5⋃

i=1

T vi

)
∪ C∗n. (3.1)

In the proof of main theorem of this section, the following three statements related

to some restricted subdrawings of G+ Cn will be also required.
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Lemma 1 ([10], Lemma 2.2). For m ≥ 2 and n ≥ 3, let D be a good drawing of
Dm + Cn in which no edge of C∗n is crossed, and C∗n does not separate the other vertices of
the graph. Then, for all i, j = 1, 2, . . . ,m, two different subgraphs T vi and T vj cross each
other in D at least

⌊
n
2

⌋⌊
n−1
2

⌋
times.

Corollary 1 ([14], Corollary 4). For m ≥ 2 and n ≥ 3, let D be a good drawing of
the join product Dm +Cn in which the edges of C∗n do not cross each other and C∗n does not
separate p vertices v1, v2, . . . , vp, 2 ≤ p ≤ m. Let T v1 , T v2 , . . . , T vq , q < p, be the subgraphs
induced on the edges incident with the vertices v1, v2, . . . , vq that do not cross C∗n. If k edges
of some subgraph T vj induced on the edges incident with the vertex vj, j ∈ {q+1, q+2, . . . , p},
cross the cycle C∗n, then the subgraph T vj crosses each of the subgraphs T v1 , T v2 , . . . , T vq at
least

⌊
n−k
2

⌋⌊ (n−k)−1
2

⌋
times in D.

Lemma 2 ([14], Lemma 1). For m ≥ 1, let G be a graph of order m. In an optimal
drawing of the join product G+ Cn, n ≥ 3, the edges of C∗n do not cross each other.

We can always redraw a crossing of two edges of C∗n in an effort to get a new drawing

of C∗n (with vertices in a different order) with less number of edge crossings. Based

on the arguments above, we will assume that edges of C∗n do not cross each other in

all considered subdrawings D(C∗n) induced by a good drawing D of G∗ + Cn.

In the following, we are able to compute the exact values of crossing numbers of

the join products of the graph G∗ with both cycles C3 and C4 using the algorithm

located on the website http://crossings.uos.de/. This algorithm can find the

crossing numbers of small undirected graphs. It uses an ILP formulation, based

on Kuratowski subgraphs, and solves it via branch-and-cut-and-price. The system

also generates verifiable formal proofs, as described by Chimani and Wiedera [3].

Unfortunately, the capacity of this system is restricted.

Lemma 3. cr(G∗ + C3) = 11 and cr(G∗ + C4) = 17.

Lemma 4. For n ≥ 5, let D be a good drawing of G∗+Cn in which all vertices of the cycle
C∗n are not placed in one region of D(G∗), then there are at least 4

⌊
n
2

⌋⌊
n−1
2

⌋
+ n+

⌊
n
2

⌋
+ 3

crossings in D.

Proof. By Theorem 1, the required number of crossings can be obtained if the

edges of the cycle C∗n are crossed at least three times in D. Now, let us consider

crD(G∗, C∗n) = 2, and therefore each of five subgraphs T vi does not cross any edge of

C∗n. At least four vertices of the graph G∗ must be placed in the same region of D(C∗n)

because G∗ contains K4 as a subgraph. We have at least four distinct i, j ∈ {1, 2, 3, 4}
such that any two different considered subgraphs T vi and T vj cross each other at least⌊
n
2

⌋⌊
n−1
2

⌋
times by Lemma 1, which yields that there are at least

(
4
2

)⌊
n
2

⌋⌊
n−1
2

⌋
+ 2

crossings in D. As
(
4
2

)⌊
n
2

⌋⌊
n−1
2

⌋
+ 2 ≥ 4

⌊
n
2

⌋⌊
n−1
2

⌋
+ n +

⌊
n
2

⌋
+ 3 for n at least five,

the proof of Lemma 4 is done.
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The crossing numbers of G∗+Pn equal to 4
⌊
n
2

⌋⌊
n−1
2

⌋
+n+

⌊
n
2

⌋
+ 1 were established

by Staš and Švecová [24]. The proof of Theorem 2.4 for the planar drawing of G∗

in Figure 1(a) (with the same notation of vertices preserved) was strongly based on

twelve possible configurations Ap and Bq, p, q ∈ {1, . . . , 6} for possible subgraphs by

which edges of G∗ are crossed exactly once. As the same fixation in all four subcases

of Case 1 in Theorem 2.4 can be also applied, the proof of Corollary 2 can be omitted.

