Complete solutions on local antimagic chromatic number of three families of disconnected graphs

Tsz Lung Chan ${ }^{1, \dagger}$, Gee-Choon Lau ${ }^{2, *}$ and Wai Chee Shiu ${ }^{1, \ddagger}$
${ }^{1}$ Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong, P.R. China.
${ }^{\dagger}$ tlchantl@gmail.com
$\ddagger_{\text {wcshiu@associate.hkbu.edu.hk }}$
${ }^{2}$ College of Computing, Informatics \& Mathematics, Universiti Teknologi MARA, Johor Branch, Segamat Campus, 85000 Malaysia.
*geeclau@yahoo.com

Received: 5 October 2023; Accepted: 4 March 2024
Published Online: 20 March 2024

Abstract

An edge labeling of a graph $G=(V, E)$ is said to be local antimagic if it is a bijection $f: E \rightarrow\{1, \ldots,|E|\}$ such that for any pair of adjacent vertices x and y, $f^{+}(x) \neq f^{+}(y)$, where the induced vertex label $f^{+}(x)=\sum f(e)$, with e ranging over all the edges incident to x. The local antimagic chromatic number of G, denoted by $\chi_{l a}(G)$, is the minimum number of distinct induced vertex labels over all local antimagic labelings of G. In this paper, we study local antimagic labeling of disjoint unions of stars, paths and cycles whose components need not be identical. Consequently, we completely determined the local antimagic chromatic numbers of disjoint union of two stars, paths, and 2-regular graphs with at most one odd order component respectively.

Keywords: local antimagic labeling, local antimagic chromatic number, disconnected graphs.

AMS Subject classification: 05C78, 05C15.

1. Introduction

A graph $G=(V, E)$ is said to be local antimagic if it admits a local antimagic edge labeling, i.e., a bijection $f: E \rightarrow\{1, \ldots,|E|\}$ such that the induced vertex labeling $f^{+}: V \rightarrow \mathbb{Z}$ given by $f^{+}(u)=\sum f(e)$, with e ranging over all the edges incident to u, has the property that any two adjacent vertices have distinct induced vertex labels (see $[1,3]$). Thus, f^{+}is a coloring of G. Clearly, the order of G must be at least 3. The vertex label $f^{+}(u)$ is called the induced color of u under f (the color of

[^0]u, for short, if no ambiguity occurs). The number of distinct induced colors under f is denoted by $c(f)$, and is called the color number of f. The labeling f is called a local antimagic $c(f)$-coloring of G. The local antimagic chromatic number of G, denoted by $\chi_{l a}(G)$, is $\min \{c(f) \mid f$ is a local antimagic labeling of $G\}$. Haslegrave [7] proved that every connected graph other than K_{2} is local antimagic. Hence $\chi_{l a}(G)$ is well-defined for every connected or disconnected graph G not containing any isolated edge.
For graphs G and H, let $G+H$ be the disjoint union of G and H with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$. For convenient, $m G$ is the disjoint union of $m \geq 2$ isomorphic copies of G. We shall use the notation $[a, b]=\{c \in \mathbb{Z} \mid a \leq c \leq b\}$, for integers $a \leq b$. Unless stated otherwise, all graphs considered in this paper are simple, undirected and of order at least 3 . A pendant vertex is a vertex of degree 1.
In [10], the authors provided some results on local antimagic labeling of disjoint unions of identical paths, identical stars, and identical cycles. However, certain parts of their proofs contain mistakes. The authors in [2] obtained many bounds on local antimagic chromatic number of disconnected graphs. In this paper, the local antimagic chromatic number of the disjoint union of two stars, paths and 2-regular graphs with at most one odd order cycle are completely determined.
We restate the following lemma in [8, Lemma 1] or [9, Lemma 2.1] below. It will be used later.

Lemma 1. [8, 9] Let G be a graph of size q. Suppose there is a local antimagic labeling of G inducing a 2 -coloring of G with colors x and y, where $x<y$. Let X and Y be the sets of vertices colored x and y, respectively. Then G is a bipartite graph with bipartition (X, Y) and $|X|>|Y|$. Moreover,

$$
x|X|=y|Y|=\frac{q(q+1)}{2} .
$$

The contrapositive of Lemma 1 gives a sufficient condition for a bipartite graph G to have $\chi_{l a}(G) \geq 3$.

2. Disjoint union of stars

In this section, we study the local antimagic chromatic number of a disjoint union of stars. Note that any bijective edge labeling of a disjoint union of stars, all of order at least 3 , must be a local antimagic labeling. We need the following lemma, which is easily extended from the theorem in $[8$, Theorem 6] or [2, Lemma 2].

Lemma 2. Let G be a graph with l pendant vertices. If G does not contain a K_{2} as a component, then $\chi_{l a}(G) \geq l+1$.

Proposition 1. Let $G=K_{1, p_{1}}+K_{1, p_{2}}+\cdots+K_{1, p_{n}}$ where $2 \leq p_{1} \leq p_{2} \leq \cdots \leq p_{n}$, and q be the size of G, then $q+1 \leq \chi_{l a}(G) \leq q+n$.

Proof. Note that $p_{1}+p_{2}+\cdots+p_{n}=q$. Since the order of G is $q+n$, $\chi_{l a}(G) \leq q+n$. By Lemma 2, $\chi_{l a}(G) \geq q+1$.

Suppose all stars are identical. There are only two possible values for the local antimagic chromatic number as was proved in [2]. Here we give a shorter proof using magic rectangles. We will use the fact in [4-6] that an $a \times b$ magic rectangle exists if and only if $a, b \geq 2, a \equiv b(\bmod 2)$, and $(a, b) \neq(2,2)$.

Theorem 1. Let $G=m K_{1, n}$ where $m \geq 3$ and $n \geq 2$, then

$$
\chi_{l a}(G)= \begin{cases}m n+1 & \text { if } n \text { is even, } \\ m n+1 & \text { if } m, n \text { are both odd, } \\ m n+1 & \text { if } m \text { is even, } n \text { is odd, } n \leq 2 m-1 \\ m n+2 & \text { if } m \text { is even, } n \text { is odd, } n \geq 2 m\end{cases}
$$

Proof. Obviously, $\chi_{l a}\left(K_{1, n}\right)=n+1$. By Proposition 1, $\chi_{l a}(G) \geq m n+1$. Denote the m stars by $S_{1}, S_{2}, \ldots, S_{m}$.
Suppose n is even. We label an edge of $S_{1}, S_{2}, \ldots, S_{m}$ by $1,2, \ldots, m$ respectively. Then label an edge of $S_{m}, S_{m-1}, \ldots, S_{1}$ by $m+1, m+2, \ldots, 2 m$ respectively. Repeat this labeling process by $1,2, \ldots, m n$ through alternating between the ascending and descending order of the stars. All centers will have identical label. So $\chi_{l a}(G)=m n+1$.

