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Abstract: An edge labeling of a graph G = (V,E) is said to be local antimagic if it
is a bijection f : E → {1, . . . , |E|} such that for any pair of adjacent vertices x and y,

f+(x) 6= f+(y), where the induced vertex label f+(x) =
∑
f(e), with e ranging over

all the edges incident to x. The local antimagic chromatic number of G, denoted by
χla(G), is the minimum number of distinct induced vertex labels over all local antimagic

labelings of G. In this paper, we study local antimagic labeling of disjoint unions of

stars, paths and cycles whose components need not be identical. Consequently, we
completely determined the local antimagic chromatic numbers of disjoint union of two

stars, paths, and 2-regular graphs with at most one odd order component respectively.

Keywords: local antimagic labeling, local antimagic chromatic number, disconnected

graphs.
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1. Introduction

A graph G = (V,E) is said to be local antimagic if it admits a local antimagic edge

labeling, i.e., a bijection f : E → {1, . . . , |E|} such that the induced vertex labeling

f+ : V → Z given by f+(u) =
∑
f(e), with e ranging over all the edges incident

to u, has the property that any two adjacent vertices have distinct induced vertex

labels (see [1, 3]). Thus, f+ is a coloring of G. Clearly, the order of G must be at

least 3. The vertex label f+(u) is called the induced color of u under f (the color of

∗ Corresponding Author



2 Local antimagic chromatic number

u, for short, if no ambiguity occurs). The number of distinct induced colors under

f is denoted by c(f), and is called the color number of f . The labeling f is called

a local antimagic c(f)-coloring of G. The local antimagic chromatic number of G,

denoted by χla(G), is min{c(f) | f is a local antimagic labeling of G}. Haslegrave [7]

proved that every connected graph other than K2 is local antimagic. Hence χla(G) is

well-defined for every connected or disconnected graph G not containing any isolated

edge.

For graphs G and H, let G + H be the disjoint union of G and H with vertex set

V (G)∪V (H) and edge set E(G)∪E(H). For convenient, mG is the disjoint union of

m ≥ 2 isomorphic copies of G. We shall use the notation [a, b] = {c ∈ Z | a ≤ c ≤ b},
for integers a ≤ b. Unless stated otherwise, all graphs considered in this paper are

simple, undirected and of order at least 3. A pendant vertex is a vertex of degree 1.

In [10], the authors provided some results on local antimagic labeling of disjoint unions

of identical paths, identical stars, and identical cycles. However, certain parts of their

proofs contain mistakes. The authors in [2] obtained many bounds on local antimagic

chromatic number of disconnected graphs. In this paper, the local antimagic chro-

matic number of the disjoint union of two stars, paths and 2-regular graphs with at

most one odd order cycle are completely determined.

We restate the following lemma in [8, Lemma 1] or [9, Lemma 2.1] below. It will be

used later.

Lemma 1. [8, 9] Let G be a graph of size q. Suppose there is a local antimagic labeling
of G inducing a 2-coloring of G with colors x and y, where x < y. Let X and Y be the sets
of vertices colored x and y, respectively. Then G is a bipartite graph with bipartition (X,Y )
and |X| > |Y |. Moreover,

x|X| = y|Y | = q(q + 1)

2
.

The contrapositive of Lemma 1 gives a sufficient condition for a bipartite graph G to

have χla(G) ≥ 3.

2. Disjoint union of stars

In this section, we study the local antimagic chromatic number of a disjoint union of

stars. Note that any bijective edge labeling of a disjoint union of stars, all of order

at least 3, must be a local antimagic labeling. We need the following lemma, which

is easily extended from the theorem in [8, Theorem 6] or [2, Lemma 2].

Lemma 2. Let G be a graph with l pendant vertices. If G does not contain a K2 as a
component, then χla(G) ≥ l + 1.

Proposition 1. Let G = K1,p1 +K1,p2 + · · ·+K1,pn where 2 ≤ p1 ≤ p2 ≤ · · · ≤ pn, and
q be the size of G, then q + 1 ≤ χla(G) ≤ q + n.
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Proof. Note that p1+p2+ · · ·+pn = q. Since the order of G is q+n, χla(G) ≤ q+n.

By Lemma 2, χla(G) ≥ q + 1.

Suppose all stars are identical. There are only two possible values for the local an-

timagic chromatic number as was proved in [2]. Here we give a shorter proof using

magic rectangles. We will use the fact in [4–6] that an a× b magic rectangle exists if

and only if a, b ≥ 2, a ≡ b (mod 2), and (a, b) 6= (2, 2).

Theorem 1. Let G = mK1,n where m ≥ 3 and n ≥ 2, then

χla(G) =


mn+ 1 if n is even,

mn+ 1 if m,n are both odd,

mn+ 1 if m is even, n is odd, n ≤ 2m− 1,

mn+ 2 if m is even, n is odd, n ≥ 2m.

Proof. Obviously, χla(K1,n) = n + 1. By Proposition 1, χla(G) ≥ mn + 1. Denote

the m stars by S1, S2, . . . , Sm.

