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1. Introduction

In a noncooperative game containing two players: Player I and Player II, each

player have a set of pure strategies. Suppose that Player I has the strategy set

X = {1, 2, . . . ,m} and Player II has the strategy set Y = {1, 2, . . . , n}. The game in-

cludes two matrices A = (aij)m×n and B = (bij)m×n containing the payoffs of Players

I and II, respectively. Namely, if Players I and II play respectively their ith and jth

strategies, then they obtain respectively aij and bij units of profit. In spite of the fact
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2 Type-2 fuzzy goal programming approach for bimatrix games

that the pure strategy sets are discrete, Players can select a convex combination of

these strategies. Such a strategy is called a mixed strategy. Thus the mixed strategy

sets associated to Players I and II are respectively as follows:

X̄ = {x = (x1, . . . , xm)T : xi ≥ 0, i = 1, 2, . . . ,m ∧
m∑
i=1

xi = 1},

Ȳ = {y = (y1, . . . , yn)T : yj ≥ 0, j = 1, 2, . . . , n ∧
n∑
j=1

yj = 1},

in which xi and yj denote the probability of performing the ith and jth strategies

by Players I and II, respectively. When Players use the mixed strategies x and y,

the expected payoffs of Players I and II are respectively xTAy and xTBy. The aim

of solving such a game is to find a strategy profile (x∗,y∗) so that if Players deviate

from it, their payoffs don’t increase, i.e,

xTAy∗ ≤ (x∗)TAy∗ ∀x ∈ X̄, (1.1a)

(x∗)TBy ≤ (x∗)TBy∗ ∀y ∈ Ȳ . (1.1b)

Such a solution is called a (Nash-)equilibrium point. By definition, deviations from

an equilibrium point appear non-beneficial to any player. Such games are referred to

as bimatrix games and are denoted by (A,B) in summary (see books [24, 35] for more

details).

In real-world situations, it is possible that different players have different satisfactory

degrees from a single payoff value. To model their satisfactory degree, one can use

fuzzy goal programming approach [21, 33, 37]. Suppose that µ1 : R → [0, 1] is a

nondecreasing function in which µ1(xTAy) represents the satisfactory degree of Player

I from the payoff xTAy. Similarly, let µ2 : R→ [0, 1] be a nondecreasing function in

which µ2(xTBy) is the satisfactory degree of Player II. According to this viewpoint,

an equilibrium point is a strategy profile in which any player has no incentive to

deviate from his current strategy because his satisfactory does not increase.

In various situations, it is possible that Players cannot state exactly their satisfactory

degrees of the obtained payoffs. For example, this case may occur if a group of players

makes decisions, instead of one player. This paper addresses such a situation in which

Players’ satisfactory degrees are vague and ambiguous. The notion of type-2 fuzzy

goal programming approach is used to formulate the problem in this situation. The

concept of equilibrium points is introduced and a method is proposed to calculate

them. Moreover, a special case is considered in which the type-2 fuzzy numbers are

triangular. The results are illustrated by presenting an example.

The remainder of the paper is organized as follows: Section 2 reviews the literature of

the subject that address the issue explicitly. Section 3 provides the used terminology

of type-1 and type-2 fuzzy sets and explains the notion of type-2 fuzzy goal program-

ming approach. In Section 4, the bimatrix games with vague satisfactory degrees are
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studied. In Section 5, the case with triangular fuzzy satisfactory degrees is consid-

ered. Section 6 presents a practical example. Finally, some concluding remarks are

presented in Section 7.

2. Literature review

In conventional game theory due to the ambiguous understanding of various situa-

tions by players, providing precise information is a difficult task. In these circum-

stances, fuzzy set theory is a very useful tool to incorporate vagueness and ambiguity

of information. Generally, there are two approaches for embedding fuzziness in non-

cooperative games. In the first case, players have fuzzy goals and in the second case,

payoffs are represented as fuzzy numbers. In the field of games with fuzzy payoffs,

a wide range of studies have been made (for example see [2, 6–9, 13, 18, 22, 23, 42–

44, 47]). Jana and Roy [19] based on the similarity measure of dual hesitant fuzzy

sets (DHFSs), investigated the solution procedure of fuzzy matrix games with DHFSs

pay-offs. Seikh et al. [40] used the Lexicographic method to solve matrix games

with hesitant fuzzy payoffs. Xue et al. [48] solved matrix games with hesitant fuzzy

pay-offs applying Ambika method and applied it to resolve counter-terrorism issue.

Seikh et al. [39] defined a new defuzzification function of dense fuzzy lock set and

applied it to resolve the matrix games under dense fuzzy environment. Karmakar et

al. [20] studied fuzzy matrix games with type-2 intuitionistic fuzzy payoffs based on

normalized minkowski distance measure and applied it to resolve biogas-plant imple-

mentation problem to prevent the air pollution.

Nishizaki and Sakawa [33, 37] studied two-person games incorporating type-1 fuzzy

goals in single and multi-objective environments. They defined an equilibrium so-

lution with respect to the degree of attainment of the fuzzy goals and showed that

an equilibrium can be obtained by solving several mathematical programming prob-

lems. Kumar [21] also considered a multi-objective two person zero-sum matrix game

with type-1 fuzzy goals and presented some models to obtain the max-min solutions.