Suppose m, n are both odd. Consider a magic rectangle of size $n \times m$ with entries $\{1,2, \ldots, m n\}$. Use the i-th column as the edge labels of S_{i} for $1 \leq i \leq m$. All centers have identical label and $\chi_{l a}(G)=m n+1$.

Suppose m is even and n is odd. Note that $m \geq 4$ and each center label is at least $1+2+\cdots+n=\frac{n(n+1)}{2}$. Moreover, $\frac{n(n+1)}{2} \leq m n$ if and only if $n \leq 2 m-1$.

For $n \leq 2 m-1$, since $m \geq 3$, consider a magic rectangle of size $n \times(m-1)$ with entries $\{n+1, n+2, \ldots, m n\}$. Use the i-th column as the edge labels of S_{i} for $1 \leq i \leq m-1$. Label the edges of S_{m} by $1,2, \ldots, n$. The centers of $S_{1}, S_{2}, \ldots, S_{m-1}$ have identical label while the center of S_{m} has label $\frac{n(n+1)}{2}$. Since $n+1<\frac{n(n+1)}{2} \leq m n$, this center label equals a pendant vertex label of $S_{i}, 1 \leq i \leq m-1$. Hence, $\chi_{l a}(G)=m n+1$.
For $n \geq 2 m$, each center label is greater than $m n$. Since $\frac{1}{m}(1+2+\cdots+m n)=\frac{n(m n+1)}{2}$ is not an integer, the center labels cannot be all identical. So $\chi_{l a}(G) \geq m n+2$. Since $m \geq 3$, consider a magic rectangle of size $n \times(m-1)$ with entries $\{1,2, \ldots,(m-1) n\}$. Use the i-th column as the edge labels of S_{i} for $1 \leq i \leq m-1$. Label the edges of S_{m} by $(m-1) n+1,(m-1) n+2, \ldots, m n$. The centers of $S_{1}, S_{2}, \ldots, S_{m-1}$ have identical label. Hence, $\chi_{l a}(G)=m n+2$.

For $m=1$, it is trivial that $\chi_{l a}\left(K_{1, n}\right)=n+1$. The remaining part focuses on the disjoint union of two stars, $G=K_{1, p}+K_{1, q}$ where $2 \leq p \leq q$. From Proposition 1, $p+q+1 \leq \chi_{l a}(G) \leq p+q+2$. We will derive the necessary and sufficient conditions for $\chi_{l a}(G)=p+q+1$.

Lemma 3. Consider $K_{1, p}$ where $p \geq 2$. Let q be any postive integer. Label the edges of $K_{1, p}$ using $\{1,2, \ldots, p+q\}$ injectively. For any $x \in\left[\frac{p(p+1)}{2}, \frac{p(p+2 q+1)}{2}\right]$, there exists a labeling such that the center of $K_{1, p}$ has label x.

Proof. Start with the edge labels $1,2, \ldots, p$. Now, keep adding 1 to the last edge label starting from p until $p+q$. Next, keep adding 1 to the second last edge label starting from $p-1$ until $p+q-1$. Repeat this process. Finally, keep adding 1 to the first label starting from 1 until $p+q-(p-1)$. The final edge labels will be $p+q-(p-1), p+q-(p-2), \ldots, p+q-1, p+q$. Each time the center label increases by 1. Therefore, it can attain every possible value from $\frac{p(p+1)}{2}$ to $\frac{p(p+2 q+1)}{2}$.

Theorem 2. Let $G=K_{1, p}+K_{1, q}$ where $2 \leq p \leq q$, then $\chi_{l a}(G)=p+q+1$ if and only if $q \geq \frac{p(p-1)}{2}$; or $p+q \equiv 0,-1(\bmod 4)$ and $q \leq\left\lfloor\frac{2 p-1+\sqrt{8 p^{2}+1}}{2}\right\rfloor$.

Proof. Denote the label of the centers of $K_{1, p}$ and $K_{1, q}$ by x and y, respectively. Then
(1) $\frac{p(p+1)}{2}=1+2+\cdots+p \leq x \leq(p+q)+(p+q-1)+\cdots+(p+q-(p-1))=\frac{p(p+2 q+1)}{2}$,
(2) $\frac{q(q+1)}{2}=1+2+\cdots+q \leq y \leq(p+q)+(p+q-1)+\cdots+(p+q-(q-1))=\frac{q(q+2 p+1)}{2}$,
(3) $x+y=1+2+\cdots+(p+q)=\frac{(p+q)(p+q+1)}{2}$.
(\Rightarrow) Suppose $\chi_{l a}(G)=p+q+1$. Then at least one of x, y is greater than $p+q$. Both x and y are greater than $p+q$ if and only if $x=y$. There are three cases to consider.
(a) $x \leq p+q<y$. Вy (1), $\frac{p(p+1)}{2} \leq x \leq p+q$. This implies $q \geq \frac{p(p-1)}{2}$.
(b) $y \leq p+q<x$. Ву (2), $\frac{q(q+1)}{2} \leq y \leq p+q$. Hence, $q \geq p \geq \frac{q(q-1)}{2} \geq \frac{p(p-1)}{2}$.
(c) $p+q<x=y$. By $(3),(p+q)(p+q+1)=4 x$. Therefore, $p+q \equiv 0,-1(\bmod 4)$. Since $x \leq \frac{p(p+2 q+1)}{2}$ by $(1), x=\frac{(p+q)(p+q+1)}{4} \leq \frac{p(p+2 q+1)}{2}$. Upon simplifications, $q^{2}-(2 p-1) q-p(p+1) \leq 0$ which is equivalent to $q \leq\left\lfloor\frac{2 p-1+\sqrt{8 p^{2}+1}}{2}\right\rfloor$.
(\Leftarrow) Suppose $q \geq \frac{p(p-1)}{2}$. By labeling the edges of $K_{1, p}$ by $1,2, \ldots, p, x=\frac{p(p+1)}{2}$. Since $p+q \geq p+\frac{p(p-1)}{2}=\frac{p(p+1)}{2}=x, \chi_{l a}(G)=p+q+1$ by Proposition 1.
Suppose $p+q \equiv 0,-1(\bmod 4)$ and $q \leq\left\lfloor\frac{2 p-1+\sqrt{8 p^{2}+1}}{2}\right\rfloor$. Then $\frac{(p+q)(p+q+1)}{4}$ is an integer and from $(\mathrm{c}), \frac{p(p+1)}{2} \leq \frac{(p+q)(p+q+1)}{4} \leq \frac{p(p+2 q+1)}{2}$. By Lemma 3, there is an edge labeling of $K_{1, p}$ using $\{1,2, \ldots, p+q\}$ such that $x=\frac{(p+q)(p+q+1)}{4}=y$. Hence, $\chi_{l a}(G)=p+q+1$ by Proposition 1.