Corollary 2. For n ≥ 5, let D? be a good drawing of G∗+Dn with the planar subdrawing
of G∗ induced by D?. If |SD? | = n, then there are at least 4

⌊
n
2

⌋⌊
n−1
2

⌋
+n+

⌊
n
2

⌋
+1 crossings

in D?.

Lemma 5. For n ≥ 5, let D be a good drawing of G∗+Cn with the planar subdrawing of G∗

induced by D. If edges of C∗n are crossed twice, then there are at least 4
⌊
n
2

⌋⌊
n−1
2

⌋
+n+

⌊
n
2

⌋
+3

crossings in D.

Proof. Let D be a good drawing of G∗+Cn with at most 4
⌊
n
2

⌋⌊
n−1
2

⌋
+n+

⌊
n
2

⌋
+ 2

crossings in which the edges of C∗n are crossed twice. By Theorem 1, let D
′

be the

optimal subdrawing of G∗ + Dn induced by D without n edges of C∗n with exactly

4
⌊
n
2

⌋⌊
n−1
2

⌋
+ n +

⌊
n
2

⌋
crossings. Let us consider a separating cycle C3 = v1v2v4v1

of G∗ in the planar subdrawing D
′
(G∗) shown in Figure 1(a). Since two remaining

vertices v3 and v5 of G∗ lie in different regions of D
′
(C3), there is no subgraph T i

by which the edges of C3 are not crossed. Hence, each subgraph T i crosses edges

of C3 at least once, which yields that crD′ (C3,
⋃n

i=1 T
i) ≥ n. Let H be the graph

difference of graphs G∗ and C3, i.e., H is isomorphic to the graph K1,3 ∪ K1. The

exact value for the crossing number of H+Dn is given by Klešč and Staš [17], that is,

cr(H +Dn) = 4
⌊
n
2

⌋⌊
n−1
2

⌋
+
⌊
n
2

⌋
. Based on these arguments and using Lemma 4, the

edges of the separating cycle C3 must be crossed by each subgraph T i just once, i.e.,

|SD′ | = n. In this case, Corollary 2 contradicts the considered number of crossings in

the optimal drawing D
′

of G∗ + Cn.

Lemma 6. For n ≥ 5, let D be a good drawing of G∗+Cn with the nonplanar subdrawing
of G∗ induced by D and one region with all five vertices of G∗ located on its boundary. If
2|RD| ≥ n+1 and edges of C∗n are crossed at least once, then there are at least 4

⌊
n
2

⌋⌊
n−1
2

⌋
+

n+
⌊
n
2

⌋
+ 3 crossings in D.

Proof. Let D be a good drawing of G∗+Cn with at least one crossing on edges of C∗n.

The nonplanar subdrawing of the graph G∗ can be obtained from the unique drawing

(with respect to isomorphisms) in Figure 1(c). Note that the set SD is empty for a

such drawing ofG∗. For easier reading, let r = |RD|. Assuming 2r ≥ n+1, there are at

least two different subgraphs by which edges of G∗ are not crossed. For some T i ∈ RD,

there is only one subdrawing of (G∗ ∪T i) \ v5 represented by the rotation (1432) and

therefore we have four possibilities how to obtain the subdrawing of G∗∪T i depending

on which region the vertex v5 is placed in. Let ND be the set of all configurations

for the drawing D belonging to N = {E1, E2, E3, E4}, where a subdrawing of any
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subgraph G∗ ∪ T i has the configuration Ep represented by some cyclic permutation

with rotD(ti) = Ep for p ∈ {1, 2, 3, 4}, see also Figure 3. Namely, E1 = (14325),

E2 = (14532), E3 = (14352) and E4 = (15432).

Figure 3. Four drawings of possible configurations from N of subgraph G∗ ∪ T i.

In Table 1, there are all necessary numbers of crossings between two subgraphs T i and

T j with configurations Ep and Eq of the subgraphs F i = G∗ ∪ T i and F j = G∗ ∪ T j ,

respectively. The obtained values can be obtained using their drawings, but they were

also established in Table 2 of [22] using properties of cycles permutations.

− E1 E2 E3 E4
E1 4 2 3 3

E2 2 4 3 3

E3 3 3 4 2

E4 3 3 2 4

Table 1. The minimum number of crossings between T i and T j with conf(F i) = Ep and conf(F j) = Eq .

