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Abstract: In the context of a finite undirected graph ζ, an edge irregular labelling

is defined as a labelling of its vertices with some labels in such a way that each edge
has a unique weight, which is determined by the sum of the labels of its endpoints.

The main objective of this study is to determine the smallest positive integer n for

which it is possible to assign a total edge irregular labelling to ζ with n as the biggest
label. This investigation focuses particularly on cases where ζ represents the generalized

arithmetic and generalized geometric staircase graphs. Within this paper, the definition

of generalized geometric staircase graph is proposed. Moreover, we not only establish
the edge irregularity strength of these two kind of graphs but also present a method

for creating the corresponding edge irregular labelling.
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1. Introduction

In contemporary times, numerous scholars have expressed keen enthusiasm for graph

labelling, leading to a continuous stream of new discoveries in this field each year.

This achievement can be attributed not only to the intricate technical aspects of

graph labelling but also to its wide array of practical applications, including electron

microscopy, X-ray analysis, combinatorial optimization, sonar technology, physics re-

search, signal processing, network design, and system configuration (see [12], [23]).

Consider a connected, simple, and undirected graph ζ with Vζ as its vertex set and Eζ
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2 Edge irregularity strength of graphs

as its edge set. In this context, labelling refers to the assignment of numbers (typically

positive integers) to elements of the graph, either its vertices or edges. When labels

are assigned to vertices, it is called vertex labelling, and when labels are assigned to

edges, it is known as edge labelling. If labels are assigned to both vertices and edges,

it is termed total labelling. For an edge p-labelling γ : Eζ → {1, 2, . . . , p} on ζ, the

weight associated with a vertex x is determined by adding up the labels of all edges

incident to x. In their work presented in reference [6] Chartrand et al. introduced the

concept of edge p-labelling ensures that each vertex has a unique weight which were

called irregular assignment. The minimum value of p allowing a graph ζ to possess

an irregular assignment with labels not surpassing p is referred to as the irregularity

strength of ζ, and denoted s(ζ). Determining the irregularity strength of a graph can

be a challenging task, even for relatively simple graphs [4].

In the publication by Baca and Siddiqui, referenced as [5], they introduced the notion

of total labelling within the framework of a graph ζ, with additional condition such

that each vertex in the graph has a unique particular weight, where the weight of

vertex x is the sum of its label and the labels of all edges incident to x. The least pos-

sible value for the biggest label that can be assigned under this labelling is considered

as the total vertex irregularity strength of the graph, denoted as tvs(ζ). Addition-

ally, a distinct type of total labelling, referred to as edge irregular total labelling, was

introduced. In this labelling, each edge’s weight is unique, calculated as the sum of

its label and the labels of its end vertices. The smallest value that can serve as the

maximum label is termed the total edge irregularity strength of the graph ζ, denoted

as tes(ζ). These two parameters have garnered significant attention from researchers,

as evidenced by references [2, 5, 8–11, 13–17, 24]. For a more in-depth survey of this

study, one can refer to [7].

Consider a finite connected undirected graph ζ = (Vζ , Eζ) with a non-empty finite

vertex set Vζ and edge set Eζ , a vertex p−labelling γ : Vζ → {1, 2, . . . , p} is termed

an edge irregular labelling if, for any distinct edges xy and x′y′ in Eζ , the sums

γ(x) + γ(y) and γ(x′) + γ(y′) are different. The weight of an edge xy ∈ Eζ under

labelling γ is denoted as wtγ(xy), calculated as γ(x) + γ(y). The edge irregularity

strength of the graph ζ, denoted as eis(ζ), is the smallest p for which an edge irregular

vertex p-labelling on ζ is possible. Indeed, for more in-depth investigations into this

particular invariant, you may find valuable insights in studies, for instance, referenced

as [3, 18–22].

The following lemma, as established in [1], provides a lower bound for eis(ζ).

Lemma 1. [1] For any graph ζ = (Vζ , Eζ), such that the maximum vertex degree of ζ is
∆ζ , it follows that

eis(ζ) ≥ max

{⌈
|Eζ |+ 1

2

⌉
,∆ζ

}
.

