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Abstract: A numbering f of a graph G of order n is a labeling that assigns dis-

tinct elements of the set {1, 2, . . . , n} to the vertices of G. The strength str (G) of
G is defined by str (G) = min

{
strf (G) |f is a numbering of G

}
, where strf (G) =

max {f (u) + f (v) |uv ∈ E (G)}. Using the concept of independence number of a graph,

we determine formulas for the strength of powers of paths and cycles. To achieve the
latter result, we establish a sharp upper bound for the strength of a graph in terms

of its order and independence number and a formula for the independence number of

powers of cycles.

Keywords: strength, independence number, kth power of a graph, graph labeling,

combinatorial optimization.

AMS Subject classification: 05C12, 05C38, 05C69, 05C78, 90C27.

1. Introduction

Only graphs without loops or multiple edges will be considered in this paper. Un-

defined graph theoretical notation and terminology can be found in [2] or [22]. The

vertex set of a graph G is denoted by V (G), while the edge set of G is denoted by

E (G). The path, cycle and complete graph of order n are denoted by Pn, Cn and Kn,

respectively.
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2 On the strength of powers of paths and cycles

For a connected graph G, the distance dG (u, v) between two vertices u and v is

defined to be the minimum length among all u− v paths in G. The greatest distance

between any two vertices of a connected graph G is called the diameter of G and is

denoted by diam (G). For example, diam (Pn) = n−1 (n ≥ 2) and diam (Cn) = bn/2c
(n ≥ 3). The kth power Gk of a graph G of order n, where k ≥ 1, is the graph with

V
(
Gk
)

= V (G) for which uv ∈ E
(
Gk
)

if and only if 1 ≤ dG (u, v) ≤ k. Thus,

G1 = G and Gk = Kn if k ≥ diam (G).

An extensive survey on graph labeling problems as well as their applications has been

given by Gallian [8]. Among all graph labeling problems, bandwidth numbering of

graphs has perhaps attracted the most attention in the literature. The bandwidth

numbering was proposed by Harper [12] and later rediscovered by Harary [11]. Since

then, a considerable amount of papers have been published on this subject. Survey

articles on bandwidth numberings and related topics can be found in Chinn et al.

[3] and Chung [4]. Readers interested in more recent information on bandwidth

numberings may consult the survey by Lai and Williams [21], which also includes

information on other kinds of graph labeling problems and their applications.

For the sake of notational convenience, we will denote the interval of integers k such

that i ≤ k ≤ j by simply writing [i, j]. A numbering f of a graph G of order n is

a labeling that assigns distinct elements of the set [1, n] to the vertices of G. The

bandwidth bandf (G) of a numbering f : V (G)→ [1, n] of G is defined by

bandf (G) = max
{
|f (u)− f (v)|

∣∣ uv ∈ E (G)
}

,

and the bandwidth band(G) of a graph G is

band (G) = min {bandf (G) |f is a numbering of G} .

Therefore, it follows that 1 ≤ band (G) ≤ n− 1 for every nonempty graph G of order

n. It is also known from [5] that a graph G of order n has bandwidth k (k ∈ [1, n− 1])

if and only if k is the smallest positive integer for which G is a subgraph of P kn . It

follows that band
(
P kn
)

= k (k ∈ [1, n− 1]).

An additive analogous to bandwidth numberings of graphs has been introduced and

studied in [13] as a generalization of the problem of determining whether a graph is

super edge-magic or not (see [6] for the definition of a super edge-magic graph and its

super edge-magic labeling, and also consult either [1] or [7] for alternative and often

more useful definitions of the same concept). A necessary and sufficient condition

for a graph to be super edge-magic established by Figueroa-Centeno et al. [7] gives

rise to the concept of the consecutive strength labeling of a graph (see [13] for the

definition of a consecutive strength labeling of a graph), which is equivalent to super

edge-magic labeling. The strength strf (G) of a numbering f : V (G) → [1, n] of a

graph G is defined by

strf (G) = max {f (u) + f (v) |uv ∈ E (G)} ,
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and the strength str(G) of G is

str (G) = min {strf (G) |f is a numbering of G} .

Therefore, it follows that 3 ≤ str (G) ≤ 2n− 1 for every nonempty graph G of order

n.

The independence number is an essential parameter to assess the resilience of the

interconnection networks of multiprocessor systems modeled by a graph. A set S

of vertices in a graph G is independent if no two vertices in S are adjacent. The

maximum number of vertices in an independent set of vertices of G is called the

independence number of G and is denoted by β (G).