For these T i, T j ∈ RD, we will discuss the existence of possible configurations of

subgraphs F i = G∗ ∪ T i and F j = G∗ ∪ T j , and we will show that in all cases it

is possible to verify at least 4
⌊
n
2

⌋⌊
n−1
2

⌋
+ n +

⌊
n
2

⌋
+ 3 crossings in the drawing D.

We remind that all vertices ti of the cycle C∗n are placed in the same outer region of

D(G∗) in all three following subcases due to Lemma 4.

a) {Ep, Ep+1} ⊆ ND for some p ∈ {1, 3}. Without lost of generality, let us consider

two different subgraphs T i, T j ∈ RD such that F i and F j have configurations E1
and E2, respectively. Then, crD(T i ∪ T j , T k) ≥ 6 holds for each other T k ∈ RD

by summing of two corresponding values of Table 1. For any T k 6∈ RD and



M. Staš, M. Timková 9

l = 1, . . . , 5, it is not difficult to verify that the edge tkvl with at least one

crossing on edges of G∗ can be redrawn to an edge (preserving the incidence

of the given two vertices tk and vl) with no crossing on edges of G∗ without

increasing the number of crossings in D(G∗ ∪ T i ∪ T j). This means that each

of n− r subgraphs T k 6∈ RD of K5,n−2 crosses G∗ ∪ T i ∪ T j at least six times.

Thus, by fixing the subgraph G∗ ∪ T i ∪ T j , we have

crD(G∗ + Cn) = crD(K5,n−2) + crD(K5,n−2, G
∗ ∪ T i ∪ T j) + crD(G∗ ∪ T i ∪ T j)

+ crD(K5,n ∪G∗, C∗n)

≥ 4
⌊n− 2

2

⌋⌊n− 3

2

⌋
+ 6(r − 2) + 6(n− r) + 3 + 1

= 4
⌊n− 2

2

⌋⌊n− 3

2

⌋
+ 6n− 8 ≥ 4

⌊n
2

⌋⌊n− 1

2

⌋
+ n+

⌊n
2

⌋
+ 3.

In the following, suppose that {E1, E2} 6⊆ ND and {E3, E4} 6⊆ ND.

b) ND = {Ep, Eq} for two different p, q = 1, 2, 3, 4. Without lost of generality, let

us assume the configurations E1 of F i with rotD(ti) = (14325) and E3 of F j

with rotD(tj) = (14352). Again, by summing of two corresponding values of

Table 1, crD(T i∪T j , T k) ≥ 4 + 3 = 7 is fulfilling for each other T k ∈ RD. Since

the minimum number of interchanges of adjacent elements of (14325) required

to produce (14352) is one, each other subgraph T k crosses edges of T i ∪ T j at

least once, that is, crD(T i ∪ T j , T k) ≥ 3 due to the Woodall’s result [32] for

our graph G∗ of odd order five. As the set SD is empty, by fixing the subgraph

G∗ ∪ T i ∪ T j , we have

crD(G∗ + Cn) ≥ 4
⌊n− 2

2

⌋⌊n− 3

2

⌋
+ 7(r − 2) + 5(n− r) + 4 + 1

= 4
⌊n− 2

2

⌋⌊n− 3

2

⌋
+ 5n+ 2r − 9 ≥ 4

⌊n− 2

2

⌋⌊n− 3

2

⌋
+ 5n+ n+ 1− 9 ≥ 4

⌊n
2

⌋⌊n− 1

2

⌋
+ n+

⌊n
2

⌋
+ 3.

c) ND = {Ep} for only one p ∈ {1, 2, 3, 4}. In the rest of the proof, we can assume

that T i, T j ∈ RD with the same configuration E1 of the subgraphs F i, F j . In

the same way as in the previous case, by fixing the subgraph G∗ ∪ T i ∪ T j , we

obtain

crD(G∗ + Cn) ≥ 4
⌊n− 2

2

⌋⌊n− 3

2

⌋
+ 8(r − 2) + 4(n− r) + 5 + 1

= 4
⌊n− 2

2

⌋⌊n− 3

2

⌋
+ 4n+ 4r − 10 ≥ 4

⌊n− 2

2

⌋⌊n− 3

2

⌋
+ 4n+ 2(n+ 1)− 10 ≥ 4

⌊n
2

⌋⌊n− 1

2

⌋
+ n+

⌊n
2

⌋
+ 3.
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By Lemma 6 for the subdrawing G∗ in Figure 1(c), there are at most
⌊
n
2

⌋
subgraphs

T i ∈ RD for any good drawing D of G∗ +Cn with at most 4
⌊
n
2

⌋⌊
n−1
2

⌋
+ n+

⌊
n
2

⌋
+ 2

crossings if edges of C∗n are crossed at least once. Thus, we obtain crD(G∗,
⋃n

i=1 T
i) ≥

n in D because the set SD is empty.