This paper presents irregularity strength analyses for both the generalized arithmetic

staircase graph and the generalized geometric staircase graph. Let α, β, n ≥ 1 be any
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positive integers. The generalized arithmetic staircase graph Arsc(α, β, n) consisting

of n levels and with α initial grids and difference β is a graph with vertex set

VArsc(α,β,n) = {ui,j |0 ≤ i ≤ α+ βj, 0 ≤ j ≤ n− 1} ∪ {ui,n|0 ≤ i ≤ α+ βn− b}

and edge set

EArsc(α,β,n) = {ui,jui,j+1|0 ≤ i ≤ α+ βj, 0 ≤ j ≤ n− 1}∪

{ui,jui+1,j |0 ≤ i ≤ α+ βj − 1, 0 ≤ j ≤ n− 1} ∪ {ui,nui+1,n|0 ≤ i ≤ α+ βn− β − 1}

(see [16]). Clearly, |EArsc(α,β,n)| = βn2+(2α+1)n+α−β. As an example, we provide

a specific generalized arithmetic staircase graph, which is illustrated in Figure 1.

Figure 1: Generalized Arithmetic Staircase Graph Arsc(2, 3, 3)

Inspired by the concept of generalized arithmetic staircase graph, we propose the

definition of the generalized geometric staircase graph as outlined below. Let u, r, l ≥ 1

be arbitrary positive integers. By generalized geometric staircase graph Geosc(u, r, l)

of l levels with u initial grids and ratio r, we mean a graph with vertex set

VGeosc(u,r,l) = {ai,j |0 ≤ i ≤ urj , 0 ≤ j ≤ l − 1} ∪ {ai,l|0 ≤ i ≤ url−1}

and edge set

EGeosc(u,r,l) = {ai,jai,j+1|0 ≤ i ≤ u, 0 ≤ j ≤ l − 1}∪

{ai,jai,j+1|(u+1) ≤ i ≤ urj , 1 ≤ j ≤ l−1}∪{ai,jai+1,j |0 ≤ i ≤ urj−1, 0 ≤ j ≤ l−1}

∪{ai,nai+1,n|0 ≤ i ≤ url−1 − 1}.

Clearly, |EGeosc(u,r,l)| = 2u
(
rl−1
r−1

)
+url−1 + l. As an illustration, we give a particular

generalized geometric staircase graph as depicted in Figure 2
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Figure 2: Generalized Geometric Staircase Graph Geosc(2, 2, 3)

2. Results

In this section, we find the precise value of the total edge irregularity strength for

these graphs by creating the corresponding vertex irregular p-labelling, where the

value of p satisfies the lower bound for these graphs. We also provide examples of

these graphs, including labelled ones, for better understanding.

It is readily apparent that ∆(Arsc(α, β, n)) = ∆(Geosc(u, r, l)) = 4 and this value

remains smaller than or equal to |E(Arsc(α, β, n))| and |E(Geosc(u, r, l))|. Equality

is achieved only when α = n = u = l = 1. Therefore, Lemma 1 implies Lemma 2 and

Lemma 5.

Lemma 2. For any positive integers α, β, n ≥ 1, we have

eis(Arsc(α, β, n)) ≥
⌈
βn2 + (2α+ 1)n+ α− β + 1

2

⌉
.

In order to ascertain the precise value of eis(Arsc(α, β, n)), it is imperative to demon-

strate its equivalence to the lower bound. This task can be accomplished through the

establishment of an edge-irregular vertex p-labelling scheme for the graph, with p

equating to the lower bound.

The subsequent lemma serves as a tool to prove Lemma 4.

Lemma 3. Let x and y be odd integers. Then
⌈
x
2

⌉
+
⌈
y
2

⌉
=
⌈
x+y
2

+ 1
⌉
.

Proof. Let x = 2m+ 1 and y = 2n+ 1 for some integers m and n. Then

⌈x
2

⌉
+
⌈y

2

⌉
=

⌈
2m+ 1

2

⌉
+

⌈
2n+ 1

2

⌉
= m+ n+ 2 =

⌈
2(m+ n+ 2)

2

⌉
=

⌈
x+ y

2
+ 1

⌉
.
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The following lemma will be a valuable instrument for ascertaining the lower bound

of eis(Arsc(α, β, n)).

Lemma 4. For any three positive integers α, β, n ≥ 1, let

κi,j =

{
1 + jα+ (j−1)jβ

2
+
⌈
j−1
2

⌉
+
⌊
i
2

⌋
, j even

1 + jα+ (j−1)jβ
2

+
⌈
j−1
2

⌉
+
⌈
i
2

⌉
, j odd.

It follows that

κα+(n−1)β,n =

⌈
βn2 + (2α+ 1)n+ α− β + 1

2

⌉
.