Suppose n is even. We label an edge of S1, S2, . . . , Sm by 1, 2, . . . ,m respectively.

Then label an edge of Sm, Sm−1, . . . , S1 by m+ 1,m+ 2, . . . , 2m respectively. Repeat

this labeling process by 1, 2, . . . ,mn through alternating between the ascending and

descending order of the stars. All centers will have identical label. So χla(G) = mn+1.

Suppose m,n are both odd. Consider a magic rectangle of size n × m with entries

{1, 2, . . . ,mn}. Use the i-th column as the edge labels of Si for 1 ≤ i ≤ m. All centers

have identical label and χla(G) = mn+ 1.

Suppose m is even and n is odd. Note that m ≥ 4 and each center label is at least

1 + 2 + · · ·+ n = n(n+1)
2 . Moreover, n(n+1)

2 ≤ mn if and only if n ≤ 2m− 1.

For n ≤ 2m−1, since m ≥ 3, consider a magic rectangle of size n×(m−1) with entries

{n+1, n+2, . . . ,mn}. Use the i-th column as the edge labels of Si for 1 ≤ i ≤ m−1.

Label the edges of Sm by 1, 2, . . . , n. The centers of S1, S2, . . . , Sm−1 have identical

label while the center of Sm has label n(n+1)
2 . Since n+ 1 < n(n+1)

2 ≤ mn, this center

label equals a pendant vertex label of Si, 1 ≤ i ≤ m− 1. Hence, χla(G) = mn+ 1.

For n ≥ 2m, each center label is greater than mn. Since 1
m (1+2+· · ·+mn) = n(mn+1)

2

is not an integer, the center labels cannot be all identical. So χla(G) ≥ mn+ 2. Since

m ≥ 3, consider a magic rectangle of size n×(m−1) with entries {1, 2, . . . , (m−1)n}.
Use the i-th column as the edge labels of Si for 1 ≤ i ≤ m− 1. Label the edges of Sm

by (m− 1)n+ 1, (m− 1)n+ 2, . . . ,mn. The centers of S1, S2, . . . , Sm−1 have identical

label. Hence, χla(G) = mn+ 2.

For m = 1, it is trivial that χla(K1,n) = n + 1. The remaining part focuses on the

disjoint union of two stars, G = K1,p + K1,q where 2 ≤ p ≤ q. From Proposition 1,

p+ q+ 1 ≤ χla(G) ≤ p+ q+ 2. We will derive the necessary and sufficient conditions

for χla(G) = p+ q + 1.
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Lemma 3. Consider K1,p where p ≥ 2. Let q be any postive integer. Label the edges of
K1,p using {1, 2, . . . , p+q} injectively. For any x ∈ [ p(p+1)

2
, p(p+2q+1)

2
], there exists a labeling

such that the center of K1,p has label x.

Proof. Start with the edge labels 1, 2, . . . , p. Now, keep adding 1 to the last edge

label starting from p until p + q. Next, keep adding 1 to the second last edge label

starting from p − 1 until p + q − 1. Repeat this process. Finally, keep adding 1 to

the first label starting from 1 until p + q − (p − 1). The final edge labels will be

p+ q− (p−1), p+ q− (p−2), . . . , p+ q−1, p+ q. Each time the center label increases

by 1. Therefore, it can attain every possible value from p(p+1)
2 to p(p+2q+1)

2 .

Theorem 2. Let G = K1,p +K1,q where 2 ≤ p ≤ q, then χla(G) = p+ q + 1 if and only

if q ≥ p(p−1)
2

; or p+ q ≡ 0,−1 (mod 4) and q ≤
⌊

2p−1+
√

8p2+1

2

⌋
.

Proof. Denote the label of the centers of K1,p and K1,q by x and y, respectively.

Then

(1) p(p+1)
2 = 1+2+· · ·+p ≤ x ≤ (p+q)+(p+q−1)+· · ·+(p+q−(p−1)) = p(p+2q+1)

2 ,

(2) q(q+1)
2 = 1+2+· · ·+q ≤ y ≤ (p+q)+(p+q−1)+· · ·+(p+q−(q−1)) = q(q+2p+1)

2 ,

(3) x+ y = 1 + 2 + · · ·+ (p+ q) = (p+q)(p+q+1)
2 .

(⇒) Suppose χla(G) = p+ q+ 1. Then at least one of x, y is greater than p+ q. Both

x and y are greater than p+ q if and only if x = y. There are three cases to consider.

(a) x ≤ p+ q < y. By (1), p(p+1)
2 ≤ x ≤ p+ q. This implies q ≥ p(p−1)

2 .

(b) y ≤ p+ q < x. By (2), q(q+1)
2 ≤ y ≤ p+ q. Hence, q ≥ p ≥ q(q−1)

2 ≥ p(p−1)
2 .

(c) p+ q < x = y. By (3), (p+ q)(p+ q+ 1) = 4x. Therefore, p+ q ≡ 0,−1 (mod 4).