Vidyottama et al. [45] considered a bi-matrix game with type-1 fuzzy goals. They

showed that the problem is equivalent to a (crisp) non-linear programming problem in

which the objective as well as all constraint functions are linear except two constraint

functions, which are quadratic. Bector et al. [4] considered a two-person zero-sum

matrix game with type-1 fuzzy goals and proved that it is equivalent to a primal-dual

pair of fuzzy linear programming problems. Bashir et al. [3] studied a multi-criteria

two-person zero-sum game with intuitionistic fuzzy (IF) goals. They showed that

solving such games is equivalent to solving two crisp multi-objective linear program-

ming problems. In [1, 28, 31], matrix games with IF goals were also considered and

some mathematical programming problems were proposed to obtain solutions for such

games.

Many authors are interested in games with fuzzy goals as well as fuzzy payoffs

[29, 32, 34, 41, 46]. In [46], a two-person zero-sum matrix game with type-1 fuzzy

goals and fuzzy payoffs was considered and its solution was conceptualized using
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a suitable defuzzification function. Seikh et al. [41] proposed an aspiration level

approach to solve matrix games with IF goals and IF payoffs. Nan et al. [29] also

presented a method for solving bi-matrix games with IF goals and IF payoffs. In

their proposed methodology, a new ranking method was proposed and the concept

of IF inequalities was interpreted. Finally, an IF non-linear programming model was

constructed to obtain the solution for such games. Nayak and pal [32] presented an

application of IF programming to a two person bi-matrix game for obtaining mixed

strategies using linear membership and non-membership functions.

We recall that any type-2 fuzzy number is a generalization of a type-1 fuzzy number

in the sense that uncertainty is not only limited to the linguistic variables but also is

present in the definition of the membership functions. To the best of our knowledge,

the use of type-2 fuzzy numbers is not yet widespread. Figueroa-Garcia et al. [12]

proposed a model for a two-player game problem involving interval type-2 fuzzy

payoffs. Chakeri et al. [10] employed fuzzy logic to determine the priority of payoffs

using linguistic preference relations. Then, they assigned a type-2 fuzzy set (T2FS)

to each cell to determine how much a cell has possibility to have a specific degree of

being equilibrium. Seikh et al. [38] developed a matrix game problem in the type-2

fuzzy environment. They used a new defuzzification model of type-2 fuzzy variables

based on type reduction and applied it to consider a single-use plastic ban problem

in India.

Based on our review of the literature, we observe that the matrix game theory has

been experienced in various type-1 fuzzy set (T1FS) developments. But, due to

different types of complex situations such as huge data sets, different assumptions

presented by decision makers (here the game players), T1FS cannot describe the

situation properly. On the other hand, triangular or trapezoidal fuzzy sets and their

extensions are two-dimensional. While in real problems, some uncertain conditions

may occur that cannot be described by such kind of two-dimensional fuzzy sets.

Therefore, T1FSs become insufficient to describe some complex situation. Therefore,

in that case, we consider type-2 fuzzy variables which have three dimensions (element,

primary membership degree, and secondary membership degree) to discuss a matrix

game.

For example, suppose two different companies are going to offer the same product

in a competitive market. Both of the companies employ a team of experts to study

the market and create a general plan about the future profits. Each of these expert

teams determined criteria such as up-to-date technology, features, modern and cost-

effective features, ... to achieve more income. Also, for each criterion, a degree of

satisfaction has been considered, which must reach a aspiration level. To find the

maximum profit, this scenario can be discussed through a fuzzy matrix game. Since,

the experiences or experiments of experts are presented in situations where there is a

lack of data or there is semantic ambiguity, therefore a T1FS is not enough to explain

such a scenario, but T2FS is ideal for depicting such kind of problems.

In this paper, in order to incorporate ambiguity of judgements, we use type-2 fuzzy

numbers to model Players’ satisfactory degrees. Specially, we consider a bimatrix
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game with type-2 fuzzy goals.

3. Preliminaries

In this section, we first provide some definitions and terminologies of type-1 and type-

2 fuzzy numbers used throughout the paper. Then, we describe the type-1 and type-2

fuzzy goal programming approaches.

Let X denote a universal set. A fuzzy subset ã of X is defined by its membership

function µã : X → [0, 1] which assigns to each element x ∈ X a real number µã(x) in

the interval [0, 1], which represents the grade of membership of x in ã. A fuzzy set ã

is normal if µã(x) = 1 for some x ∈ X. A fuzzy set ã is said to be convex whenever

µã(λx1 + (1− λ)x2) ≥ min{µã(x1), µã(x2)} ∀x1, x2 ∈ X,∀λ ∈ [0, 1].

A fuzzy set defined on the real line R is called a fuzzy number if it is convex, normal,

and upper semi-continuous. We denote by F (R) the set of all fuzzy numbers and

denote by F (I) the set of fuzzy numbers defined on I = [0, 1]. A triangular fuzzy

number ã = (a1, a2, a3) is a special fuzzy number whose membership function is given

by

µã(x) =


x−a1
a2−a1 x ∈ [a1, a2],
a3−x
a3−a2 x ∈ [a2, a3],

0 otherwise,

∀x ∈ X.

Figure 1. (a) 3D representation of a T2FS; (b) 2D representation of figure (a) with triangular vertical
slices.