Proof. Let i = α+ (n− 1)β and j = n. We consider the following three cases:

a. If n is an odd integer, then

κα+(n−1)β,n = 1 + nα+
(n− 1)nβ

2
+
n− 1

2
+

⌈
α+ (n− 1)β

2

⌉
=

⌈
1 + nα+

(n− 1)nβ

2
+
n− 1

2
+
α+ (n− 1)β

2

⌉
=

⌈
βn2 + (2α+ 1)n+ α− β + 1

2

⌉
.

b. If n is an even integer and α, β have the same parity, then

κα+(n−1)β,n = 1 + nα+
(n− 1)nβ

2
+

⌈
n− 1

2

⌉
+

⌊
α+ (n− 1)β

2

⌋
= 1 + nα+

(n− 1)nβ

2
+

⌈
n− 1

2

⌉
+
α+ (n− 1)β

2

=

⌈
1 + nα+

(n− 1)nβ

2
+
n− 1

2
+
α+ (n− 1)β

2

⌉
=

⌈
βn2 + (2α+ 1)n+ α− β + 1

2

⌉
.

c. If n is an even integer and α, β have distinct parity, then

κα+(n−1)β,n = 1 + nα+
(n− 1)nβ

2
+

⌈
n− 1

2

⌉
+

⌊
α+ (n− 1)β

2

⌋
= nα+

(n− 1)nβ

2
+

⌈
n− 1

2

⌉
+

⌈
α+ (n− 1)β

2

⌉
.

Lemma 3 implies
⌈
n−1
2

⌉
+
⌈
α+(n−1)β

2

⌉
=
⌈
(n−1)+α+(n−1)β+2

2

⌉
. Therefore,

κα+(n−1)β,n = nα+
(n− 1)nβ

2
+

⌈
(n− 1) + α+ (n− 1)β + 2

2

⌉
=

⌈
nα+

(n− 1)nβ

2
+
n+ 1 + α+ (n− 1)β

2

⌉
=

⌈
βn2 + (2α+ 1)n+ α− β + 1

2

⌉
.
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The following result shows that the lower bound of eis(Arsc(α, β, n)) given in Lemma

2 is sharp.

Theorem 1. Given three positive integers α, β, n ≥ 1. Let Arsc(α, β, n) be the gener-
alized arithmetic staircase graph of n levels with α initial grids and difference β. The edge
irregularity strength of Arsc(α, β, n) is

eis(Arsc(α, β, n)) =

⌈
βn2 + (2α+ 1)n+ α− β + 1

2

⌉
.

Proof. To prove that the upper bound meets the lower bound given in Lemma 2,

it is constructed a vertex p-labelling f : V (Arsc(α, β, n)) → {1, 2, . . . , p} where p is

equal to the lower bound given on Lemma 1, defined by

f(ui,j) = κi,j =

{
1 + jα+ (j−1)jβ

2 +
⌈
j−1
2

⌉
+
⌊
i
2

⌋
, j even

1 + jα+ (j−1)jβ
2 +

⌈
j−1
2

⌉
+
⌈
i
2

⌉
, j odd,

as given in Lemma 4. Clearly, f is a non decreasing function and again by Lemma

4, the biggest label is p =
⌈
βn2+(2α+1)n+α−β+1

2

⌉
. This confirms that f is indeed a

vertex p-labelling with p =
⌈
βn2+(2α+1)n+α−β+1

2

⌉
. The weight of each edge is indeed

as follows:

(i) For j that is even, we have

wtf (ui,jui,j+1) = κi,j +κi,j+1 = 1 + jα+ (j−1)jβ
2 +

⌈
j−1
2

⌉
+
⌊
i
2

⌋
+ 1 + (j+ 1)α+

j(j+1)β
2 +

⌈
j
2

⌉
+
⌈
i
2

⌉
= 2 + (2j + 1)α+ j2β + j + i.

(ii) For j that is odd, we have

wtf (ui,jui,j+1) = 1+ jα+ (j−1)jβ
2 +

⌈
j−1
2

⌉
+
⌈
i
2

⌉
+1+(j+1)α+ j(j+1)β

2 +
⌈
j
2

⌉
+⌊

i
2

⌋
= 2 + (2j + 1)α+ j2β + j + i.

(iii) For j that is even, we have

wtf (ui,jui+1,j) = κi,j + κi+1,j = 1 + jα + (j−1)jβ
2 +

⌈
j−1
2

⌉
+
⌊
i
2

⌋
+ 1 + jα +

(j−1)jβ
2 +

⌈
j−1
2

⌉
+
⌊
i+1
2

⌋
= 2 + 2jα+ (j − 1)jβ + j + i.