Corollary 3. For n ≥ 6, let D be a good drawing of G∗+Cn with the nonplanar subdraw-
ing of G∗ induced by D and one region with all five vertices of G∗ located on its boundary. If
2|RD| ≥ n and edges of C∗n are crossed twice, then there are at least 4

⌊
n
2

⌋⌊
n−1
2

⌋
+n+

⌊
n
2

⌋
+3

crossings in D.

Proof. For n ≥ 7, the same fixations as in the proof of Lemma 6 can be applied.

The same idea applies to n = 6 in the first two subcases. It is sufficient to fix the

subgraph G∗ ∪ T i for some T i ∈ RD in the last subcase of ND = {Ep}, and we also

achieve the desired result provided by

crD(G∗+C6) ≥ 4
⌊6− 1

2

⌋⌊6− 2

2

⌋
+4(|RD|−1)+3(6−|RD|)+1+2 = 33+|RD| ≥ 36.

By Corollary 3 for the subdrawing G∗ in Figure 1(c), similarly as by Lemma 6,

we obtain crD(G∗,
⋃n

i=1 T
i) ≥ n + 1 in any drawing D of G∗ + Cn with at most

4
⌊
n
2

⌋⌊
n−1
2

⌋
+ n+

⌊
n
2

⌋
+ 2 crossings two of which are on edges of C∗n.

Lemma 7. Let D be a good drawing of G∗ + C5 with crD(T v5 , C∗5 ) = 0. If the edges of
T v5 are crossed at most five times, then there are at least 26 crossings in D.

Proof. Due to Lemma 4 together with the assumption crD(T v5 , C∗5 ) = 0, consider

a good drawing D of G∗+C5 in which the edges of the cycle C∗5 can only be crossed by

some subgraph T vj for j ∈ {1, 2, 3, 4}. Let α and β denote the numbers of crossings

on edges of subgraphs T v5 and (G∗+C5)−T v5 in D, respectively. In the following, by

eliminating the vertex v5 of G∗, we will transform the drawing D into a new drawing

D? of a graph isomorphic to the complete graph K9.

The plane is a normal space. Hence, in the plane there is an open set Av5
such that

Av5 contains v5 together with the corresponding segments of uncrossed parts of five

edges. All remaining edges of the drawing D are disjoint with Av5 , see Figure 4(a).

Figure 4(b) shows that uncrossed parts of five edges can be removed in Av5 and the

subsequent duplication of remaining parts of five edges outside Av5 enforces exactly

α new crossings. Finally, let G? be the graph obtained by removing the vertex v5
and adding five new continuous arcs connecting the corresponding pair of points from

the boundary of Av5 as shown in Figure 4(c). The obtained graph G? contains K5

induced by the vertices of C∗5 , and therefore, a new drawing D? (not necessarily a

good drawing) of a graph isomorphic to K9 with just 2α+β+ 5 crossings is achieved

(five new crossings have been created in Av5).
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Figure 4. Elimination of the isolated vertex v5 of G∗.

It was proved by Guy [7] that cr(K9) = 36. Taking into account the assumption that

α ≤ 5, we obtain α + β ≥ 26 in D according to at least 36 crossings on edges of K9

in the drawing D?.

LetD be a good drawing of the graphG∗+Cn, we distinguish two types of this drawing

D. A drawing D of G∗ + Cn is of type AD or BD if C∗n is not a separating cycle of

the graph G∗ in D or C∗n is a separating cycle of the graph G∗ in D, respectively.

Theorem 3. cr(G∗ + Cn) = 4
⌊
n
2

⌋⌊
n−1
2

⌋
+ n+

⌊
n
2

⌋
+ 3 for n ≥ 3.