Definition 1. Let X be the universe of discourse. Then a type-2 fuzzy set ã can be defined
in terms of its primary membership function u and the secondary membership function
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µã(x, u) and is denoted as

ã = {((x, u), µã(x, u)) : x ∈ X,u ∈ Jx ⊆ [0, 1]},

Note that, Jx is the the domain of the secondary membership function called the secondary
domain.

A T2FS can be graphically shown in three dimensional space(3D) [17, 26]. For special

value of x say x′ the Vertical Slice (VS) in two dimensional (2D) plane of the u and

µã(x, u) is defined by equation

µ̃ã(x′) = µã(x′, u) = {(u, fx′(u)) : u ∈ Jx′},

where fx′(u) ∈ [0, 1] is called the secondary grade. The VS is a type-1 fuzzy set

(T1FS) in [0, 1]. For this reason, we denote it by µ̃. So, µ(., .) is a real-valued bivari-

ate function while µ̃(.) is a fuzzy-valued single-variate function. So, in a type-2 fuzzy

set, each element has a primary membership function, instead of a single membership

value. This primary membership function is itself fuzzy, and the secondary grade is

the membership degree of this fuzziness.

It can be easily seen from Definition (1) that T2FS is defined on a three-dimensional

space. To better characterize its features, Mendel and John [26] defined the informa-

tion it mapped to the two-dimensional plane as the footprint of uncertainty (FOU).

For any x ∈ X, the FOU of ã is the union of all the primary membership functions

and can be expressed as

FOU(ã) =
⋃
x∈X

Jx,

The upper and lower bounds of the FOU are called the upper membership function

(UMF) and lower membership function (LMF) of ã, respectively. (See Figure (1)

The principal membership function (Pr) defined as the union of all the primary mem-

berships having secondary grades equal to 1, i.e.

Pr(ã) = {(x, u) : fx(u) = 1, x ∈ X}.

In a parallel viewpoint, a type-2 fuzzy set ã is characterised by a fuzzy set whose

membership grades are type-1 fuzzy sets on [0, 1] [50]. In a special case, we suppose

that all membership grades are type-1 fuzzy numbers. So any type-2 fuzzy set is

determined by its membership function as µ̃ : X → F (I) which µ̃(x) is a type-1 fuzzy

number representing fuzzy membership grade of x. For simplifying the notations,

we denote a type-2 fuzzy set by its fuzzy membership function. As a special case, if

membership grades are type-1 triangular fuzzy number, then the set is referred to as
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a triangular type-2 fuzzy set [25]. A more specific type of triangular type-2 fuzzy sets

is depicted in Figure 2. It has the fuzzy membership function

µ̃ã(x) =



(0, 0, 0) x < αL,

(0, 0, x−αL

c−αL
) αL ≤ x < α,

(0, x−αc−α ,
x−αL

c−αL
) α ≤ x < αU ,

(x−αU

c−αU
, x−αc−α ,

x−αL

c−αL
) αU ≤ x < c,

(x−βL

c−βL
, x−βc−β ,

x−βU

c−βU
) c ≤ x < βL,

(0, x−βc−β ,
x−βU

c−βU
) βL ≤ x < β,

(0, 0, x−βU

c−βU
) β ≤ x < βU ,

(0, 0, 0) βU ≤ c,

(3.1)

and is denoted by (αL, α, αU , c, βL, β, βU ). In the case that βL = β = βU = +∞, we

denote the set by (αL, α, αU , c).

Figure 2. An instance of triangular type-2 fuzzy set.

3.1. Type-1 and type-2 fuzzy goal programming approach

Goal programming (GP) is one of the favorite techniques for solving multi-objective

optimization problems which was first introduced by Charnes and Cooper [11]. In

GP, the decision maker (DM) determines an aspiration level for each objective. Using

an optimization problem, a solution is looked for to minimize the deviations between

objective values and their aspiration levels, i.e., the aggregated deviation of the ob-

jectives from the aspiration levels.

A fault of GP is that it does not consider directly the satisfactory value of the decision

maker in fullfilling the goals. For this reason, fuzzy goal programming approach arose

[16, 30], in which a function µ : R→ [0, 1] is defined for any goal whose values reflect

the satisfactory degrees of the decision maker in satisfying the goal. The technique

looks for a solution having the maximum satisfactory degree of the decision maker.

For more illustration, consider a problem containing three types of goals: one of them

is in the equality form and the others are in the inequality forms ≤ and ≥ as follows:
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f1(x) = z1, (3.2a)

f2(x) ≤ z2, (3.2b)

f3(x) ≥ z3, (3.2c)

in which zi, i = 1, 2, 3, is the aspiration level associated with the ith goal. If the

Figure 3. The satisfactory functions in (type-1) fuzzy goal programming approach.

inequality system has at least one solution x∗, then it is a solution which satisfies com-

pletely the decision maker’s expectations. If not, then we have to present a solution

which satisfies his expectations as much as possible. To this end, we ask the decision

maker to introduce a function µi for the i-th goal which reflects his satisfactory de-

gree. It is natural that the satisfactory functions associated with the second and third

goals are respectively non-decreasing and non-increasing while that of the first goal

has a global maximum in z1 and it is nondecreasing on (−∞, z1] and nonincreasing

on [z1,+∞). Figure 3 shows the instances of some linear functions µi proposed by

DM. By the linearity assumption, it is easy to prove that the fuzzy goal programming

approach is converted into a standard goal programming in which the weight associ-

ated with the deviation from the ith goal is proportional to the slop of line µi [27].