Since x ≤ p(p+2q+1)
2 by (1), x = (p+q)(p+q+1)

4 ≤ p(p+2q+1)
2 . Upon simplifications,

q2 − (2p− 1)q − p(p+ 1) ≤ 0 which is equivalent to q ≤
⌊
2p−1+

√
8p2+1

2

⌋
.

(⇐) Suppose q ≥ p(p−1)
2 . By labeling the edges of K1,p by 1, 2, . . . , p, x = p(p+1)

2 .

Since p+ q ≥ p+ p(p−1)
2 = p(p+1)

2 = x, χla(G) = p+ q + 1 by Proposition 1.

Suppose p + q ≡ 0,−1 (mod 4) and q ≤
⌊
2p−1+

√
8p2+1

2

⌋
. Then (p+q)(p+q+1)

4 is an

integer and from (c), p(p+1)
2 ≤ (p+q)(p+q+1)

4 ≤ p(p+2q+1)
2 . By Lemma 3, there is an

edge labeling of K1,p using {1, 2, . . . , p + q} such that x = (p+q)(p+q+1)
4 = y. Hence,

χla(G) = p+ q + 1 by Proposition 1.

Corollary 1. For n ≥ 2, χla(2K1,n) =

{
2n+ 1 if n is even or n = 3,

2n+ 2 otherwise.
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3. Disjoint union of paths and cycles

In [2], Bača et al. proved that χla(mC2n) = 3, χla(mC2n+1) ≤ m+2 and χla(mPn) =

2m+ 1. Here we generalize these results to disjoint union of paths and cycles which

need not be identical. The proofs are direct applications of the labelings introduced

in [1] showing that χla(Pn) = 3 and χla(Cn) = 3.

Let Pn = v1v2 · · · vn with n ≥ 3. Let ei = vivi+1, 1 ≤ i ≤ n − 1. Define f : E →
{1, 2, . . . , n− 1} by

f(ei) =

{
n− i+1

2 if i is odd,
i
2 if i is even,

(3.1)

then

f+(vi) =


n− 1 if i is odd, i 6= n,

n if i is even, i 6= n,

bn2 c if i = n.

Let Cn = v1v2 · · · vnv1 with n ≥ 3. Let ei = vivi+1, 1 ≤ i ≤ n − 1 and en = vnv1.

Define f : E → {1, 2, . . . , n} by

f(ei) =

{
n− i−1

2 if i is odd,
i
2 if i is even,

(3.2)

then

f+(vi) =


n if i is odd, i 6= 1,

n+ 1 if i is even,

2n− bn2 c if i = 1.

Let P be a path. Suppose a, b ∈ V (P ). Let aPb denote the subpath of P starting

from a to b. Let C = v1v2 · · · vnv1 be an n-cycle and be drawn as a plane graph.

Suppose a, b ∈ V (C). Let aCb be the subpath of C from a to b clockwise.

Theorem 3. Let G = Pn1 + Pn2 + · · ·+ Pnm , where ni ≥ 3, 1 ≤ i ≤ m, then χla(G) =
2m+ 1.

Proof. By Lemma 2, χla(G) ≥ 2m+1. Let n = n1+n2+· · ·+nm−(m−1). Consider

the labeling of Pn using (3.1). Clearly, every two adjacent vertices are with distinct

labels. Decompose Pn into m paths Pn1
∪ Pn2

∪ · · · ∪ Pnm
defined by Pn1

= v1Pnvn1

and Pnk
= vn1+n2+···+nk−1−(k−2)Pnvn1+n2+···+nk−(k−1) for 1 < k ≤ m. Note that the

label of the first vertex of Pn1 is n − 1, the labels of the internal vertices of Pnk
are

either n− 1 or n, and the labels of the two end vertices of Pnk
are all distinct and at

most n− 1. Thus, G is local antimagic. Hence, χla(G) = 2m+ 1.
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Theorem 4. Let G = Cn1 + Cn2 + · · · + Cnm , where ni ≥ 3, 1 ≤ i ≤ m, then
3 ≤ χla(G) ≤ m+ 2.

Proof. Suppose one of ni’s is odd, then 3 = χ(G) ≤ χla(G). Now assume all ni’s

are even, then G is a bipartite graph with the same size of partitions. By Lemma 1,

χla(G) ≥ 3.

For the second inequality, consider the labeling f of Cn using (3.2), where n =

n1 + n2 + · · · + nm. Decompose Cn into m paths Rn1
, Rn2

, . . . , Rnm
defined by

Rn1
= v1Cnvn1+1, Rnk

= vn1+n2+···+nk−1+1Cnvn1+n2+···+nk+1 for 1 < k < m, and

Rnm
= vn1+n2+···+nm−1+1Cnv1. Note that the labels of the internal vertices of Rnk

are either n or n + 1 alternately. Now identify the two end vertices of Rnk
to form

Cnk
. The resulting 2-regular graph G admits a labeling such that every vertex, except

at most one, must have label n or n + 1. Note that no two adjacent vertices have

the same label because they are incident to a common edge and the other two edges

incident to them have different labels. Therefore, there are at most m + 2 distinct

vertex labels and χla(G) ≤ m+ 2.