The decision problem associated with determining the independence number of an

arbitrary graph is known to be NP-complete (see [10]). Hence, the direction of research

is either to find sharp bounds for the independence number of a graph or to find exact

values for special classes of graphs. In this paper, we focus on the powers of paths

and cycles and determine formulas for the strength of these classes of graphs.

Before concluding this introduction, it is worth mentioning that Ichishima et al. [15]

investigated certain minimum degree conditions concerning the strength of graphs.

In the same paper, they also determined certain degree sequences of graphs that

naturally arise when studying the strength and proved that these degree sequences

determine unique graph realizations. Furthermore, in [15], using a similar reasoning

to the one on strength result, the authors were able to establish a parallel result

relying on degree sequences for the bandwidth of graphs.

2. Results on powers of paths and cycles

To present some results involving powers of paths and cycles in this section, we

introduce a few technical lemmas that will prove to be useful.

Several bounds for the strength of a graph have been found in terms of other pa-

rameters defined on graphs. Among others, the following result established in [13]

that provides a lower bound for the strength of a graph G in terms of its order and

minimum degree δ (G) has proven to be particularly useful.

Lemma 1. For every graph G of order n with δ (G) ≥ 1,

str (G) ≥ n+ δ (G) .

It is worth to mention that the bound given in Lemma 1 is sharp in the sense that there

are infinitely many graphs G for which str (G) = |V (G)|+δ (G) (see [9, 13, 14, 17–20]

for a detailed list of such graphs and other sharp bounds). In fact, it was shown in

[16] that for every k ∈ [1, n− 1], there exists a graph G of order n satisfying δ (G) = k

and str (G) = n+ k.
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Answering an open question posed in [13], Gao et al. [9] found the next result, which

establishes another lower bound for the strength of a graph in terms of its order and

independence number.

Lemma 2. For every graph G of order n,

str (G) ≥ 2n− 2β (G) + 1.

Before presenting our first result, we introduce one more technical lemma discovered

by Chvátal [5].

Lemma 3. For every integer n with n ≥ k + 1,

β
(
P k
n

)
=

⌈
n

k + 1

⌉
,

where k ∈ [2, n− 1].

With the aid of Lemmas 2 and 3, it is now possible to present a formula for str
(
P kn
)
,

which is the analogous result for the bandwidth of the same graph obtained by Chvátal

[5]. This extends the result found in [13] that str (Pn) = n+ 1 for integers n ≥ 2.

Theorem 1. For every two integers n and k with n ≥ k + 1,

str
(
P k
n

)
= 2n− 2

⌈
n

k + 1

⌉
+ 1,

where k ∈ [2, n− 1].

Proof. For integers n and k with n ≥ k + 1, where k ∈ [2, n− 1], let G = P kn and

define the graph G with V (G) = {xi | i ∈ [1, n]} and

E (G) = {xixi+1 | i ∈ [1, n− 1]} ∪ {xixi+2 | i ∈ [1, n− 2]}
∪ {xixi+3 | i ∈ [1, n− 3]} ∪ · · · ∪ {xixi+k | i ∈ [1, n− k]} .

Moreover, if we let β = dn/ (k + 1)e, then V (G) can be partitioned into three sets

S1 =
{
x(k+1)i−k | i ∈ [1, β]

}
,

S2 =
{
x(k+1)i−k+1 | i ∈ [1, β]

}
,

S3 = V (G)− (S1 ∪ S2) .

Consequently, each Si (i = 1, 2) is an independent set of cardinality β (that is, every

two vertices u and v of Si are not adjacent) and |S3| = n− 2β.
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Suppose that S3 = {xsi | i ∈ [1, n− 2β]}, where the subindices s1, s2, . . . , sn−2β are

ordered in such a way that

s1 < s2 < · · · < sn−2β .

Note that if we rename the vertices of S3 using the labels of elements in the set

{yi | i ∈ [1, n− 2β]} and define the bijective function π : S3 → {yi | i ∈ [1, n− 2β]} by

π (xsi) = yi (i ∈ [1, n− 2β] ),

then we have

S3 = {yi | i ∈ [1, n− 2β]} .