In spite of the fact that fuzzy goal programming approach can well models the sat-

isfactory degree of DM, it does not take into account vagueness in the satisfactory

degree of DM. A reasonable remedy is applying type-2 fuzzy sets to model the prob-

lem. This leads to a natural extension of fuzzy goal programming approach, called

type-2 fuzzy goal programming approach. To the best of our knowledge, there is

only a paper by Patino-callejas et al. [36] which presented an interval type-2 fuzzy

goal programming model for problems where resources are defined by the opinion of

multiple experts. In this paper, we present type-2 fuzzy goal programming approach

in the general case.

Suppose that the DM’s satisfactory degree is not determined clearly but it can be

represented by a type-1 fuzzy number. For more clarity, when we ask the DM to

determine his satisfactory degree from aspiration level z1, he says ”1”. However, if we

ask him to determine his satisfactory degree from z1±∆, he says ”almost 0.9”, i.e., he

proposes a fuzzy number for his satisfactory degree. So the satisfactory degree func-

tions µi are fuzzy-valued. Hereafter, we denote these functions by µ̃i : R −→ F (I).
Figure 4 shows the fuzzy-valued functions µ̃i for the goals (3.2). Since the functions µ̃i
can be regarded as membership functions of type-2 fuzzy numbers [50], the approach
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is referred to as type-2 fuzzy goal programming.

Figure 4. The satisfactory functions in type-2 fuzzy goal programming approach.

4. Bimatrix Games using type-2 fuzzy goal programming ap-
proach

Consider a non-cooperative game containing two players. Suppose that A and B

are the payoff matrices of Players I and II, respectively. We recall that their payoffs

are respectively xTAy and xTBy for strategy profile (x,y) ∈ X̄ × Ȳ . In various

situations, it is possible that any player has vague satisfactory degree of his payoff.

This may occur specially if a team make decisions instead of a person. We denote by

µ̃1 and µ̃2 the fuzzy-valued satisfactory functions corresponding to Players I and II,

respectively. These functions can be regarded as type-2 fuzzy numbers. Indeed, we

here use type-2 goal programming approach to model ambiguous satisfactory degrees

of Players. So µ̃1(xTAy) is a type-1 fuzzy number to state the satisfactory degree of

Player I for the payoff xTAy. Similarly, µ̃2(xTBy) denotes the satisfactory degree of

Player II. Such the game is referred to as the game with vague satisfactory degrees

(GVSD). In this section, our aim is to extend the notion of equilibrium points to such

the games and present an approach to find them. Throughout this paper, we denote

an instance of GVSD by (A,B, µ̃1, µ̃2).

In order to avoid reducing fuzzy satisfactory degrees to real ones, a partial order

(a reflexive, antisymmetric and transitive binary relation) has to be considered for

comparing fuzzy numbers [14, 15]. Let � be a partial order on the set of fuzzy

numbers F (R). We define

x̃ � ỹ if ỹ � x̃, (4.1a)

x̃ ≺ ỹ if x̃ � ỹ ∧ x̃ 6= ỹ, (4.1b)

x̃ � ỹ if ỹ � x̃ ∧ x̃ 6= ỹ, (4.1c)

for every x̃, ỹ ∈ F (R).

Using the partial order �, we compare the fuzzy satisfactory degrees of Players. For

example, if µ̃1(xTAy) � µ̃1(x̄TAȳ), then Player I prefers the profit obtained from
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the strategy profile (x̄, ȳ) to that of (x,y). If neither µ̃1(x̄TAȳ) � µ̃1(xTAy) nor

µ̃1(xTAy) � µ̃1(x̄TAȳ), the strategy profiles (x,y) and (x̄, ȳ) cannot be compared

(because � is not a total order); namely, Player I cannot prefer one to the other. In

this case, we say that such strategy profiles are incomparable.

Remark 1. In this paper, we use the same partial order for both the players to simplify
notations. However, the results remain valid even if any player has an individual partial
order.

The satisfactory functions µ̃1 and µ̃2 have to be nondecreasing with respect to the

partial order � due to their inherent nature. Namely, for each strategy profiles (x,y)

and (x̄, ȳ),

if xTAy < x̄TAȳ, then µ̃1(xTAy) � µ̃1(x̄TAȳ) or they are incomparable,

if xTBy < x̄TBȳ, then µ̃2(xTBy) � µ̃2(x̄TBȳ) or they are incomparable.

This property states that the players are not less satisfied whenever their payoffs are

increasing.

Let us now introduce the notion of equilibrium points for such the games.

Definition 2. Given an instance (A,B, µ̃1, µ̃2) of GVSD, a strategy profile (x∗,y∗) ∈
X̄ × Ȳ is an equilibrium point if

@x ∈ X̄, µ̃1((x∗)TAy∗) ≺ µ̃1(xTAy∗); (4.2)

@y ∈ Ȳ , µ̃2((x∗)TBy∗) ≺ µ̃2((x∗)TBy). (4.3)

By definition, an equilibrium point is a situation which neither of Players becomes

more satisfied if he deviates from his current strategy. So Players have not incentive

to change their strategies.