Remark 1. Suppose n1 = n2 = · · · = nm = 2n. The labels of the internal vertices of
Rnk are either 2mn or 2mn + 1. The labels of the first edge and the last edge of Rnk are
(2m− k + 1)n and kn respectively which add up to (2m+ 1)n. Therefore, χla(mC2n) = 3.

Let G = Cn1
+Cn2

+ · · ·+Cnm
. A natural question to ask is: under what conditions,

is χla(G) = 3? As we shall see, this holds if all but at most one of the cycles are even.

The following lemma is easy to obtain.

Lemma 4. Let P = v1v2 · · · v2k+2 be a subpath of a graph G, where k ≥ 1. Suppose there
is an edge labeling f of G such that f(v2i+1v2i+2) = c ± i for 0 ≤ i ≤ k and a fixed integer
c, so that either all are plus signs or all are minus signs. Define a new labeling g of G such
that

g(e) =


f(e) if e /∈ E(P );

f(v2k+1v2k+2) if e = v1v2;

f(v2i−1v2i) if e = v2i+1v2i+2, 1 ≤ i ≤ k,

=


f(e) if e /∈ E(P );

c± k if e = v1v2;

c± (i− 1) if e = v2i+1v2i+2, 1 ≤ i ≤ k,

then g+(v1) = f+(v1)± k, g+(v2) = f+(v2)± k and g+(vi) = f+(vi)∓ 1 for 3 ≤ i ≤ 2k+ 2.
Moreover, g+(v) = f+(v) for all v ∈ V (G) \ V (P ).

Such labeling g is called a cyclic permutation of f on a (2k + 2)-path.
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Example 1. Consider a labeling of C8 shown in the leftmost graph of the following figure.
By using Lemma 4 repeatedly, we can make the vertex labels of a cycle as close as possible.
Firstly, we consider the subpath starting from the edge labeled by 21 to the edge labeled by
19 clockwise. Secondly, we consider the subpath starting from the edge labeled by 1 to the
edge labeled by 2 clockwise.

23

22

21

23

22

21

21

22

23

2118

20

1919

20

2118

22

2

21

18

3

4 1

2 3

4

23

2

1

25 22

21

22

2122

21

22

21

19

20

3

4

23

1

23 20

22

c = 21, k = 2 c = 1, k = 1

�

Lemma 5. Let C = v1v2 · · · vnv1, ei = vivi+1 for 1 ≤ i ≤ n− 1 and en = vnv1. Let f be
an edge labeling of C defined by

f(ei) =

{
a− i−1

2
if i is odd;

b− 1 + i
2

if i is even,

for some fixed integers a, b. If n is odd, additionally assume that a− b = n− 1. Then there
exists an edge labeling of C using the same set of labels such that the induced vertex labels
are a+ b− 1, a+ b, a+ b+ 1.

Proof. It is easy to see that

f+(vi) = a+ b+
(−1)i − 1

2
, for i 6= 1 and

f+(v1) =

{
a+ b+ bn−1

2 c if n is even;

2a− bn−1
2 c if n is odd.

(3.3)

When n is odd, under the additional assumption, we have 2a− bn−1
2 c = a+ (b+ n−

1)− n−1
2 = a+b+ n−1

2 = a+b+bn−1
2 c. So we may always write f+(v1) = a+b+bn−1

2 c
for each n.

Let m =
⌊
n−1
2

⌋
− 1. Note that

n =

{
2m+ 3 if n is odd;

2m+ 4 if n is even.

Let f1 be the cyclic permutation of f on the path v1v2 · · · v2m+1v2m+2 and fk be the

cyclic permutation of fk−1 on the path vkvk+1 · · · v2m−k+2v2m−k+3 for 2 ≤ k ≤ m.
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By (3.3) and Lemma 4, we have

f+m(v1) = f+1 (v1) = f+(v1)−m
= a+ b+m+ 1−m = a+ b+ 1.

f+m(v2m+2) = f+1 (v2m+2) = f+(v2m+2) + 1

= a+ b+ 1.

f+m(v2) = f+2 (v2) = f+1 (v2) + (m− 1)

= f+(v2)−m+ (m− 1)

= a+ b−m+ (m− 1) = a+ b− 1.

f+m(v2m+1) = f+2 (v2m+1) = f+1 (v2m+1)− 1

= f+(v2m+1) + 1− 1

= a+ b− 1 + 1− 1 = a+ b− 1.

For 3 ≤ k ≤ m, by (3.3) and Lemma 4 ,

f+m(vk) = f+k (vk)

= f+k−1(vk) + (−1)k[m− (k − 1)]

= f+k−2(vk) + (−1)k−1[m− (k − 2)] + (−1)k[m− (k − 1)]

= [f+k−3(vk) + (−1)k−1] + (−1)k−1

...

= [f+(vk) + (−1)2 + (−1)3 + · · ·+ (−1)k−1] + (−1)k−1

= [a+ b+
(−1)k − 1

2
+ (−1)2 + (−1)3 + · · ·+ (−1)k−1] + (−1)k−1

=

{
a+ b+ 1 if k is odd;

a+ b− 1 if k is even.