Now, consider the numbering f : V (G)→ [1, n] such that

f (v) =


n+ 1− i if v = x(k+1)i−k and i ∈ [1, β]

n− 2β + i if v = x(k+1)i−k+1 and i ∈ [1, β]

i if v = yi and i ∈ [1, n− 2β] .

Then we have

{f (v) | v ∈ S3} = [1, n− 2β] ,

{f (v) | v ∈ S2} = [n− 2β + 1, n− β] ,

{f (v) | v ∈ S1} = [n− β + 1, n] .

With the preceding knowledge in hand, we consider four cases.

Case 1. Suppose that uv ∈ E (G), where u ∈ S1 and v ∈ S2. Then, without loss of

generality, assume that u = x(k+1)i−k and v = x(k+1)i−k+1 for all i ∈ [1, β]; otherwise,

dPn (u, v) > k, that is, uv /∈ E (G). Thus,

f (u) + f (v) = f
(
x(k+1)i−k

)
+ f

(
x(k+1)i−k+1

)
= (n+ 1− i) + (n− 2β + i) = 2n− 2β + 1.

Case 2. Suppose that uv ∈ E (G), where u ∈ S1 and v ∈ S3. Then

f (u) + f (v) ≤ (n− β) + (n− 2β + 1) = 2n− 3β + 1 < 2n− 2β + 1.

Case 3. Suppose that uv ∈ E (G), where u ∈ S2 and v ∈ S3. Then

f (u) + f (v) ≤ (n− β) + (n− 2β) = 2n− 3β < 2n− 2β + 1.
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Case 4. Suppose that uv ∈ E (G), where u, v ∈ S3. Then

f (u) + f (v) ≤ (n− 2β) + (n− 2β − 1) = 2n− 4β − 1 < 2n− 2β + 1.

Therefore, f has the property that for all i ∈ [1, β],

strf (G) = max {f (u) + f (v) | uv ∈ E (G)} = f
(
x(k+1)i−k

)
+ f

(
x(k+1)i−k+1

)
= (n+ 1− i) + (n− 2β + i) = 2n− 2β + 1 = 2n− 2

⌈
n

k + 1

⌉
+ 1,

proving that str (G) ≤ 2n − 2 dn/ (k + 1)e + 1. It remains only to observe that the

reverse inequality is obtained from Lemmas 2 and 3.

Recall from Lemma 3 that β = β
(
P kn
)

= dn/ (k + 1)e. It is important to observe

then that the labeling f of S3 presented in the proof of Theorem 1 can be replaced

by any labeling that assigns distinct elements of the set [1, n− 2β] to the vertices of

S3. This means that the numbering f of P kn with the property that

{f (v) | v ∈ S3} = [1, n− 2β] ,

{f (v) | v ∈ S2} = [n− 2β + 1, n− β] ,

{f (v) | v ∈ S1} = [n− β + 1, n]

is not unique. In fact, there are at least (n− 2β)! such labelings. Observe also that

the same labeling f has the additional property that there are exactly β edges for

which

strf
(
P kn
)

= 2n− 2β + 1,

namely, x(k+1)i−kx(k+1)i−k+1 (i ∈ [1, β]). These observations together with the fol-

lowing two lemmas lead to an analogous proof to determine a formula for str
(
Ckn
)
.

This extends the result found in [13] that str (Cn) = n+ 2 for integers n ≥ 3.

The next lemma provides an upper bound for the strength of a graph in terms of its

order and independence number.

Lemma 4. For every graph G of order n,

str (G) ≤ 2n− β (G) .

Proof. Let S be a maximum independent set of vertices of G. Then |S| = β (G).

Let S = {vi | i ∈ [1, β (G)]}, and consider a numbering f : V (G) → [1, n] such that

f (S) = [n− β (G) + 1, n]. Since no two vertices in S are adjacent, it follows that

the maximum edge label induced by f (u) + f (v), where uv ∈ E (G), is at most

n+ (n− β) = 2n− β (G).
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For two graphs G1 and G2 with disjoint vertex sets, the join G = G1 + G2 has

V (G) = V (G1) ∪ V (G2) and

E (G) = E (G1) ∪ E (G2) ∪ {uv | u ∈ V (G1) and v ∈ V (G2)} .

Now, consider the graph G = Kn + nK1 (n ≥ 1). Then we have |V (G)| = 2n and

δ (G) = β (G) = n. Thus, we obtain

str (G) ≥ 2n+ n = 3n

by Lemma 1, whereas we obtain

str (G) ≤ 4n− n = 3n

by Lemma 2. Consequently, we have the following result, which shows the sharpness

of the bound given in Lemma 4.