The nondecreasing property yields a relationship between equilibrium points of a

GVSD and those of the corresponding ordinary game.

Lemma 1. Given a GVSD (A,B, µ̃1, µ̃2), if a strategy profile (x∗,y∗) satisfies (1.1) then,
it is an equilibrium point for the GVSD.

Proof. The proof is straightforward.

For a GVSD, Lemma 1 implies that an equilibrium point of the corresponding

ordinary game is also an equilibrium point of GVSD but the reverse is not valid in

general (see Example 1).
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By Definition 2, it is easy to see that a strategy profile (x∗,y∗) ∈ X̄ × Ȳ is an

equilibrium point if and only if x∗ and y∗ are respectively efficient solutions for two

following optimization problems:

max
x∈X̄

µ̃1(xTAy∗), (4.4)

max
y∈Ȳ

µ̃2((x∗)TBy). (4.5)

Note that we have used the word ”efficient” instead of ”optimal” because an opti-

mization problem defined on a partially ordered set, namely F (R), cannot admit an

optimal solution in general.

In order to find the efficient solutions of the problems (4.4) and (4.5), a customary

method is using scalarizing functions that are consistent with the order � in the

following sense.

Definition 3. A function u : F (R)→ R is consistent with the fuzzy partial order � when
the following condition hold.

• If ã � b̃ then u(ã) ≤ u(b̃) for any ã, b̃ ∈ F (R).

Note that the scalarizing functions define a total order on fuzzy numbers. This helps us

to convert the problems (4.4) and (4.5) into ordinary optimization problems. Suppose

that u1 : F (R)→ R and u2 : F (R)→ R are the scalarizing functions consistent with �
corresponding to Players I and II, respectively. Then, Players can obtain the optimal

solutions of the following optimization problems instead of solving the problems (4.4)

and (4.5).

max
x∈X̄

u1(µ̃1(xTAy∗)), (4.6)

max
y∈Ȳ

u2(µ̃2((x∗)TBy)). (4.7)

The problem (4.6) determines a best-response strategy of Player I whenever Player II

chooses y∗. Also, a similar argument is valid on the problem (4.7). We now propose

equivalent conditions to equilibrium points, which lead us to obtain an equilibrium

point only by solving an optimization problem. Using two scalarizing functions, the

conditions of Definition 2 can be written as

u1(µ̃1(xTAy∗)) ≤ u1(µ̃1((x∗)TAy∗)) ∀x ∈ X̄ (4.8)

u2(µ̃2((x∗)TBy)) ≤ u2(µ̃2((x∗)TBy∗)) ∀y ∈ Ȳ . (4.9)

By setting x = [0 . . . 0 1︸︷︷︸
ith

0 . . . 0]T and y = [0 . . . 0 1︸︷︷︸
jth

0 . . . 0]T in the above conditions,

we have

u1(µ̃1((Ay∗)i) ≤ u1(µ̃1((x∗)TAy∗)) i = 1, 2, . . . ,m (4.10)

u2(µ̃2(((x∗)TB)j) ≤ u2(µ̃2((x∗)TBy∗)) j = 1, 2, . . . , n. (4.11)
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Then, the conditions (4.10) and (4.11) are necessary for any equilibrium point. This

conditions are also sufficient if we impose an additional assumption.

Assumption 1. u1oµ̃1 is convex, that is,

u1(µ̃1(

n∑
i=1

λivi)) ≤
n∑

i=1

λiu1(µ̃1(vi))

for v = (v1, v2, . . . , vn) with vi ∈ [mini,j aij ,maxi,j aij ] and λ = (λ1, λ2, . . . , λn) with λi ≥ 0,
i = 1, 2, . . . , n, and

∑
i λi = 1.

Assumption 1 is stated only for vectors whose elements belong to [mini,j aij
,maxi,j aij ] because any payoff of Player I belongs to this interval. Similarly, we

suppose that the convexity assumption also holds for Player II.

Lemma 2. Under convexity assumption, A strategy profile (x∗,y∗) is an equilibrium
point if and only if it satisfies the conditions (4.10) and (4.11).

Proof. Based on the preceding argument, we only prove the sufficiency. Assume

that (x∗,y∗) satisfies the conditions (4.10). Let x ∈ X̄ be arbitrary. By multiplying

the ith condition (4.10) by xi and summation over i, we have∑
i

xiu1(µ̃1((Ay∗)i)) ≤
∑
i

xiu1(µ̃1((x∗)TAy∗)) = u1(µ̃1((x∗)TAy∗)). (4.12)

On the other hand, based on Assumption 1, we have

u1(µ̃1(xTAy∗)) ≤
∑
i

xiu1(µ̃1((Ay∗)i))

which together with (4.12) imply that

u1(µ̃1(xTAy∗)) ≤ u1(µ̃1((x∗)TAy∗)).

A similar proof shows that the conditions (4.9) and (4.11) are equivalent. This com-

pletes the proof.

Now we are ready to state the main result of this section.