For 3 ≤ k ≤ m, by (3.3) and Lemma 4,

f+m(v2m+3−k) = f+k (v2m+3−k)

= f+k−1(v2m+3−k) + (−1)k−1

= f+k−2(v2m+3−k) + (−1)k−2 + (−1)k−1

...

= f+(v2m+3−k) + (−1)0 + (−1)1 + · · ·+ (−1)k−2 + (−1)k−1

= a+ b+
(−1)2m+3−k − 1

2
+ (−1)0 + (−1)1 + · · ·+ (−1)k−2 + (−1)k−1

=

{
a+ b+ 1 if k is odd;

a+ b− 1 if k is even.
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f+m(vm+1) = f+m−1(vm+1) + (−1)m

= f+m−2(vm+1) + (−1)m−2 + (−1)m

...

= f+(vm+1) + (−1)0 + (−1)1 + · · ·+ (−1)m−2 + (−1)m

= a+ b+
(−1)m+1 − 1

2
+ (−1)0 + (−1)1 + · · ·+ (−1)m−2 + (−1)m

=

{
a+ b+ 1 if m+ 1 is odd;

a+ b− 1 if m+ 1 is even.

f+m(vm+2) = f+m−1(vm+2) + (−1)m−1

= f+m−2(vm+2) + (−1)m−2 + (−1)m−1

...

= f+(vm+2) + (−1)0 + (−1)1 + · · ·+ (−1)m−2 + (−1)m−1

= a+ b+
(−1)m+2 − 1

2
+ (−1)0 + (−1)1 + · · ·+ (−1)m−2 + (−1)m−1

= a+ b.

Finally, if n is odd, f+m(v2m+3) = f+m(vn) = f+(vn) = a+ b− 1 by (3.3). If n is even,

f+m(v2m+3) = f+m(vn−1) = f+(vn−1) = a+b−1 and f+m(v2m+4) = f+m(vn) = f+(vn) =

a+ b by (3.3). Summing up, fm is a required labeling.

Theorem 5. Let G = Cn1 + Cn2 + · · · + Cnm , where ni ≥ 3 for 1 ≤ i ≤ m, and ni is
even for 1 ≤ i ≤ m− 1, then χla(G) = 3.

Proof. Let n = n1 + n2 + · · · + nm. For 1 ≤ j ≤ m, denote Cnj
= vj1v

j
2 · · · vjnj

vj1,

eji = vji v
j
i+1 for 1 ≤ i ≤ nj−1 and ejnj

= vjnj
vj1. Let a1 = n and b1 = 1. For 2 ≤ j ≤ m,

define aj = n− 1
2 (n1 + n2 + · · ·+ nj−1) and bj = 1

2 (n1 + n2 + · · ·+ nj−1) + 1. Note

that aj + bj = n+ 1 for 1 ≤ j ≤ m, and am − bm = nm − 1. Define an edge labeling

f of G as follows.

For 1 ≤ j ≤ m and 1 ≤ i ≤ nj ,

f(eji ) =

{
aj − i−1

2 if i is odd

bj − 1 + i
2 if i is even

By Lemma 5, there is an edge labeling gj for Cnj
with induced vertex labels aj + bj−

1 = n, aj +bj = n+1 and aj +bj +1 = n+2 for 1 ≤ j ≤ m. Since the domain of each

gj is the same as the restriction of f on Cnj
, we have a local antimagic 3-coloring of

C with induced vertex labels n, n+ 1 and n+ 2. By Theorem 4, χla(G) = 3.
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Example 2. Consider C8 + C6 + C7. Here n1 = 8, n2 = 6, n3 = 7 and n = 21. First we
use the labeling of C8 obtained in Example 1.

For C6, we have

For C7, we have

Thus, we have a local antimagic 3-coloring for C8 +C6 +C7 with vertex labels 21, 22, 23. �

4. Disjoint union of two odd cycles

In this section, we study disjoint union of two cycles, Cp + Cq. By Theorem 4,

3 ≤ χla(Cp + Cq) ≤ 4. By Theorem 5, χla(Cp + Cq) = 3 if p or q is even. Therefore,

we will focus on the disjoint union of two odd cycles. First, we give two families that

have local antimagic chromatic number 3.

Theorem 6. For k ≥ 2, χla(C2k−1 + C2k+1) = 3.

Proof. It suffices to construct a local antimagic 3-colorings g for C2k−1 + C2k+1.

For C2k+1, let ei be the i-th edge in the clockwise order for 1 ≤ i ≤ 2k + 1. Define

g : E(C2k+1)→ {2j − 1 | 1 ≤ j ≤ k + 1} ∪ {2j | k + 1 ≤ j ≤ 2k} by

g(ei) =

{
i if i is odd;

4k + 2− i if i is even.
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For C2k−1, let ei be the i-th edge in the clockwise order for 1 ≤ i ≤ 2k − 1. Define

g : E(C2k−1)→ {2j | 1 ≤ i ≤ k} ∪ {2j − 1 | k + 2 ≤ j ≤ 2k} by

g(ei) =

{
i+ 1 if i is odd;

4k + 1− i if i is even.