Corollary 1. For every positive integer n,

str (Kn + nK1) = 3n.

A simple but interesting consequence of Lemmas 1 and 4 concerns an efficiently com-

putable upper bound for the independence number of a graph in terms of its order

and minimum degree.

Corollary 2. For every graph G of order n,

β (G) ≤ n− δ (G) .

The bound given in the preceding result is sharp since it is attained, for instance, by

the families of complete graphs Kn (n ≥ 1) and the graph Kn + nK1 (n ≥ 1).

Let G be a graph with clique number ω (G) (the order of the largest complete subgraph

of G) and let f be any numbering of G. Let v1, v2, . . . , vω(G) be the vertices of a clique

of G. Then the minimum labels that the vertices that form the clique may have are

1, 2, . . . , ω (G). This implies that there exists an edge vivj (1 ≤ i < j ≤ ω (G)) in the

clique such that f (vi) + f (vj) = 2ω (G)− 1. Thus, the strength and clique numbers

are related as follows: str (G) ≥ 2ω (G)− 1.

The next lemma provides a formula for the independence number of powers of cycles.

Lemma 5. For every two integers n and k with n ≥ k + 2,

β
(
Ck

n

)
=

⌊
n

k + 1

⌋
,

where k ∈ [2, bn/2c].
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Proof. We begin by showing that β
(
Ckn
)
≤ bn/ (k + 1)c. Assume, to the contrary,

that β
(
Ckn
)
> bn/ (k + 1)c, and define the cycle Cn with

V (Cn) = {xi | i ∈ [1, n]} and E (Cn) = {x1xn} ∪ {xixi+1 | i ∈ [1, n− 1]} .

We consider two cases, depending on whether n is a multiple of k + 1.

Case 1. Suppose that n = (k + 1) l for some positive integer l. Then bn/ (k + 1)c = l.

Let S = {xsi | i ∈ [1, l + 1]} be an independent set of cardinality l+1 in Ckn, where the

elements are listed in clockwise order as xs1 , xs2 , . . . , xsl+1
. Since S is an independent

set of vertices in Ckn, it follows that dCn

(
xsi , xsi+1

)
≥ k + 1 for each i ∈ [1, l];

otherwise, xsixsi+1
∈ E

(
Ckn
)

and hence S is not an independent set of vertices in Ckn.

Also, dCn

(
xs1 , xsl+1

)
≥ k + 1 for the same reason. This implies that

|E (Cn)| ≥ (k + 1) (l + 1) > (k + 1) l = n = |E (Cn)| ,

which is impossible.

Case 2. Suppose that n = (k + 1) l+r for some positive integers l and r ∈ [1, k]. Then

bn/ (k + 1)c = l. Let S = {xsi | i ∈ [1, l + 1]} be an independent set of cardinality l+1

in Ckn, where again, the elements are listed in clockwise order as xs1 , xs2 , . . . , xsl+1
.

Since S is an independent set of vertices in Ckn, it follows that dCn

(
xsi , xsi+1

)
≥ k+1

for each i ∈ [1, l]; otherwise, xsixsi+1 ∈ E
(
Ckn
)

and hence S is not an independent

set of vertices in Ckn. Also, dCn

(
xs1 , xsl+1

)
≥ k+ 1 for the same reason. This implies

that

|E (Cn)| ≥ (k + 1) (l + 1) = (k + 1) l + (k + 1)

> (k + 1) l + r = n = |E (Cn)| ,

which is impossible.

Therefore, we obtain β
(
Ckn
)
≤ bn/ (k + 1)c.

Next, we establish the reverse inequality. Let S =
{
x(k+1)i−k | i ∈ [1, bn/ (k + 1)c]

}
.

Then

dCn

(
x(k+1)i−k, x(k+1)(i+1)−k

)
= k + 1

for each i ∈ [1, bn/ (k + 1)c − 1]. Therefore, S is an independent set of cardinality

bn/ (k + 1)c, implying that β
(
Ckn
)
≥ bn/ (k + 1)c.

We are now ready to prove the following theorem.