Theorem 1. A strategy profile (x∗,y∗) is an equilibrium point if and only if (x∗,y∗) is
an optimal solution to the following optimization problem:

min z = α+ β − u1(µ̃1(xTAy))− u2(µ̃2(xTBy)) (4.13a)

u1(µ̃1((Ay)i)) ≤ α i = 1, 2, . . . ,m, (4.13b)

u2(µ̃2((xTB)j)) ≤ β j = 1, 2, . . . , n, (4.13c)

x ∈ X̄,y ∈ Ȳ , (4.13d)

α, β ∈ R. (4.13e)
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Proof. Suppose that (x∗,y∗) is an equilibrium point and moreover, set α∗ =

u1(µ̃1((x∗)TAy∗)) and β∗ = u2(µ̃2((x∗)TBy∗)). Based on Lemma 2, it is easy to

see that (x∗,y∗, α∗, β∗) is a feasible solution to the problem with the objective value

z∗ = 0. To prove the optimality of (x∗,y∗, α∗, β∗), assume that (x,y, α, β) is an

arbitrary feasible solution. Thus it satisfies the constraints (4.13b) and (4.13c). By

multiplying the ith constraint (4.13b) by xi and then summation, we have

∑
i

xiu1(µ̃1((Ay)i)) ≤ α,

and consequently, based on Assumption 1,

u1(µ̃1(xTAy)) ≤ α. (4.14)

Similarly, one can prove that

u2(µ̃2(xTBy)) ≤ β. (4.15)

The inequalities (4.14) and (4.15) guarantee that the objective value of any feasible

solution (x,y, α, β) is nonnegative. Hence, (x∗,y∗, α∗, β∗) is an optimal solution.

Now suppose that (x∗,y∗, α∗, β∗) is an optimal solution to the problem (4.13). Ac-

cording to the proof of the necessity, the optimal value z∗ is equal to zero. A sim-

ilar proof shows that the solution (x∗,y∗, α, β) satisfies the inequalities (4.14) and

(4.15). This together with the equality z∗ = 0 imply that α = u1(µ̃1((x∗)TAy∗)) and

β = u2(µ̃2((x∗)TBy∗)). By substituting these relations in the constraints (4.13b) and

(4.13c), the conditions (4.10) and (4.11) are acquired. These conditions establish that

(x∗,y∗) is an equilibrium point (see Lemma 2).

5. Type-2 triangular fuzzy satisfactory degrees

In this section we consider a special case of GVSD in which µ̃1 and µ̃2 are type-2

triangular fuzzy numbers and apply the partial order � defined as

x̃ � ỹ iff xk ≤ yk k = 1, 2, 3 (5.1)

for each (type-1) triangular fuzzy numbers x̃ = (x1, x2, x3) and ỹ = (y1, y2, y3). How-

ever, the results remain valid for various partial orders. We recall that the notations

�,�, and ≺ are defined with respect to � by (4.1).

Suppose that µ̃1 = (c1, α1
L, α

1, α1
U ) and µ̃2 = (c2, α2

L, α
2, α2

U ) are type-2 triangular

fuzzy numbers which determine the satisfactory degree of Players I and II, respec-

tively. For instance, the satisfactory degree µ̃1 of Player I is depicted in Figure 5.
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The membership functions µ̃1 and µ̃2 are defined as follows:

µ̃1(xTAy) =



(0, 0, 0) xTAy < α1
L,

(0, 0,
xTAy−α1

L

c1−α1
L

) α1
L ≤ xTAy < α1,

(0, x
TAy−α1

c1−α1 ,
xTAy−α1

L

c1−α1
L

) α1 ≤ xTAy < α1
U ,

(
xTAy−α1

U

c1−α1
U

, x
TAy−α1

c1−α1 ,
xTAy−α1

L

c1−α1
L

) α1
U ≤ xTAy < c1,

(1, 1, 1) c1 ≤ xTAy,

(5.2)

and

µ̃2(xTBy) =



(0, 0, 0) xTBy < α2
L.

(0, 0,
xTBy−α2

L

c2−α2
L

) α2
L ≤ xTBy < α2,

(0, x
TBy−α2

c2−α2 ,
xTBy−α2

L

c2−α2
L

) α2 ≤ xTBy < α2
U ,

(
xTBy−α2

U

c2−α2
U

, x
TBy−α2

c2−α2 ,
xTBy−α2

L

c2−α2
L

) α2
U ≤ xTBy < c2,

(1, 1, 1) c2 ≤ xTBy,

(5.3)

Notice that this special case of membership functions occur in practice whenever the

Figure 5. The type-2 triangular satisfactory function µ̃1.

proportionality (linearity) property exists in partial decision making.

Recall that the problems (4.4) and (4.5) can be regarded as multiobjective optimiza-

tion problems. Then, we can apply Benson’s approach to check the efficiency of

solutions [5]. This gives us a method to check whether or not a strategy profile is

equilibrium.

Proposition 1. A strategy profile (x∗,y∗) is an equilibrium point for a GVSD, if and
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only if the optimal value of the following optimization problem is equal to zero.

max z = s1 + s2 + s3 + s′1 + s′2 + s′3 (5.4)

(µ̃1(xTAy∗))i − si = (µ̃1((x∗)TAy∗))i i = 1, 2, 3 (5.5)

(µ̃2((x∗)TBy))i − s′i = (µ̃2((x∗)TBy∗))i i = 1, 2, 3 (5.6)

1Tx = 1, (5.7)

1Ty = 1, (5.8)

x,y ≥ 0, (5.9)

si, s
′
i ≥ 0 i = 1, 2, 3. (5.10)

Proof. The proof is straightforward based on the notion of equilibrium points and

the used partial order.