Corollary 1. For $n \geq 2, \chi_{l a}\left(2 K_{1, n}\right)= \begin{cases}2 n+1 & \text { if } n \text { is even or } n=3, \\ 2 n+2 & \text { otherwise. }\end{cases}$

3. Disjoint union of paths and cycles

In [2], Bača et al. proved that $\chi_{l a}\left(m C_{2 n}\right)=3, \chi_{l a}\left(m C_{2 n+1}\right) \leq m+2$ and $\chi_{l a}\left(m P_{n}\right)=$ $2 m+1$. Here we generalize these results to disjoint union of paths and cycles which need not be identical. The proofs are direct applications of the labelings introduced in [1] showing that $\chi_{l a}\left(P_{n}\right)=3$ and $\chi_{l a}\left(C_{n}\right)=3$.

Let $P_{n}=v_{1} v_{2} \cdots v_{n}$ with $n \geq 3$. Let $e_{i}=v_{i} v_{i+1}, 1 \leq i \leq n-1$. Define $f: E \rightarrow$ $\{1,2, \ldots, n-1\}$ by

$$
f\left(e_{i}\right)= \begin{cases}n-\frac{i+1}{2} & \text { if } i \text { is odd } \tag{3.1}\\ \frac{i}{2} & \text { if } i \text { is even }\end{cases}
$$

then

$$
f^{+}\left(v_{i}\right)= \begin{cases}n-1 & \text { if } i \text { is odd, } i \neq n \\ n & \text { if } i \text { is even, } i \neq n \\ \left\lfloor\frac{n}{2}\right\rfloor & \text { if } i=n\end{cases}
$$

Let $C_{n}=v_{1} v_{2} \cdots v_{n} v_{1}$ with $n \geq 3$. Let $e_{i}=v_{i} v_{i+1}, 1 \leq i \leq n-1$ and $e_{n}=v_{n} v_{1}$. Define $f: E \rightarrow\{1,2, \ldots, n\}$ by

$$
f\left(e_{i}\right)= \begin{cases}n-\frac{i-1}{2} & \text { if } i \text { is odd } \tag{3.2}\\ \frac{i}{2} & \text { if } i \text { is even }\end{cases}
$$

then

$$
f^{+}\left(v_{i}\right)= \begin{cases}n & \text { if } i \text { is odd, } i \neq 1 \\ n+1 & \text { if } i \text { is even } \\ 2 n-\left\lfloor\frac{n}{2}\right\rfloor & \text { if } i=1\end{cases}
$$

Let P be a path. Suppose $a, b \in V(P)$. Let $a P b$ denote the subpath of P starting from a to b. Let $C=v_{1} v_{2} \cdots v_{n} v_{1}$ be an n-cycle and be drawn as a plane graph. Suppose $a, b \in V(C)$. Let $a C b$ be the subpath of C from a to b clockwise.

Theorem 3. Let $G=P_{n_{1}}+P_{n_{2}}+\cdots+P_{n_{m}}$, where $n_{i} \geq 3,1 \leq i \leq m$, then $\chi_{l a}(G)=$ $2 m+1$.

Proof. By Lemma 2, $\chi_{l a}(G) \geq 2 m+1$. Let $n=n_{1}+n_{2}+\cdots+n_{m}-(m-1)$. Consider the labeling of P_{n} using (3.1). Clearly, every two adjacent vertices are with distinct labels. Decompose P_{n} into m paths $P_{n_{1}} \cup P_{n_{2}} \cup \cdots \cup P_{n_{m}}$ defined by $P_{n_{1}}=v_{1} P_{n} v_{n_{1}}$ and $P_{n_{k}}=v_{n_{1}+n_{2}+\cdots+n_{k-1}-(k-2)} P_{n} v_{n_{1}+n_{2}+\cdots+n_{k}-(k-1)}$ for $1<k \leq m$. Note that the label of the first vertex of $P_{n_{1}}$ is $n-1$, the labels of the internal vertices of $P_{n_{k}}$ are either $n-1$ or n, and the labels of the two end vertices of $P_{n_{k}}$ are all distinct and at most $n-1$. Thus, G is local antimagic. Hence, $\chi_{l a}(G)=2 m+1$.

Theorem 4. Let $G=C_{n_{1}}+C_{n_{2}}+\cdots+C_{n_{m}}$, where $n_{i} \geq 3,1 \leq i \leq m$, then $3 \leq \chi_{l a}(G) \leq m+2$.

Proof. Suppose one of n_{i} 's is odd, then $3=\chi(G) \leq \chi_{l a}(G)$. Now assume all n_{i} 's are even, then G is a bipartite graph with the same size of partitions. By Lemma 1, $\chi_{l a}(G) \geq 3$.
For the second inequality, consider the labeling f of C_{n} using (3.2), where $n=$ $n_{1}+n_{2}+\cdots+n_{m}$. Decompose C_{n} into m paths $R_{n_{1}}, R_{n_{2}}, \ldots, R_{n_{m}}$ defined by $R_{n_{1}}=v_{1} C_{n} v_{n_{1}+1}, R_{n_{k}}=v_{n_{1}+n_{2}+\cdots+n_{k-1}+1} C_{n} v_{n_{1}+n_{2}+\cdots+n_{k}+1}$ for $1<k<m$, and $R_{n_{m}}=v_{n_{1}+n_{2}+\cdots+n_{m-1}+1} C_{n} v_{1}$. Note that the labels of the internal vertices of $R_{n_{k}}$ are either n or $n+1$ alternately. Now identify the two end vertices of $R_{n_{k}}$ to form $C_{n_{k}}$. The resulting 2-regular graph G admits a labeling such that every vertex, except at most one, must have label n or $n+1$. Note that no two adjacent vertices have the same label because they are incident to a common edge and the other two edges incident to them have different labels. Therefore, there are at most $m+2$ distinct vertex labels and $\chi_{l a}(G) \leq m+2$.

Remark 1. Suppose $n_{1}=n_{2}=\cdots=n_{m}=2 n$. The labels of the internal vertices of $R_{n_{k}}$ are either $2 m n$ or $2 m n+1$. The labels of the first edge and the last edge of $R_{n_{k}}$ are $(2 m-k+1) n$ and $k n$ respectively which add up to $(2 m+1) n$. Therefore, $\chi_{l a}\left(m C_{2 n}\right)=3$.

Let $G=C_{n_{1}}+C_{n_{2}}+\cdots+C_{n_{m}}$. A natural question to ask is: under what conditions, is $\chi_{l a}(G)=3$? As we shall see, this holds if all but at most one of the cycles are even. The following lemma is easy to obtain.