Theorem 2. For every two integers n and k with n ≥ k + 2 ≥ 4,

str
(
Ck

n

)
=

{
n+ 2k if n = 2k + 2
2n− 2 bn/ (k + 1)c+ 1 if n 6= 2k + 2 and k ∈ [2, bn/2c] .
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Proof. First, we define the cycle Cn as in the proof of Lemma 5. We then let G = Ckn
and define the graph G with V (G) = V (Cn) and

E (G) = {uv | 1 ≤ dCn
(u, v) ≤ k and k ∈ [2, bn/2c]} ,

where n ≥ k + 2 ≥ 4. Furthermore, let β = bn/ (k + 1)c.
We now consider two cases, depending on the relation among the integers n and k.

Case 1. Suppose that n = 2k + 2. Then Lemmas 4 and 5 yield that

str (G) ≤ 2n− β = 2n−
⌊

n

k + 1

⌋
= 2n−

⌊
2k + 2

k + 1

⌋
= 2n− 2 = n+ (n− 2) = n+ 2k.

On the other hand, G is a 2k-regular graph when n = 2k+2. To see this, consider the

following. The cycle Cn is a 2-regular connected graph so that a 2-regular spanning

subgraph is obtained by joining vertices of Cn at distance k (k ∈ [1, n/2− 1]) by

skipping k − 1 vertices. Since this increments the degree of each vertex by 2 for each

k, it follows that G is a 2k-regular graph. It is now immediate from Lemma 1 that

str (G) ≥ n+ 2k. Consequently, str (G) = n+ 2k.

Case 2. Suppose that n 6= 2k + 2 and k ∈ [2, bn/2c], and consider a partition

{S1, S2, S3} of V (G) such that

S1 =
{
x(k+1)i−k | i ∈ [1, β]

}
,

S2 =
{
x(k+1)i−k+1 | i ∈ [1, β]

}
,

S3 = V (G)− (S1 ∪ S2) .

Then |S1| = |S2| = β and |S3| = n− 2β.

Suppose that S3 = {xsi | i ∈ [1, n− 2β]}, where the subindices s1, s2, . . . , sn−2β are

ordered in such a way that

s1 < s2 < · · · < sn−2β .

Note that if we define the bijective function π : S3 → {yi | i ∈ [1, n− 2β]} by

π (xsi) = yi (i ∈ [1, n− 2β] ),

then we have

S3 = {yi | i ∈ [1, n− 2β]} .

Thus, the numbering f : V (G)→ [1, n] such that

f (v) =


n+ 1− i if v = x(k+1)i−k and i ∈ [1, β]

n− 2β + i if v = x(k+1)i−k+1 and i ∈ [1, β]

i if v = yi and i ∈ [1, n− 2β]
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has the properties that

{f (v) | v ∈ S3} = [1, n− 2β] ,

{f (v) | v ∈ S2} = [n− 2β + 1, n− β] ,

{f (v) | v ∈ S1} = [n− β + 1, n] ,

and

strf (G) = max {f (u) + f (v) | uv ∈ E (G)}
= f

(
x(k+1)i−k

)
+ f

(
x(k+1)i−k+1

)
= (n+ 1− i) + (n− 2β + i)

= 2n− 2β + 1 = 2n− 2 bn/ (k + 1)c+ 1

for all i ∈ [1, β]. This implies that str (G) ≤ 2n−2 bn/ (k + 1)c+1. On the other hand,

the reverse inequality is obtained readily by applying Lemmas 2 and 5. Consequently,

str (G) = 2n− 2 bn/ (k + 1)c+ 1.

The proof of the preceding theorem shows that the graph Ckn (n = 2k+2) constitutes

an example of an infinite family of graphs for which the bound given in Lemma 4 is

sharp.

3. Conclusions

We have used the bounds given in Lemmas 1 and 2 to determine the strength of P kn
and Ckn. It is interesting to notice that we find subfamilies of these graphs for which

the bound given in Lemma 2 is sharp, and observe that the value for the strength of

Pn−1
n coincides with the strength of Kn already established in [13] as expected. Notice

also that
∣∣E (P kn)∣∣ = k (2n− k − 1) /2 for integers n and k with n ≥ k + 1, where

k ∈ [2, n− 1]. This suggests that Lemma 2 may be potentially helpful in computing

the strength of dense graphs. By using the bounds for the strength given in Lemmas

1, 2 and 4, we have obtained Corollaries 1 and 2.

We conclude this paper by stating the next problem for future research.

Problem 1. What is the probability that the strength of a given graph G of order n
coincides with n+ δ (G)?
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