Let us now state the relationship between equilibrium points of a GVSD and those of

the corresponding ordinary bimatrix game.

Lemma 3. For i = 1, 2 and s, t ∈ R, we have

1. µ̃i(s) � µ̃i(t) if and only if s ≤ t;

2. If µ̃i(s) ≺ µ̃i(t), then s < t;

3. If αi
L < s < t < ci, then µ̃i(s) ≺ µ̃i(t).

Proof. The membership functions µ̃i(t) can be written as

µ̃i(t) = (min{1,max{0, t− α
i
U

ci − αiU
}},

min{1,max{0, t− α
i

ci − αi
}},min{1,max{0, t− α

i
L

ci − αiL
}}).

Notice that three components of µ̃i(t) are nondecreasing functions of t. So the part 1

is immediate.

To prove 2, let µ̃i(s) ≺ µ̃i(t). It is easy to see that the inequality (µ̃i(s))3 < (µ̃i(t))3

holds necessarily. So one of the following cases occurs

Case I: (µ̃i(s))3 = 0 and (µ̃i(t))3 = 1.

Case II: (µ̃i(s))3 = 0 and (µ̃i(t))3 ∈ (0, 1).

Case III: (µ̃i(s))3 ∈ (0, 1) and (µ̃i(t))3 ∈ (0, 1).

Case IV: (µ̃i(s))3 ∈ (0, 1) and (µ̃i(t))3 = 1.



16 Type-2 fuzzy goal programming approach for bimatrix games

We consider only cases I and III. The others can be proved similarly. In Case I,

s < αiL, and t > ci. Since ci ≥ αiL, it follows that s < t. In Case III, we have

s− αiL
ci − αiL

= (µ̃i(s))3 < (µ̃i(t))3 =
t− αiL
ci − αiL

which implies that s < t.

To prove the part 3, note that the inequalities αiL < s < ci and αiL < t < ci guarantee

that

(µ̃i(s))3 =
s− αiL
ci − αiL

and (µ̃i(t))3 =
t− αiL
ci − αiL

and since s < t, we have

(µ̃i(s))3 < (µ̃i(t))3. (5.11)

On the other hand, based on the part 1, µ̃i(s) � µ̃i(t). This together with (5.11)

complete the proof.

An obvious and important result of Lemma 3 is that there is not any two strategy

profiles which are incomparable from Players’ viewpoints.

Based on Lemma 1, the set of equilibrium points of a GVSD contains any equilibrium

point of the corresponding ordinary game. The following example shows that the

reverse result is not true in general.

Example 1. Consider a bimatrix game with

A =

[
2 4
1 5

]
, B =

[
1 4
2 4

]
.

Suppose that the satisfactory degrees are determined by the type-2 triangular fuzzy numbers
µ̃1 = µ̃2 = (1, 2, 3, 4). Consider two strategy profiles (x̂, ŷ) = ([1, 0]T , [0, 1]T ) and (x̄, ŷ) =
([0, 1]T , [0, 1]T ). The satisfactory degrees of the strategy profiles are

µ̃1(x̂TAŷ) = µ̃1(x̄TAŷ) = (1, 1, 1),

µ̃2(x̂TBŷ) = µ̃2(x̄TBŷ) = (1, 1, 1).

So both the strategy profiles satisfy completely Players’ satisfactions. Consequently, they
are equilibrium points of GVSD. On the other hand, we have

x̂TAŷ = 4 < 5 = x̄TAŷ,

x̂TBŷ = 4 = x̄TBŷ,

which imply that (x̂, ŷ) is not an ordinary equilibrium point.
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Theorem 2. Let (A,B, µ̃1, µ̃2) be a GVSD where µ̃1 and µ̃2 are defined by (5.2) and
(5.3), respectively, and (A,B) is the corresponding ordinary bimatrix game. If (x∗,y∗) is an
equilibrium point of the GVSD (A,B, µ̃1, µ̃2) and

(0, 0, 0) ≺ µ̃1((x∗)TAy∗) ≺ (1, 1, 1) ∧ (0, 0, 0) ≺ µ̃2((x∗)TBy∗) ≺ (1, 1, 1),

then it is also an equilibrium point of the ordinary bimatrix game (A,B) (defined by (1.1)).

Proof. Suppose that (x∗,y∗) is not an equilibrium point of the bimatrix game

(A,B). Without loss of generality, we assume that there is a vector x̄ so that

(x∗)TAy∗ < x̄TAy∗. (5.12)

If x̄TAy∗ > c1, then

µ̃1((x∗)TAy∗) ≺ (1, 1, 1) = µ̃1(x̄TAy∗)

which contradicts the fact that (x∗,y∗) is an equilibrium point of the GVSD

(A,B, µ̃1, µ̃2).

If x̄TAy∗ ≤ c1, then we have

(x∗)TAy∗ − α1
U

c1 − α1
U

<
x̄TAy∗ − α1

U

c1 − α1
U

,

(x∗)TAy∗ − α1

c1 − α1
<

x̄TAy∗ − α1

c1 − α1
,

(x∗)TAy∗ − α1
L

c1 − α1
L

<
x̄TAy∗ − α1

L

c1 − α1
L

.