Lemma 4. Let $P=v_{1} v_{2} \cdots v_{2 k+2}$ be a subpath of a graph G, where $k \geq 1$. Suppose there is an edge labeling f of G such that $f\left(v_{2 i+1} v_{2 i+2}\right)=c \pm i$ for $0 \leq i \leq k$ and a fixed integer c, so that either all are plus signs or all are minus signs. Define a new labeling g of G such that

$$
\begin{aligned}
g(e) & = \begin{cases}f(e) & \text { if } e \notin E(P) ; \\
f\left(v_{2 k+1} v_{2 k+2}\right) & \text { if } e=v_{1} v_{2} ; \\
f\left(v_{2 i-1} v_{2 i}\right) & \text { if } e=v_{2 i+1} v_{2 i+2}, 1 \leq i \leq k,\end{cases} \\
& = \begin{cases}f(e) & \text { if } e \notin E(P) ; \\
c \pm k & \text { if } e=v_{1} v_{2} ; \\
c \pm(i-1) & \text { if } e=v_{2 i+1} v_{2 i+2}, 1 \leq i \leq k,\end{cases}
\end{aligned}
$$

then $g^{+}\left(v_{1}\right)=f^{+}\left(v_{1}\right) \pm k, g^{+}\left(v_{2}\right)=f^{+}\left(v_{2}\right) \pm k$ and $g^{+}\left(v_{i}\right)=f^{+}\left(v_{i}\right) \mp 1$ for $3 \leq i \leq 2 k+2$. Moreover, $g^{+}(v)=f^{+}(v)$ for all $v \in V(G) \backslash V(P)$.

Such labeling g is called a cyclic permutation of f on a $(2 k+2)$-path.

Example 1. Consider a labeling of C_{8} shown in the leftmost graph of the following figure. By using Lemma 4 repeatedly, we can make the vertex labels of a cycle as close as possible. Firstly, we consider the subpath starting from the edge labeled by 21 to the edge labeled by 19 clockwise. Secondly, we consider the subpath starting from the edge labeled by 1 to the edge labeled by 2 clockwise.

Lemma 5. Let $C=v_{1} v_{2} \cdots v_{n} v_{1}, e_{i}=v_{i} v_{i+1}$ for $1 \leq i \leq n-1$ and $e_{n}=v_{n} v_{1}$. Let f be an edge labeling of C defined by

$$
f\left(e_{i}\right)= \begin{cases}a-\frac{i-1}{2} & \text { if } i \text { is odd } ; \\ b-1+\frac{i}{2} & \text { if } i \text { is even },\end{cases}
$$

for some fixed integers a, b. If n is odd, additionally assume that $a-b=n-1$. Then there exists an edge labeling of C using the same set of labels such that the induced vertex labels are $a+b-1, a+b, a+b+1$.

Proof. It is easy to see that

$$
\begin{align*}
& f^{+}\left(v_{i}\right)=a+b+\frac{(-1)^{i}-1}{2}, \quad \text { for } i \neq 1 \text { and } \\
& f^{+}\left(v_{1}\right)= \begin{cases}a+b+\left\lfloor\frac{n-1}{2}\right\rfloor & \text { if } n \text { is even; } \\
2 a-\left\lfloor\frac{n-1}{2}\right\rfloor & \text { if } n \text { is odd. }\end{cases} \tag{3.3}
\end{align*}
$$

When n is odd, under the additional assumption, we have $2 a-\left\lfloor\frac{n-1}{2}\right\rfloor=a+(b+n-$ 1) $-\frac{n-1}{2}=a+b+\frac{n-1}{2}=a+b+\left\lfloor\frac{n-1}{2}\right\rfloor$. So we may always write $f^{+}\left(v_{1}\right)=a+b+\left\lfloor\frac{n-1}{2}\right\rfloor$ for each n.

Let $m=\left\lfloor\frac{n-1}{2}\right\rfloor-1$. Note that

$$
n= \begin{cases}2 m+3 & \text { if } n \text { is odd } \\ 2 m+4 & \text { if } n \text { is even }\end{cases}
$$

Let f_{1} be the cyclic permutation of f on the path $v_{1} v_{2} \cdots v_{2 m+1} v_{2 m+2}$ and f_{k} be the cyclic permutation of f_{k-1} on the path $v_{k} v_{k+1} \cdots v_{2 m-k+2} v_{2 m-k+3}$ for $2 \leq k \leq m$.

By (3.3) and Lemma 4, we have

$$
\begin{aligned}
f_{m}^{+}\left(v_{1}\right) & =f_{1}^{+}\left(v_{1}\right)=f^{+}\left(v_{1}\right)-m \\
& =a+b+m+1-m=a+b+1 . \\
f_{m}^{+}\left(v_{2 m+2}\right) & =f_{1}^{+}\left(v_{2 m+2}\right)=f^{+}\left(v_{2 m+2}\right)+1 \\
& =a+b+1 . \\
f_{m}^{+}\left(v_{2}\right) & =f_{2}^{+}\left(v_{2}\right)=f_{1}^{+}\left(v_{2}\right)+(m-1) \\
& =f^{+}\left(v_{2}\right)-m+(m-1) \\
& =a+b-m+(m-1)=a+b-1 . \\
f_{m}^{+}\left(v_{2 m+1}\right) & =f_{2}^{+}\left(v_{2 m+1}\right)=f_{1}^{+}\left(v_{2 m+1}\right)-1 \\
& =f^{+}\left(v_{2 m+1}\right)+1-1 \\
& =a+b-1+1-1=a+b-1 .
\end{aligned}
$$

For $3 \leq k \leq m$, by (3.3) and Lemma 4,

$$
\begin{aligned}
f_{m}^{+}\left(v_{k}\right)= & f_{k}^{+}\left(v_{k}\right) \\
= & f_{k-1}^{+}\left(v_{k}\right)+(-1)^{k}[m-(k-1)] \\
= & f_{k-2}^{+}\left(v_{k}\right)+(-1)^{k-1}[m-(k-2)]+(-1)^{k}[m-(k-1)] \\
= & {\left[f_{k-3}^{+}\left(v_{k}\right)+(-1)^{k-1}\right]+(-1)^{k-1} } \\
& \vdots \\
= & {\left[f^{+}\left(v_{k}\right)+(-1)^{2}+(-1)^{3}+\cdots+(-1)^{k-1}\right]+(-1)^{k-1} } \\
= & {\left[a+b+\frac{(-1)^{k}-1}{2}+(-1)^{2}+(-1)^{3}+\cdots+(-1)^{k-1}\right]+(-1)^{k-1} } \\
= & \begin{cases}a+b+1 & \text { if } k \text { is odd; } \\
a+b-1 & \text { if } k \text { is even. }\end{cases}
\end{aligned}
$$