It is easy to check that g is a local antimagic labeling of C2k+1 +C2k−1 with induced

vertex labels 2k + 2, 4k + 1, 4k + 3.

Theorem 7. For k ≥ 1, χla(C3 + C4k+1) = 3.

Proof. We construct a local antimagic 3-coloring of C3+C4k+1. For C3 = u1u2u3u1,

define g(u1u2) = k+ 1, g(u2u3) = 2k+ 2, and g(u3u1) = 3k+ 4. Note that g+(u1) =

4k + 5, g+(u2) = 3k + 3, g+(u3) = 5k + 6.

For C4k+1, let ei = vivi+1 be the i-th edge in the clockwise order for 1 ≤ i ≤ 4k + 1,

where v4k+2 = v1. Define g : E(C4k+1)→ [1, 4k + 4] \ {k + 1, 2k + 2, 3k + 4} by

g(e4i−3) = i, 1 ≤ i ≤ k.
g(e4i−2) = 3k + 3− i, 1 ≤ i ≤ k.

g(e4i−1) =

{
k + 2 + i if 1 ≤ i ≤ k − 1;

3k + 3 if i = k.

g(e4i) =

{
4k + 4− i if 1 ≤ i ≤ k − 1;

k + 2 if i = k.

g(e4k+1) = 4k + 4.

We have

g+(v1) = g(e4k+1) + g(e1) = 4k + 4 + 1 = 4k + 5.

g+(v4i−3) = g(e4i−4) + g(e4i−3) = 4k + 4− (i− 1) + i = 4k + 5, 2 ≤ i ≤ k.
g+(v4i−2) = g(e4i−3) + g(e4i−2) = i+ 3k + 3− i = 3k + 3, 1 ≤ i ≤ k.
g+(v4i−1) = g(e4i−2) + g(e4i−1) = 3k + 3− i+ k + 2 + i = 4k + 5, 1 ≤ i ≤ k − 1.

g+(v4k−1) = g(e4k−2) + g(e4k−1) = 3k + 3− k + 3k + 3 = 5k + 6.

g+(v4i) = g(e4i−1) + g(e4i) = k + 2 + i+ 4k + 4− i = 5k + 6, 1 ≤ i ≤ k − 1.

g+(v4k) = g(e4k−1) + g(e4k) = 3k + 3 + k + 2 = 4k + 5.

g+(v4k+1) = g(e4k) + g(e4k+1) = k + 2 + 4k + 4 = 5k + 6.
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Next, we will prove that some disjoint unions of two odd cycles have local antimagic

chromatic number 4. Below are some useful lemmas.

Lemma 6. Let G be a disjoint union of cycles with n vertices. Suppose χla(G) = 3, then
the edge labeled 1 is adjacent to the edge labeled n. Moreover, one vertex label is less than
n+ 1, one equals to n+ 1, and one is greater than n+ 1.

Proof. Consider a local antimagic 3-coloring f of G. Let st be the edge with f(st) =

1 and uv be the edge with f(uv) = n. Then f+(s), f+(t) ≤ n+ 1 and f+(u), f+(v) ≥
n + 1. Since χla(G) = 3, {f+(s), f+(t)} ∩ {f+(u), f+(v)} 6= ∅. Without loss of

generality, assume f+(s) = f+(u). Then f+(s) = f+(u) = n + 1 and s = u. This

implies st is adjacent to uv. Also, f+(t) < n + 1 and f+(v) > n + 1. The results

follow.

Lemma 7. Let G be a disjoint union of cycles with n vertices and χla(G) = 3. Let f be
a local antimagic 3-coloring of G with colors a < b = n+ 1 < c. Suppose uv is an edge with
f(uv) = z.

(1) If f+(u) = a and f+(v) = b, then c−z < a or c−z > n, i.e., z ∈ [1, c−n−1]∪[c−a+1, n];

(2) If f+(u) = a and f+(v) = c, then c− n ≤ b− z ≤ a− 1, i.e., z ∈ [n+ 2− a, 2n+ 1− c];

(3) If f+(u) = b and f+(v) = c, then a−z ≤ 0 or a−z ≥ c−n, i.e., z ∈ [1, n+a−c]∪ [a, n].

Proof.
(1) Suppose a ≤ c − z ≤ n. Let st be the edge with f(st) = c − z. Since a ≤ c − z,

f+(s), f+(t) > a. Assume f+(s) = b and f+(t) = c. This implies st is adjcent

to the edge labeled z at t. Hence, c is an induced vertex label of u or v which is

impossible. Therefore, c− z < a or c− z > n.

(2) Let st be the edge with f(st) = b− z. Suppose b− z ≥ a. Then f+(s), f+(t) > a.

Assume f+(s) = b and f+(t) = c. This implies st is adjacent to the edge labeled z

at s. Hence, b is an induced vertex label of u or v which is impossible. Therefore,

b− z ≤ a− 1.