(iv) For j that is odd, we have

wtf (ui,jui+1,j) = κi,j + κi+1,j = 1 + jα + (j−1)jβ
2 +

⌈
j−1
2

⌉
+
⌈
i
2

⌉
+ 1 + jα +

(j−1)jβ
2 +

⌈
j−1
2

⌉
+
⌈
i+1
2

⌉
= 2 + 2jα+ (j − 1)jβ + j + i.

It is straightforward to verify that all edge weights with respect to function f are

distinct.
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Figure 3 gives an illustration on the establishment of the edge irregular labelling

showing the edge irregularity strength of a particular generalized arithmetic staircase

graph. The numbers given in blue color are the weight of the edges.

Figure 3: Edge irregular 38-labelling on Arsc(2, 2, 5) with biggest label meets the

eis(Arsc(2, 2, 5))

Next, we turn our consideration to the second graph in question, which is the gen-

eralized geometric staircase graph. The subsequent lemma, which establishes the

minimum edge irregularity strength eis(Geosc(u, r, l)), can be directly inferred from

the definition of the generalized staircase graph and Lemma 1.

Lemma 5. For any positive integers u, r, l ≥ 1, it follows that

eis(Geosc(u, r, l)) ≥


2u
(
rl−1
r−1

)
+ url−1 + l + 1

2

 .
The following result demonstrates that the lower bound for eis(Geosc(u, r, l)) corre-

sponds to the actual value of eis(Geosc(u, r, l)).

Theorem 2. Let u, r, l ≥ 1 be natural numbers. Then the edge irregularity strength of
Geosc(u, r, l) is

eis(Geosc(u, r, l)) =


2u
(
rl−1
r−1

)
+ url−1 + l + 1

2

 .
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Proof. To prove the equality, we construct a function f : V (Geosc(u, r, l)) →

{1,2,. . . , p} with p =

⌈
2u

(
rl−1
r−1

)
+url−1+l+1

2

⌉
, defined by

f(ai,0) =

⌈
i+ 1

2

⌉
, 0 ≤ i ≤ u

f(a0,j) =

⌊
ωj−1 + urj−1 + 1

2

⌋
, 1 ≤ j ≤ l,

f(ai,j) =

⌈
ωj−1 + urj−1 + i

2

⌉
, 1 ≤ i ≤ urj , 1 ≤ j ≤ l − 1,

f
(
ai,l
)

=

⌈
ωl−1 + url−1 + i

2

⌉
, 1 ≤ i ≤ url−1,

where ωj = 2u( r
j−1
r−1 ) + urj + j + 2. Clearly, f is a non-decreasing function and the

largest label is p =

⌈
2u

(
rl−1
r−1

)
+url−1+l+1

2

⌉
. This shows that f is a vertex p-labelling.

Moreover, the weight of each edge is indeed as follows:

(i) For 0 ≤ i ≤ urj and 0 ≤ j ≤ l − 1, we have

wtf (ai,jai,j+1) =

⌈
ωj−1 + ωj + u(rj−1 + rj) + 2i

2

⌉
=


2u
(
rj+1+rj−2

r−1

)
+ 2(i+ j) + 3

2

 .
(ii) For 0 ≤ j ≤ l, we have

wtf (a0,ja1,j) = ωj−1 + urj−1 + 1 = 2u

(
rj − 1

r − 1

)
+ j + 2.

(iii) For 1 ≤ i ≤ url−1 − 1 and 0 ≤ j ≤ l − 1, we have

wtf (ai,jai+1,j) =

⌈
2ωj−1 + 2urj−1 + 2i+ 1

2

⌉
=


4u
(
rj−1
r−1

)
+ 2(i+ j) + 3

2

 .

(iv) For 1 ≤ i ≤ url−1 − 1, we have

wtf (ai,lai+1,l) =

⌈
2ωl−1 + 2url−1 + 2i+ 1

2

⌉
=


4u
(
rl−1
r−1

)
+ 2(i+ l) + 3

2

 .
This completes the proof.

We close this discussion by providing Figure 4 as an illustration on the construction

of an edge irregular labelling, showcasing the edge irregularity strength of a specific

generalized geometric staircase graph. The numbers highlighted in blue represent the

edge weights.
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Figure 4: Edge irregular 22-labelling on Geosc(1, 2, 4) with biggest label meets the

eis(Geosc(1, 2, 4))

3. Conclusion

In this paper, we considered the concept of edge irregularity strength, which is a

variant of the established irregularity strength, total edge irregularity strength, and

total vertex irregularity strength. We successfully determined the exact values for

the edge irregularity strength of specific graphs, including the generalized arithmetic

staircase graphs and generalized geometric staircase graphs. It is worth noting that

uncovering the precise edge irregularity strength for families of graphs remains a

formidable challenge.
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