For $3 \leq k \leq m$, by (3.3) and Lemma 4,

$$
\begin{aligned}
f_{m}^{+}\left(v_{2 m+3-k}\right)= & f_{k}^{+}\left(v_{2 m+3-k}\right) \\
= & f_{k-1}^{+}\left(v_{2 m+3-k}\right)+(-1)^{k-1} \\
= & f_{k-2}^{+}\left(v_{2 m+3-k}\right)+(-1)^{k-2}+(-1)^{k-1} \\
& \vdots \\
= & f^{+}\left(v_{2 m+3-k}\right)+(-1)^{0}+(-1)^{1}+\cdots+(-1)^{k-2}+(-1)^{k-1} \\
= & a+b+\frac{(-1)^{2 m+3-k}-1}{2}+(-1)^{0}+(-1)^{1}+\cdots+(-1)^{k-2}+(-1)^{k-1} \\
= & \begin{cases}a+b+1 & \text { if } k \text { is odd; } \\
a+b-1 & \text { if } k \text { is even. }\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
f_{m}^{+}\left(v_{m+1}\right)= & f_{m-1}^{+}\left(v_{m+1}\right)+(-1)^{m} \\
= & f_{m-2}^{+}\left(v_{m+1}\right)+(-1)^{m-2}+(-1)^{m} \\
& \vdots \\
= & f^{+}\left(v_{m+1}\right)+(-1)^{0}+(-1)^{1}+\cdots+(-1)^{m-2}+(-1)^{m} \\
= & a+b+\frac{(-1)^{m+1}-1}{2}+(-1)^{0}+(-1)^{1}+\cdots+(-1)^{m-2}+(-1)^{m} \\
= & \begin{cases}a+b+1 & \text { if } m+1 \text { is odd; } \\
a+b-1 & \text { if } m+1 \text { is even. }\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
f_{m}^{+}\left(v_{m+2}\right)= & f_{m-1}^{+}\left(v_{m+2}\right)+(-1)^{m-1} \\
= & f_{m-2}^{+}\left(v_{m+2}\right)+(-1)^{m-2}+(-1)^{m-1} \\
& \vdots \\
= & f^{+}\left(v_{m+2}\right)+(-1)^{0}+(-1)^{1}+\cdots+(-1)^{m-2}+(-1)^{m-1} \\
= & a+b+\frac{(-1)^{m+2}-1}{2}+(-1)^{0}+(-1)^{1}+\cdots+(-1)^{m-2}+(-1)^{m-1} \\
= & a+b .
\end{aligned}
$$

Finally, if n is odd, $f_{m}^{+}\left(v_{2 m+3}\right)=f_{m}^{+}\left(v_{n}\right)=f^{+}\left(v_{n}\right)=a+b-1$ by (3.3). If n is even, $f_{m}^{+}\left(v_{2 m+3}\right)=f_{m}^{+}\left(v_{n-1}\right)=f^{+}\left(v_{n-1}\right)=a+b-1$ and $f_{m}^{+}\left(v_{2 m+4}\right)=f_{m}^{+}\left(v_{n}\right)=f^{+}\left(v_{n}\right)=$ $a+b$ by (3.3). Summing up, f_{m} is a required labeling.

Theorem 5. Let $G=C_{n_{1}}+C_{n_{2}}+\cdots+C_{n_{m}}$, where $n_{i} \geq 3$ for $1 \leq i \leq m$, and n_{i} is even for $1 \leq i \leq m-1$, then $\chi_{l a}(G)=3$.

Proof. Let $n=n_{1}+n_{2}+\cdots+n_{m}$. For $1 \leq j \leq m$, denote $C_{n_{j}}=v_{1}^{j} v_{2}^{j} \cdots v_{n_{j}}^{j} v_{1}^{j}$, $e_{i}^{j}=v_{i}^{j} v_{i+1}^{j}$ for $1 \leq i \leq n_{j}-1$ and $e_{n_{j}}^{j}=v_{n_{j}}^{j} v_{1}^{j}$. Let $a_{1}=n$ and $b_{1}=1$. For $2 \leq j \leq m$, define $a_{j}=n-\frac{1}{2}\left(n_{1}+n_{2}+\cdots+n_{j-1}\right)$ and $b_{j}=\frac{1}{2}\left(n_{1}+n_{2}+\cdots+n_{j-1}\right)+1$. Note that $a_{j}+b_{j}=n+1$ for $1 \leq j \leq m$, and $a_{m}-b_{m}=n_{m}-1$. Define an edge labeling f of G as follows.
For $1 \leq j \leq m$ and $1 \leq i \leq n_{j}$,

$$
f\left(e_{i}^{j}\right)= \begin{cases}a_{j}-\frac{i-1}{2} & \text { if } i \text { is odd } \\ b_{j}-1+\frac{i}{2} & \text { if } i \text { is even }\end{cases}
$$

By Lemma 5, there is an edge labeling g_{j} for $C_{n_{j}}$ with induced vertex labels $a_{j}+b_{j}-$ $1=n, a_{j}+b_{j}=n+1$ and $a_{j}+b_{j}+1=n+2$ for $1 \leq j \leq m$. Since the domain of each g_{j} is the same as the restriction of f on $C_{n_{j}}$, we have a local antimagic 3-coloring of C with induced vertex labels $n, n+1$ and $n+2$. By Theorem $4, \chi_{l a}(G)=3$.

Example 2. Consider $C_{8}+C_{6}+C_{7}$. Here $n_{1}=8, n_{2}=6, n_{3}=7$ and $n=21$. First we use the labeling of C_{8} obtained in Example 1.

For C_{6}, we have

For C_{7}, we have

Thus, we have a local antimagic 3 -coloring for $C_{8}+C_{6}+C_{7}$ with vertex labels 21, 22, 23 .

4. Disjoint union of two odd cycles

In this section, we study disjoint union of two cycles, $C_{p}+C_{q}$. By Theorem 4, $3 \leq \chi_{l a}\left(C_{p}+C_{q}\right) \leq 4$. By Theorem 5, $\chi_{l a}\left(C_{p}+C_{q}\right)=3$ if p or q is even. Therefore, we will focus on the disjoint union of two odd cycles. First, we give two families that have local antimagic chromatic number 3.

Theorem 6. For $k \geq 2$, $\chi_{l a}\left(C_{2 k-1}+C_{2 k+1}\right)=3$.

Proof. It suffices to construct a local antimagic 3-colorings g for $C_{2 k-1}+C_{2 k+1}$.
For $C_{2 k+1}$, let e_{i} be the i-th edge in the clockwise order for $1 \leq i \leq 2 k+1$. Define $g: E\left(C_{2 k+1}\right) \rightarrow\{2 j-1 \mid 1 \leq j \leq k+1\} \cup\{2 j \mid k+1 \leq j \leq 2 k\}$ by

$$
g\left(e_{i}\right)= \begin{cases}i & \text { if } i \text { is odd } \\ 4 k+2-i & \text { if } i \text { is even }\end{cases}
$$

For $C_{2 k-1}$, let e_{i} be the i-th edge in the clockwise order for $1 \leq i \leq 2 k-1$. Define $g: E\left(C_{2 k-1}\right) \rightarrow\{2 j \mid 1 \leq i \leq k\} \cup\{2 j-1 \mid k+2 \leq j \leq 2 k\}$ by

$$
g\left(e_{i}\right)= \begin{cases}i+1 & \text { if } i \text { is odd } \\ 4 k+1-i & \text { if } i \text { is even }\end{cases}
$$

It is easy to check that g is a local antimagic labeling of $C_{2 k+1}+C_{2 k-1}$ with induced vertex labels $2 k+2,4 k+1,4 k+3$.