Suppose b− z < c− n. Since b− z + n < c, f+(s), f+(t) 6= c. Assume f+(s) = a

and f+(t) = b. This implies st is adjcent to the edge labeled z at t. Hence, b is

an induced vertex label of u or v which is impossible. Therefore, c− n ≤ b− z.

(3) Suppose 0 < a − z < c − n. Let st be the edge with f(st) = a − z. Since

a− z + n < c, f+(s), f+(t) 6= c. Assume f+(s) = a and f+(t) = b. This implies

st is adjcent to the edge labeled z at s. Hence, a is an induced vertex label of u

or v which is impossible. Therefore, a− z ≤ 0 or a− z ≥ c− n.

Theorem 8. For k ≥ 1, suppose G = C3 + C2k+1 and χla(G) = 3. Then for any local
antimagic 3-coloring of G, no edge in C3 has label 1.
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Proof. Let f be a local antimagic 3-coloring of G. Suppose the edge with label 1

lies in C3 = uvwu. By Lemma 6, we can assume f(uv) = 1, f(vw) = 2k + 4 and

f(uw) = x. Then f+(u) = x+ 1, f+(v) = 2k + 5, f+(w) = 2k + 4 + x. By applying

Lemma 7(2) to uw, 2k + 6 − (x + 1) ≤ x ≤ 4k + 9 − (2k + 4 + x). This implies

2x = 2k + 5 which is impossible. Therefore, no edge in C3 has label 1.

Lemma 8. For k ≥ 2, suppose G = C3 + C4k−1 and χla(G) = 3. Then there exists
a local antimagic 3-coloring f of C3 + C4k−1 containing 4 consecutive edges in C4k−1 with
labels x, 1, 4k + 2, y in clockwise order such that x and y satisfy all the conditions below.

(1) x ≡ y ≡ 1 (mod 2),

(2) 2y − 1 ≤ x ≤ 4k + 1,

(3) 3 ≤ y ≤ 2k + 1,

(4) 3x− 3y ≥ 8k + 2 or 3y − x ≥ 4,

(5) x+ 3y ≤ 8k + 6 ≤ 3x+ y,

(6) 3x− 3y ≥ 8k + 2 or 3x− y ≤ 8k + 2.

In addition, the edge labels in C3 are x−y
2

+ 1, x+y
2
, 4k + 2 − x−y

2
, and the induced vertex

labels are x+ 1, 4k + 3, 4k + 2 + y.

Proof. By Lemma 6 and Theorem 8, assume the edge labels x, 1, 4k + 2, y are in

clockwise order in C4k−1, then the induced vertex labels are x+ 1, 4k+ 3, 4k+ 2 + y.

It is easy to solve that the edge labels in C3 = uvwu which are x−y
2 + 1 = f(uv),

x+y
2 = f(uw), 4k + 2 − x−y

2 = f(vw), say. This implies that x > y > 1, and x, y

have the same parity. By considering the local antimagic 3-coloring 4k + 3− f of G,

the edge labels x, 1, 4k + 2, y will be transformed to 4k + 3 − x, 4k + 2, 1, 4k + 3 − y
respectively. Therefore, without loss of generality, we can assume both x and y are

odd integers with 3 ≤ y ≤ x− 2 ≤ 4k − 1.

Consider the edge st with f(st) = x+1
2 . Obviously, x−y

2 + 1 < x+1
2 < x+y

2 . If
x+1
2 = 4k + 2− x−y

2 , then x = 4k + y+3
2 > 4k + 2 which is impossible. Hence, st lies

in C4k−1 and {f+(s), f+(t)} = {4k + 3, 4k + 2 + y}. Therefore, 4k + 2 + y − x+1
2 is

an edge label implying y ≤ x+1
2 , i.e., 2y − 1 ≤ x. Hence, 2y − 1 ≤ x ≤ 4k + 1 and

3 ≤ y ≤ 2k + 1.

By applying Lemma 7(1) to the edge uv in C3, we have

x− y
2

+ 1 ≤ 4k + 2 + y − (4k + 2)− 1 or
x− y

2
+ 1 ≥ 4k + 2 + y − (x+ 1) + 1

⇔ 3y − x ≥ 4 or 3x− 3y ≥ 8k + 2.

By applying Lemma 7(2) to the edge uw in C3, we have

4k + 4− (x+ 1) ≤ x+ y

2
≤ 8k + 5− (4k + 2 + y)

⇔ x+ 3y ≤ 8k + 6 ≤ 3x+ y.
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By applying Lemma 7(3) to the edge vw in C3, we have

4k + 2− x− y
2
≤ 4k + 2 + (x+ 1)− (4k + 2 + y) or 4k + 2− x− y

2
≥ x+ 1

⇔ 3x− 3y ≥ 8k + 2 or 3x− y ≤ 8k + 2.

By summarizing the results above, we have the lemma.

Theorem 9. χla(C3 + C3) = 4, χla(C3 + C7) = 4 and χla(C3 + C11) = 4.