These inequalities simply imply that µ̃1((x∗)TAy∗) ≺ µ̃1(x̄TAy∗). So (x∗,y∗) is not

an equilibrium point of the GVSD.

6. A practical example

We consider a problem of wargaming as follows. Consider a situation between blue

and red forces. Blue force is attacker and red force is defender. Blue force would like

to destroy two specified targets of red side by its unmanned air vehicles. It is obvious

that blue and red forces have two pure strategies: (I) sending their all forces to the

first target, (II) sending their all forces to the second target. We denote by x ∈ [0, 1]

the mixed strategy of blue force in which x percent of its force is sent to the first

target and 1 − x percent to the second target. Similarly, we denote by y ∈ [0, 1] the

mixed strategy of red force. For every strategy profile (x, y), suppose that b(x, y) and

r(x, y) are respectively payoffs of blue and red forces. The values b(x, y) and r(x, y)
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are respectively proportional to the total amount of battle survivors of Blue and Red

forces. Let

Ab =

[
5 5

3 8

]
, Ar =

[
4 5

7 6

]
be the payoff matrices of blue and red forces, respectively. Since blue force has a

group of commanders for decision making, they have different satisfactory degrees of

b(x, y) = [x, 1−x]Ab[y, 1−y]T : a pessimistic viewpoint p1(b(x, y)), a middle viewpoint

p2(b(x, y)), an optimistic viewpoint p3(b(x, y)) in which p1(b(x, y)) ≤ p2(b(x, y)) ≤
p3(b(x, y)). We can construct a TFN (p1(b(x, y)), p2(b(x, y)), p3(b(x, y))), for every

x, y ∈ [0, 1]. So type-2 fuzzy number µ̃b(b(x, y)) = (p1(b(x, y)), p2(b(x, y)), p3(b(x, y)))

is the satisfactory degree function of Blue force. Similarly, we denote by µ̃r(r(x, y)) =

(q1(r(x, y)), q2(r(x, y)), q3(r(x, y))) the satisfactory degree of red commanders from

the payoff r(x, y). Here, suppose that µ̃b = (4, 5, 7, 10) and µ̃r = (3, 4, 6, 10). So

µ̃b(b(x, y)) = (min{1,max{0, b(x,y)−7
3 }},

min{1,max{0, b(x,y)−5
5 }},min{1,max{0, b(x,y)−4

6 }}),

µ̃r(r(x, y)) = (min{1,max{0, r(x,y)−6
4 }},

min{1,max{0, r(x,y)−4
6 }},min{1,max{0, r(x,y)−3

7 }}).

In order to consider more effect of middle viewpoint, we use Yager’s ranking function
u1(x1, x2, x3) = u2(x1, x2, x3) = x1+4x2+x3

6 [49]. So the problem (4.13) can be written
as follows:

min z = α+ β − 1
6 (min{1,max{0, 5xy−5y−3x+1

3 }}+

4 min{1,max{0, 5xy−5y−3x+3
5 }}+ min{1,max{0, 5xy−5y−3x+4

6 }})−
1
6 (min{1,max{0, 2xy+x−y−12

4 }}+ 4 min{1,max{0, 2xy+x−y−10
6 }}+

min{1,max{0, 2xy+x−y−9
7 }}), (6.1)

s.t. 1
6 (min{1,max{0, −5y+1

3 }}+ 4 min{1,max{0, −5y+3
5 }}+ min{1,max{0, −5y+4

6 }}) ≤ α,
1
6 (min{1,max{0, −2

3 }}+ 4 min{1,max{0, 0
5}}+ min{1,max{0, 1

6}}) ≤ α,
1
6 (min{1,max{0, x−12

4 }}+ 4 min{1,max{0, x−10
6 }}+ min{1,max{0, x−9

7 }}) ≤ β,
1
6 (min{1,max{0, 3x−13

4 }}+ 4 min{1,max{0, 3x−11
6 }}+ min{1,max{0, 3x−10

7 }}) ≤ β,
x, y ∈ [0, 1].

We used Lingo version 18.0.44 to solve the problem. An equilibrium strategy profile is

(x∗,y∗) = (0.5, 0.6) . The payoffs of blue and red forces are respectively b(x∗, y∗) = 5

and r(x∗, y∗) = 5.5 whose satisfactory degrees are (0, 0, 0.16666) and (0, 0.25, 0.35714).

Hence, in spite of the fact that the payoffs of both sides are approximately the same,

the expectations of blue commanders are satisfied less than those of red commanders.

7. Conclusion

In this paper, a bimatrix game was considered in which the players have vague satis-

factory degrees. A type-2 fuzzy goal programming approach was applied to describe
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these vagueness. The notion of equilibrium points was stated and an optimization

problem was presented for calculating an equilibrium point. Furthermore, the special

case that the type-2 fuzzy numbers are triangular was considered.

As future works, it will be meaningful to consider games with type-2 fuzzy goals

containing fuzzy payoffs. Furthermore, the type-2 fuzzy goal programming approach

used in this paper can be convenient to describe vague satisfactory of players in other

(cooperative and noncooperative) games.
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