Theorem 7. For $k \geq 1, \chi_{l a}\left(C_{3}+C_{4 k+1}\right)=3$.
Proof. We construct a local antimagic 3-coloring of $C_{3}+C_{4 k+1}$. For $C_{3}=u_{1} u_{2} u_{3} u_{1}$, define $g\left(u_{1} u_{2}\right)=k+1, g\left(u_{2} u_{3}\right)=2 k+2$, and $g\left(u_{3} u_{1}\right)=3 k+4$. Note that $g^{+}\left(u_{1}\right)=$ $4 k+5, g^{+}\left(u_{2}\right)=3 k+3, g^{+}\left(u_{3}\right)=5 k+6$.
For $C_{4 k+1}$, let $e_{i}=v_{i} v_{i+1}$ be the i-th edge in the clockwise order for $1 \leq i \leq 4 k+1$, where $v_{4 k+2}=v_{1}$. Define $g: E\left(C_{4 k+1}\right) \rightarrow[1,4 k+4] \backslash\{k+1,2 k+2,3 k+4\}$ by

$$
\begin{aligned}
g\left(e_{4 i-3}\right) & =i, \quad 1 \leq i \leq k . \\
g\left(e_{4 i-2}\right) & =3 k+3-i, \\
g\left(e_{4 i-1}\right) & = \begin{cases}k+2+i \leq & \text { if } 1 \leq i \leq k-1 ; \\
3 k+3 & \text { if } i=k .\end{cases} \\
g\left(e_{4 i}\right) & = \begin{cases}4 k+4-i & \text { if } 1 \leq i \leq k-1 ; \\
k+2 & \text { if } i=k .\end{cases} \\
g\left(e_{4 k+1}\right) & =4 k+4 .
\end{aligned}
$$

We have

$$
\begin{aligned}
g^{+}\left(v_{1}\right) & =g\left(e_{4 k+1}\right)+g\left(e_{1}\right)=4 k+4+1=4 k+5 . \\
g^{+}\left(v_{4 i-3}\right) & =g\left(e_{4 i-4}\right)+g\left(e_{4 i-3}\right)=4 k+4-(i-1)+i=4 k+5, \quad 2 \leq i \leq k . \\
g^{+}\left(v_{4 i-2}\right) & =g\left(e_{4 i-3}\right)+g\left(e_{4 i-2}\right)=i+3 k+3-i=3 k+3, \quad 1 \leq i \leq k . \\
g^{+}\left(v_{4 i-1}\right) & =g\left(e_{4 i-2}\right)+g\left(e_{4 i-1}\right)=3 k+3-i+k+2+i=4 k+5, \quad 1 \leq i \leq k-1 . \\
g^{+}\left(v_{4 k-1}\right) & =g\left(e_{4 k-2}\right)+g\left(e_{4 k-1}\right)=3 k+3-k+3 k+3=5 k+6 . \\
g^{+}\left(v_{4 i}\right) & =g\left(e_{4 i-1}\right)+g\left(e_{4 i}\right)=k+2+i+4 k+4-i=5 k+6, \quad 1 \leq i \leq k-1 . \\
g^{+}\left(v_{4 k}\right) & =g\left(e_{4 k-1}\right)+g\left(e_{4 k}\right)=3 k+3+k+2=4 k+5 . \\
g^{+}\left(v_{4 k+1}\right) & =g\left(e_{4 k}\right)+g\left(e_{4 k+1}\right)=k+2+4 k+4=5 k+6 .
\end{aligned}
$$

Next, we will prove that some disjoint unions of two odd cycles have local antimagic chromatic number 4. Below are some useful lemmas.

Lemma 6. Let G be a disjoint union of cycles with n vertices. Suppose $\chi_{l a}(G)=3$, then the edge labeled 1 is adjacent to the edge labeled n. Moreover, one vertex label is less than $n+1$, one equals to $n+1$, and one is greater than $n+1$.

Proof. Consider a local antimagic 3-coloring f of G. Let st be the edge with $f(s t)=$ 1 and $u v$ be the edge with $f(u v)=n$. Then $f^{+}(s), f^{+}(t) \leq n+1$ and $f^{+}(u), f^{+}(v) \geq$ $n+1$. Since $\chi_{l a}(G)=3,\left\{f^{+}(s), f^{+}(t)\right\} \cap\left\{f^{+}(u), f^{+}(v)\right\} \neq \varnothing$. Without loss of generality, assume $f^{+}(s)=f^{+}(u)$. Then $f^{+}(s)=f^{+}(u)=n+1$ and $s=u$. This implies $s t$ is adjacent to $u v$. Also, $f^{+}(t)<n+1$ and $f^{+}(v)>n+1$. The results follow.

Lemma 7. Let G be a disjoint union of cycles with n vertices and $\chi_{l a}(G)=3$. Let f be a local antimagic 3 -coloring of G with colors $a<b=n+1<c$. Suppose uv is an edge with $f(u v)=z$.
(1) If $f^{+}(u)=a$ and $f^{+}(v)=b$, then $c-z<a$ or $c-z>n$, i.e., $z \in[1, c-n-1] \cup[c-a+1, n]$;
(2) If $f^{+}(u)=a$ and $f^{+}(v)=c$, then $c-n \leq b-z \leq a-1$, i.e., $z \in[n+2-a, 2 n+1-c]$;
(3) If $f^{+}(u)=b$ and $f^{+}(v)=c$, then $a-z \leq 0$ or $a-z \geq c-n$, i.e., $z \in[1, n+a-c] \cup[a, n]$.

Proof.

(1) Suppose $a \leq c-z \leq n$. Let st be the edge with $f(s t)=c-z$. Since $a \leq c-z$, $f^{+}(s), f^{+}(t)>a$. Assume $f^{+}(s)=b$ and $f^{+}(t)=c$. This implies st is adjcent to the edge labeled z at t. Hence, c is an induced vertex label of u or v which is impossible. Therefore, $c-z<a$ or $c-z>n$.
(2) Let $s t$ be the edge with $f(s t)=b-z$. Suppose $b-z \geq a$. Then $f^{+}(s), f^{+}(t)>a$. Assume $f^{+}(s)=b$ and $f^{+}(t)=c$. This implies st is adjacent to the edge labeled z at s. Hence, b is an induced vertex label of u or v which is impossible. Therefore, $b-z \leq a-1$.
Suppose $b-z<c-n$. Since $b-z+n<c, f^{+}(s), f^{+}(t) \neq c$. Assume $f^{+}(s)=a$ and $f^{+}(t)=b$. This implies st is adjcent to the edge labeled z at t. Hence, b is an induced vertex label of u or v which is impossible. Therefore, $c-n \leq b-z$.
(3) Suppose $0<a-z<c-n$. Let st be the edge with $f(s t)=a-z$. Since $a-z+n<c, f^{+}(s), f^{+}(t) \neq c$. Assume $f^{+}(s)=a$ and $f^{+}(t)=b$. This implies st is adjcent to the edge labeled z at s. Hence, a is an induced vertex label of u or v which is impossible. Therefore, $a-z \leq 0$ or $a-z \geq c-n$.

Theorem 8. For $k \geq 1$, suppose $G=C_{3}+C_{2 k+1}$ and $\chi_{l a}(G)=3$. Then for any local antimagic 3-coloring of \bar{G}, no edge in C_{3} has label 1 .