Proof. By Lemma 3, the result holds for n = 3 and n = 4. Into the drawing in

Figure 2, it is possible to add the edge t1tn which forms the cycle C∗n on vertices of

P ∗n with just two additional crossings, i.e., C∗n is crossed by two edges v2v3 and v2v4
of the graph G∗. Thus cr(G∗ +Cn) ≤ 4

⌊
n
2

⌋⌊
n−1
2

⌋
+ n+

⌊
n
2

⌋
+ 3 for n ≥ 3, and let us

suppose that there is an optimal drawing D of G∗ + Cn such that

crD(G∗ + Cn) ≤ 4
⌊n

2

⌋⌊n− 1

2

⌋
+ n+

⌊n
2

⌋
+ 2 for some n ≥ 5. (3.2)

By Theorem 1, there are at most two crossings on the edges of C∗n in D, and we can

also suppose that edges of C∗n do not cross each other using Lemma 2. If the drawing

D is of type BD, then the isolated vertex v5 lies in different region of D(C∗n) as the

four vertices v1, v2, v3, v4 of G∗. Now, three possible cases may occur:

Case 1: There is no crossing on edges of C∗n. Any two different considered sub-

graphs T vi and T vj for i, j ∈ {1, 2, 3, 4}, cross each other at least
⌊
n
2

⌋⌊
n−1
2

⌋
times by

Lemma 1. There are at least
(
4
2

)⌊
n
2

⌋⌊
n−1
2

⌋
crossings in D which confirms a contradic-

tion with the assumption (3.2) for every n ≥ 6. If n = 5, by Lemma 7 we have at least

six others crossings on the edges of T v5 in D which contradicts the assumption (3.2).

Case 2: There is exactly one crossing on edges of C∗n. If the drawing D is of type

AD, then by Lemma 1, Corollary 1 for p = 5, q = 4, k = 1, we have at least(
4
2

)⌊
n
2

⌋⌊
n−1
2

⌋
+ 4

⌊
n−1
2

⌋⌊
n−2
2

⌋
> 4

⌊
n
2

⌋⌊
n−1
2

⌋
+ n +

⌊
n
2

⌋
+ 2 crossings in D which
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confirms a contradiction with the assumption (3.2). For the drawing D of type BD,

we discuss two subcases:

(a) Let crD(T v5 , C∗n) = 1. Using Lemma 1, one crossing on C∗n and at least one

crossing between T v5 and T vi , i ∈ {1, 2, 3, 4}, we have at least
(
4
2

)⌊
n
2

⌋⌊
n−1
2

⌋
+ 1 + 1 >

4
⌊
n
2

⌋⌊
n−1
2

⌋
+n+

⌊
n
2

⌋
+ 2 crossings in D which also confirms a contradiction with the

assumption (3.2).

(b) Let crD(T vi , C∗n) = 1 for only one i ∈ {1, 2, 3, 4}. Note that RD = ∅ for both

subdrawings ofG∗ induced byD given in Figure 1(a) and 1(b). This fact together with

Lemma 6 for the subdrawing of G∗ given in Figure 1(c) imply crD(G∗,
⋃n

m=1 T
m) ≥ n.

In the following, by Lemma 1 and Corollary 1 for p = 4, q = 3, k = 1, we have at least(
3
2

)⌊
n
2

⌋⌊
n−1
2

⌋
+ 3
⌊
n−1
2

⌋⌊
n−2
2

⌋
+n crossings in D. This again confirms a contradiction

with the assumption (3.2) for every n ≥ 6. Lemma 7 contradicts (3.2) for n = 5

because T vi cannot cross T v5 at least six times.

Case 3: There are exactly two crossings on edges of C∗n. In this case we consider also

one crossing among the edges of G∗ in D thanks to Lemma 5. If the subdrawing of

G∗ in D is given in Figure 1(b), then RD = ∅. In addition if the drawing D is of type

BD then SD = ∅ due to Lemma 4. For the subdrawing of G∗ given in Figure 1(c) we

use Corollary 3, so there are at least n + 1 crossings between the edges of the graph

G∗ and
⋃n

m=1 T
m for n ≥ 6. For both drawings we consider two cases. If the drawing

D is of type AD, then crD(G∗,
⋃n

m=1 T
m) ≥ n for n ≥ 5. If the drawing D is of type

BD then crD(G∗,
⋃n

m=1 T
m) ≥ n+ 1 for n ≥ 6. We discuss four subcases:

(a) Let crD(G∗, C∗n) = 2 or crD(T v5 , C∗n) = 2. By Lemma 1, we have at least(
4
2

)⌊
n
2

⌋⌊
n−1
2

⌋
+ n + 3 > 4

⌊
n
2

⌋⌊
n−1
2

⌋
+ n +

⌊
n
2

⌋
+ 2 crossings in D which also con-

firms a contradiction with the assumption (3.2).