Proof. By Theorem 8, χla(C3 + C3) = 4. Suppose G = C3 + C4k−1 for k ≥ 2, and

χla(G) = 3. Consider a local antimagic 3-coloring f of G given by Lemma 8.

For k = 2, the only (x, y) satisfying all the conditions in Lemma 8 is (9, 3). The

edge labels in C3 are 4, 6, 7 with induced vertex labels 10, 11, 13. Consider the

edge uv with f(uv) = 5 which lies in C4k−1. This means 10, 11 /∈ {f+(u), f+(v)}, a

contradiction. Hence, χla(C3 + C7) = 4.

For k = 3, the only (x, y) satisfying all the conditions in Lemma 8 are (13, 3) and

(9, 5).

(i) (x, y) = (13, 3). The edge labels in C3 are 6, 8, 9 with induced vertex labels

14, 15, 17. Consider the edge uv with f(uv) = 7 which lies in C4k−1. This means

14, 15 /∈ {f+(u), f+(v)}, a contradiction.

(ii) (x, y) = (9, 5). The edge labels in C3 are 3, 7, 12 with induced vertex labels

10, 15, 19. Consider the edge uv with f(uv) = 5 which lies in C4k−1. Thus

{f+(u), f+(v)} = {15, 19}. So the edge labels 10, 5, 14 are in clockwise order in

C4k−1. This implies 9, 10, 5, 14, 1, 9 are in clockwise order in C4k−1, a contradic-

tion.

Hence, χla(C3 + C11) = 4.

Theorem 10. For k ≥ 1, suppose G = C5 + C2k+3 and χla(G) = 3, then for any local
antimagic 3-coloring of G, no edge in C5 has label 1.

Proof. Let f be a local antimagic 3-coloring of G. Suppose the edge with label 1 lies

in C5 = u1u2u3u4u5u1. By Lemma 6, we can assume f(u1u2) = 1, f(u2u3) = 2k+ 8,

f(u5u1) = x and f(u3u4) = y. Thus, f+(u1) = x + 1, f+(u2) = 2k + 9, f+(u3) =

2k + 8 + y. There are three cases.

(1) Suppose f+(u4) = x + 1 and f+(u5) = 2k + 9, then f(u4u5) = x + 1 − y. We

have x+ 1− y + x = 2k + 9 implying y = 2x− 2k − 8 and x = k + 4 + y
2 . Hence,

k + 4 < x < 2k + 8.

(2) Suppose f+(u4) = x+ 1 and f+(u5) = 2k+ 8 + y, then f(u4u5) = x+ 1− y. We

have x+ 1− y + x = 2k + 8 + y implying 2x− 2k − 2y = 7 which is impossible.
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(3) f+(u4) = 2k + 9 and f+(u5) = 2k + 8 + y. By considering the local antimagic

3-coloring 2k + 9− f of G, we have case (1).

Therefore, without loss of generality, assume f(u3u4) = 2x − 2k − 8 and f(u4u5) =

2k + 9 − x. Thus, f+(u3) = 2x, f+(u4) = x + 1, f+(u5) = 2k + 9. By applying

Lemma 7(2) to u3u4, (2k+ 8) + 2− (x+ 1) ≤ 2x− 2k− 8 ≤ 2(2k+ 8) + 1− 2x. This

implies 4k+17
3 ≤ x ≤ 6k+25

4 . By applying Lemma 7(1) to u4u5, we have 2k + 9− x ≤
2x− (2k + 8)− 1. This implies x ≥ 4k+18

3 . Hence, 4k+18
3 ≤ x ≤ 6k+25

4 .

Suppose x + 1 is even. Let uv be the edge with f(uv) = x+1
2 . Note that

{f+(u), f+(v)} = {2k + 9, 2x}. By applying Lemma 7(3) to uv, we have x+1
2 ≤

2k + 8 + (x+ 1)− 2x. This implies x ≤ 4k+17
3 , a contradiction.

Suppose x + 1 is odd. Let uv be the edge with f(uv) = k + 5 − x
2 , and st be

the edge with f(st) = k + 4 + x
2 . It is easy to check that 1 < k + 5 − x

2 < x,

k+5− x
2 < 2k+9−x and k+5− x

2 < 2x−2k−8. Also, 2k+9−x < k+4+ x
2 < 2k+8,

x < k + 4 + x
2 and 2x− 2k − 8 < k + 4 + x

2 . Therefore, both uv and st lies in C2k+3,

{f+(u), f+(v)} = {x + 1, 2k + 9}, and {f+(s), f+(t)} = {2k + 9, 2x}. But then the

edge labels 3x
2 − k− 4, k+ 5− x

2 , k+ 4 + x
2 ,

3x
2 − k− 4 are in clockwise order in C2k+3,

a contradiction.

Therefore, no edge in C5 has label 1.

As an immediate corollary, we have

Theorem 11. χla(C5 + C5) = 4.

By using computer, we have checked that χla(C3 + C4k−1) = 4 for 4 ≤ k ≤ 14. We

end this paper with the following conjecture.

Conjecture 4.1. For k ≥ 1, χla(C3 + C4k−1) = 4.
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