Proof. Let f be a local antimagic 3-coloring of G. Suppose the edge with label 1 lies in $C_{3}=u v w u$. By Lemma 6, we can assume $f(u v)=1, f(v w)=2 k+4$ and $f(u w)=x$. Then $f^{+}(u)=x+1, f^{+}(v)=2 k+5, f^{+}(w)=2 k+4+x$. By applying Lemma $7(2)$ to $u w, 2 k+6-(x+1) \leq x \leq 4 k+9-(2 k+4+x)$. This implies $2 x=2 k+5$ which is impossible. Therefore, no edge in C_{3} has label 1 .

Lemma 8. For $k \geq 2$, suppose $G=C_{3}+C_{4 k-1}$ and $\chi_{l a}(G)=3$. Then there exists a local antimagic 3 -coloring f of $C_{3}+C_{4 k-1}$ containing 4 consecutive edges in $C_{4 k-1}$ with labels $x, 1,4 k+2, y$ in clockwise order such that x and y satisfy all the conditions below.
(1) $x \equiv y \equiv 1(\bmod 2)$,
(2) $2 y-1 \leq x \leq 4 k+1$,
(3) $3 \leq y \leq 2 k+1$,
(4) $3 x-3 y \geq 8 k+2$ or $3 y-x \geq 4$,
(5) $x+3 y \leq 8 k+6 \leq 3 x+y$,
(6) $3 x-3 y \geq 8 k+2$ or $3 x-y \leq 8 k+2$.

In addition, the edge labels in C_{3} are $\frac{x-y}{2}+1, \frac{x+y}{2}, 4 k+2-\frac{x-y}{2}$, and the induced vertex labels are $x+1,4 k+3,4 k+2+y$.

Proof. By Lemma 6 and Theorem 8, assume the edge labels $x, 1,4 k+2, y$ are in clockwise order in $C_{4 k-1}$, then the induced vertex labels are $x+1,4 k+3,4 k+2+y$. It is easy to solve that the edge labels in $C_{3}=u v w u$ which are $\frac{x-y}{2}+1=f(u v)$, $\frac{x+y}{2}=f(u w), 4 k+2-\frac{x-y}{2}=f(v w)$, say. This implies that $x>y>1$, and x, y have the same parity. By considering the local antimagic 3 -coloring $4 k+3-f$ of G, the edge labels $x, 1,4 k+2, y$ will be transformed to $4 k+3-x, 4 k+2,1,4 k+3-y$ respectively. Therefore, without loss of generality, we can assume both x and y are odd integers with $3 \leq y \leq x-2 \leq 4 k-1$.
Consider the edge st with $f(s t)=\frac{x+1}{2}$. Obviously, $\frac{x-y}{2}+1<\frac{x+1}{2}<\frac{x+y}{2}$. If $\frac{x+1}{2}=4 k+2-\frac{x-y}{2}$, then $x=4 k+\frac{y+3}{2}>4 k+2$ which is impossible. Hence, st lies in $C_{4 k-1}$ and $\left\{f^{+}(s), f^{+}(t)\right\}=\{4 k+3,4 k+2+y\}$. Therefore, $4 k+2+y-\frac{x+1}{2}$ is an edge label implying $y \leq \frac{x+1}{2}$, i.e., $2 y-1 \leq x$. Hence, $2 y-1 \leq x \leq 4 k+1$ and $3 \leq y \leq 2 k+1$.
By applying Lemma $7(1)$ to the edge $u v$ in C_{3}, we have

$$
\begin{gathered}
\frac{x-y}{2}+1 \leq 4 k+2+y-(4 k+2)-1 \quad \text { or } \quad \frac{x-y}{2}+1 \geq 4 k+2+y-(x+1)+1 \\
\Leftrightarrow \quad 3 y-x \geq 4 \quad \text { or } \quad 3 x-3 y \geq 8 k+2 .
\end{gathered}
$$

By applying Lemma $7(2)$ to the edge $u w$ in C_{3}, we have

$$
\begin{aligned}
& 4 k+4-(x+1) \leq \frac{x+y}{2} \leq 8 k+5-(4 k+2+y) \\
\Leftrightarrow & x+3 y \leq 8 k+6 \leq 3 x+y .
\end{aligned}
$$

By applying Lemma 7(3) to the edge $v w$ in C_{3}, we have

$$
\begin{array}{rlll}
4 k+2-\frac{x-y}{2} \leq 4 k+2+(x+1)-(4 k+2+y) & \text { or } & 4 k+2-\frac{x-y}{2} \geq x+1 \\
\Leftrightarrow \quad 3 x-3 y \geq 8 k+2 & \text { or } & 3 x-y \leq 8 k+2
\end{array}
$$

By summarizing the results above, we have the lemma.

Theorem 9. $\chi_{l a}\left(C_{3}+C_{3}\right)=4, \chi_{l a}\left(C_{3}+C_{7}\right)=4$ and $\chi_{l a}\left(C_{3}+C_{11}\right)=4$.

Proof. By Theorem 8, $\chi_{l a}\left(C_{3}+C_{3}\right)=4$. Suppose $G=C_{3}+C_{4 k-1}$ for $k \geq 2$, and $\chi_{l a}(G)=3$. Consider a local antimagic 3-coloring f of G given by Lemma 8 .
For $k=2$, the only (x, y) satisfying all the conditions in Lemma 8 is $(9,3)$. The edge labels in C_{3} are 4, 6, 7 with induced vertex labels 10, 11, 13. Consider the edge $u v$ with $f(u v)=5$ which lies in $C_{4 k-1}$. This means $10,11 \notin\left\{f^{+}(u), f^{+}(v)\right\}$, a contradiction. Hence, $\chi_{l a}\left(C_{3}+C_{7}\right)=4$.
For $k=3$, the only (x, y) satisfying all the conditions in Lemma 8 are $(13,3)$ and $(9,5)$.
(i) $(x, y)=(13,3)$. The edge labels in C_{3} are $6,8,9$ with induced vertex labels $14,15,17$. Consider the edge $u v$ with $f(u v)=7$ which lies in $C_{4 k-1}$. This means $14,15 \notin\left\{f^{+}(u), f^{+}(v)\right\}$, a contradiction.
(ii) $(x, y)=(9,5)$. The edge labels in C_{3} are $3,7,12$ with induced vertex labels $10,15,19$. Consider the edge $u v$ with $f(u v)=5$ which lies in $C_{4 k-1}$. Thus $\left\{f^{+}(u), f^{+}(v)\right\}=\{15,19\}$. So the edge labels $10,5,14$ are in clockwise order in $C_{4 k-1}$. This implies $9,10,5,14,1,9$ are in clockwise order in $C_{4 k-1}$, a contradiction.

Hence, $\chi_{l a}\left(C_{3}+C_{11}\right)=4$.
Theorem 10. For $k \geq 1$, suppose $G=C_{5}+C_{2 k+3}$ and $\chi_{l a}(G)=3$, then for any local antimagic 3 -coloring of G, no edge in C_{5} has label 1 .