(b) Let crD(T vi , C∗n) = 2 for only one i ∈ {1, 2, 3, 4}. If the drawing D is of type AD,

then the same idea as in Case 3(a) contradicts the assumption (3.2). If the drawing

D is of type BD, then by Lemma 1 and Corollary 1 for p = 4, q = 3, k = 2, we

have at least
(
3
2

)⌊
n
2

⌋⌊
n−1
2

⌋
+ 3
⌊
n−2
2

⌋⌊
n−3
2

⌋
+ n + 1 + 3 + 2 crossings in D also due

to two crossings between T v5 and T vi . This confirms a contradiction with (3.2) for

every n ≥ 6. If n = 5, then using Lemma 1, Corollary 1, Lemma 6 or Lemma 4 and

Lemma 7, we have 12 + 3 + 5 + 6 > 25 crossings in D which again contradicts (3.2).

(c) Let crD(T vi , C∗n) = 1 and crD(T vj , C∗n) = 1 for two distinct i, j ∈ {1, 2, 3, 4}. For

such a index pair i, j, the subgraph T vi∪T vj ∪C∗n is isomorphic to the graph D2+Cn.

Consider n− 2 vertices of the cycle C∗n incident with edges of T vi and T vj which do

not cross C∗n. Let us delete all edges of T vi and T vj which are not incident with these

n−2 vertices. The resulting subgraph is homeomorphic to the graph D2 +Cn−2 and,

in its subdrawing D
′

induced by D, we obtain crD′(T
vi , T vj ) ≥

⌊
n−2
2

⌋⌊
n−3
2

⌋
thanks to

Lemma 1. Now, if the drawing D is of type AD then by Lemma 1 and Corollary 1 for

p = 5, q = 3, k = 1 we have at least
(
3
2

)⌊
n
2

⌋⌊
n−1
2

⌋
+(3+3)

⌊
n−1
2

⌋⌊
n−2
2

⌋
+
⌊
n−2
2

⌋⌊
n−3
2

⌋
+

n+ 3 > 4
⌊
n
2

⌋⌊
n−1
2

⌋
+n+

⌊
n
2

⌋
+ 2 crossings in D which confirms a contradiction with

the assumption (3.2). For the drawing D of type BD by Lemma 1, Corollary 1 for

p = 4, q = 2, k = 1 with at least two crossings on the edges of T v5 , we have at least⌊
n
2

⌋⌊
n−1
2

⌋
+ (2 + 2)

⌊
n−1
2

⌋⌊
n−2
2

⌋
+
⌊
n−2
2

⌋⌊
n−3
2

⌋
+ (n+ 1) + 3 + 2 crossings in D which

confirms a contradiction with (3.2) for every n ≥ 6. For n = 5 using Lemma 7, we
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have at least six crossings on the edges of T v5 in D which also contradicts (3.2).

(d) Let crD(T v5 , C∗n) = 1 and crD(T vi , C∗n) = 1 for only one i ∈ {1, 2, 3, 4}. Now, the

same idea as in first part of Case 3(c) or in Case 2(b) for the drawing D of type AD

or of type BD contradicts the assumption (3.2), respectively.

We have shown that there is no good drawing D of the graph G∗+Cn with less than

4
⌊
n
2

⌋⌊
n−1
2

⌋
+ n+

⌊
n
2

⌋
+ 3 crossings, and this completes the proof of Theorem 3.

4. Some consequence of the main result

Figure 5. The graph G1 by adding one edge to the graph G∗.

In Figure 5, let G1 be the graph obtained from G∗ by adding the edge v2v5 into the

drawing in Figure 1(a). Since it is possible to add this edge to the graph G∗ without

additional crossings in Figure 2, the drawing of G1 + Cn with just 4
⌊
n
2

⌋⌊
n−1
2

⌋
+ n+⌊

n
2

⌋
+ 3 crossings can be obtained. Thus, the next result is obvious.

Corollary 4. cr(G1 + Cn) = 4
⌊
n
2

⌋⌊
n−1
2

⌋
+ n+

⌊
n
2

⌋
+ 3 for n ≥ 3.

5. Conclusions

We suppose that similar forms of discussions can be helpful to determine unknown

values of the crossing numbers of other symmetric graphs on five vertices with a much

larger number of edges in the join products with cycles on n vertices. Especially

for the complete graph K5 and the graph K5 \ e obtained by removing one edge

from K5. The result of G∗ + Cn could also be useful to establish their crossings

numbers with cycles Cn provided by the crossings numbers of both graph differences

K5−G∗ and (K5\e)−G∗ in the join products with Cn have already been well-known.
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