Proof. Let f be a local antimagic 3 -coloring of G. Suppose the edge with label 1 lies in $C_{5}=u_{1} u_{2} u_{3} u_{4} u_{5} u_{1}$. By Lemma 6, we can assume $f\left(u_{1} u_{2}\right)=1, f\left(u_{2} u_{3}\right)=2 k+8$, $f\left(u_{5} u_{1}\right)=x$ and $f\left(u_{3} u_{4}\right)=y$. Thus, $f^{+}\left(u_{1}\right)=x+1, f^{+}\left(u_{2}\right)=2 k+9, f^{+}\left(u_{3}\right)=$ $2 k+8+y$. There are three cases.
(1) Suppose $f^{+}\left(u_{4}\right)=x+1$ and $f^{+}\left(u_{5}\right)=2 k+9$, then $f\left(u_{4} u_{5}\right)=x+1-y$. We have $x+1-y+x=2 k+9$ implying $y=2 x-2 k-8$ and $x=k+4+\frac{y}{2}$. Hence, $k+4<x<2 k+8$.
(2) Suppose $f^{+}\left(u_{4}\right)=x+1$ and $f^{+}\left(u_{5}\right)=2 k+8+y$, then $f\left(u_{4} u_{5}\right)=x+1-y$. We have $x+1-y+x=2 k+8+y$ implying $2 x-2 k-2 y=7$ which is impossible.
(3) $f^{+}\left(u_{4}\right)=2 k+9$ and $f^{+}\left(u_{5}\right)=2 k+8+y$. By considering the local antimagic 3 -coloring $2 k+9-f$ of G, we have case (1).

Therefore, without loss of generality, assume $f\left(u_{3} u_{4}\right)=2 x-2 k-8$ and $f\left(u_{4} u_{5}\right)=$ $2 k+9-x$. Thus, $f^{+}\left(u_{3}\right)=2 x, f^{+}\left(u_{4}\right)=x+1, f^{+}\left(u_{5}\right)=2 k+9$. By applying Lemma $7(2)$ to $u_{3} u_{4},(2 k+8)+2-(x+1) \leq 2 x-2 k-8 \leq 2(2 k+8)+1-2 x$. This implies $\frac{4 k+17}{3} \leq x \leq \frac{6 k+25}{4}$. By applying Lemma 7(1) to $u_{4} u_{5}$, we have $2 k+9-x \leq$ $2 x-(2 k+8)-1$. This implies $x \geq \frac{4 k+18}{3}$. Hence, $\frac{4 k+18}{3} \leq x \leq \frac{6 k+25}{4}$.
Suppose $x+1$ is even. Let $u v$ be the edge with $f(u v)=\frac{x+1}{2}$. Note that $\left\{f^{+}(u), f^{+}(v)\right\}=\{2 k+9,2 x\}$. By applying Lemma 7(3) to $u v$, we have $\frac{x+1}{2} \leq$ $2 k+8+(x+1)-2 x$. This implies $x \leq \frac{4 k+17}{3}$, a contradiction.
Suppose $x+1$ is odd. Let $u v$ be the edge with $f(u v)=k+5-\frac{x}{2}$, and st be the edge with $f(s t)=k+4+\frac{x}{2}$. It is easy to check that $1<k+5-\frac{x}{2}<x$, $k+5-\frac{x}{2}<2 k+9-x$ and $k+5-\frac{x}{2}<2 x-2 k-8$. Also, $2 k+9-x<k+4+\frac{x}{2}<2 k+8$, $x<k+4+\frac{x}{2}$ and $2 x-2 k-8<k+4+\frac{x}{2}$. Therefore, both $u v$ and st lies in $C_{2 k+3}$, $\left\{f^{+}(u), f^{+}(v)\right\}=\{x+1,2 k+9\}$, and $\left\{f^{+}(s), f^{+}(t)\right\}=\{2 k+9,2 x\}$. But then the edge labels $\frac{3 x}{2}-k-4, k+5-\frac{x}{2}, k+4+\frac{x}{2}, \frac{3 x}{2}-k-4$ are in clockwise order in $C_{2 k+3}$, a contradiction.

Therefore, no edge in C_{5} has label 1.
As an immediate corollary, we have

Theorem 11. $\chi_{l a}\left(C_{5}+C_{5}\right)=4$.

By using computer, we have checked that $\chi_{l a}\left(C_{3}+C_{4 k-1}\right)=4$ for $4 \leq k \leq 14$. We end this paper with the following conjecture.

Conjecture 4.1. For $k \geq 1, \chi_{l a}\left(C_{3}+C_{4 k-1}\right)=4$.

Conflict of interest. The authors declare that they have no conflict of interest.
Data Availability. Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

[1] S. Arumugam, K. Premalatha, M. Bača, and A. Semaničová-Feňovčíková, Local antimagic vertex coloring of a graph, Graphs Combin. 33 (2017), no. 2, 275-285. https://doi.org/10.1007/s00373-017-1758-7.
[2] M. Bača, A. Semaničová-Feňovčíková, and T.M. Wang, Local antimagic chromatic number for copies of graphs, Mathematics 9 (2021), no. 11, Article ID: 1230.
https://doi.org/10.3390/math9111230.
[3] J. Bensmail, M. Senhaji, and K.S. Lyngsie, On a combination of the 1-2-3 conjecture and the antimagic labelling conjecture, Discrete Math. Theor. Comput. Sci. 19 (2017), no. 1, Article ID: \#21
https://doi.org/10.23638/DMTCS-19-1-21.
[4] T.R. Hagedorn, Magic rectangles revisited, Discrete Math. 207 (1999), no. 1-3, 65-72.
https://doi.org/10.1016/S0012-365X(99)00041-2.
[5] T. Harmuth, üeber magische quadrate und ähnliche zahlenfiguren, Arch. Math. Phys. 66 (1881), 286-313.
[6] , üeber magische rechtecke mit ungeraden seitenzahlen, Arch. Math. Phys. 66 (1881), 413-447.
[7] J. Haslegrave, Proof of a local antimagic conjecture, Discrete Math. Theor. Comput. Sci. 20 (2018), no. 1, Article ID: \#18 https://doi.org/10.23638/DMTCS-20-1-18.
[8] G.C. Lau, H.K. Ng, and W.C. Shiu, Affirmative solutions on local antimagic chromatic number, Graphs Combin. 36 (2020), no. 5, 1337-1354. https://doi.org/10.1007/s00373-020-02197-2.
[9] G.C. Lau, W.C. Shiu, and H.K. Ng, On local antimagic chromatic number of cycle-related join graphs, Discuss. Math. Graph Theory 41 (2021), no. 1, 133152.
https://doi.org/10.7151/dmgt.2177.
[10] M. Marsidi and I.H. Agustin, The local antimagic on disjoint union of some family graphs, J. Mat. Mantik 5 (2019), no. 2, 69-75.
https://doi.org/10.15642/mantik.2019.5.2.69-75.

[^0]: * Corresponding Author

