On e-super (a, d)-edge antimagic total labeling of total graphs of paths and cycles

A. Saibulla ${ }^{1, *}$ and P. Roushini Leely Pushpam ${ }^{2}$
${ }^{1}$ Department of Mathematics and Actuarial Science
B.S. Abdur Rahman Crescent Institute of Science and Technology
Chennai - 600048, Tamil Nadu, India,
*saibulla.a@gmail.com
${ }^{2}$ Department of Mathematic, D.B. Jain College, Chennai - 600097, Tamil Nadu, India roushinip@yahoo.com

Received: 20 April 2023; Accepted: 1 February 2024
Published Online: 10 February 2024

Abstract

A}(p, q)\)-graph G is (a, d)-edge antimagic total if there exists a bijection f from $V(G) \cup E(G)$ to $\{1,2, \ldots, p+q\}$ such that for each edge $u v \in E(G)$, the edge weight $\Lambda(u v)=f(u)+f(u v)+f(v)$ forms an arithmetic progression with first term $a>0$ and common difference $d \geq 0$. An (a, d)-edge antimagic total labeling in which the vertex labels are $1,2, \ldots, p$ and edge labels are $p+1, p+2, \ldots, p+q$ is called a super (a, d)-edge antimagic total labeling. Another variant of (a, d)-edge antimagic total labeling called as e-super (a, d)-edge antimagic total labeling in which the edge labels are $1,2, \ldots, q$ and vertex labels are $q+1, q+2, \ldots, q+p$. In this paper, we investigate the existence of e-super (a, d)-edge antimagic total labeling for total graphs of paths, copies of cycles and disjoint union of cycles.

Keywords: graph Labeling, magic Labeling, antimagic Labeling.
AMS Subject classification: 05C78, 05C76.

1. Introduction

All graphs G considered in this paper are finite, undirected, connected without any loops or multiple edges. Let $V(G)$ and $E(G)$ be the set of vertices and edges of a graph G respectively. The order and size of a graph G is denoted as $p=|V(G)|$ and $q=|E(G)|$ respectively. For general graph theoretic notions we refer to Harary [8].
A labeling of a graph G is a one-to-one mapping that carries the set of graph elements onto a set of numbers (usually positive or non-negative integers), called labels. There

[^0](c) 2024 Azarbaijan Shahid Madani University
are several types of labeling and a detailed survey of many of them can be found in the dynamic survey of graph labeling by Gallian [7].
Kotzig and Rosa [10] introduced the concept of magic labeling. They defined an edge-magic total labeling of a (p, q)-graph G as a bijection f from $V(G) \cup E(G)$ to $\{1,2, \ldots, p+q\}$ such that for all edges $u v$, the edge weight $f(u)+f(u v)+f(v)$ is constant.
As a natural extension of the notion of edge-magic total labeling, Hartsfield and Ringel [9] introduced the concept of an antimagic labeling and they defined an antimagic labeling of a (p, q)-graph G as a bijection from $E(G)$ to the set $\{1,2, \ldots, q\}$ such that the sums of label of the edges incident with each vertex $v \in V(G)$ are distinct.
In 1993, Bodendiek and Walther [6] introduced the concept of an (a,d)-antimagic labelings and they defined a (p, q)-graph G as (a, d)-antimagic if there exist a bijection f from $E(G)$ to $\{1,2, \ldots, q\}$ such that for each vertex $v \in V(G)$, the vertex weight $\Lambda(v)=\sum_{u \in N(v)} f(u v)$ forms an arithmetic progression with first term $a>0$ and common difference $d \geq 0$. In [11] Lin, Miller, Simanjuntak and Slamim called this labeling as (a, d)-vertex antimagic edge labeling.
In 2000, Baca et al. [4] introduced the notion of (a, d)-vertex antimagic total labeling of a graph G as a bijection f from $V(G) \cup E(G)$ to $\{1,2, \ldots, p+q\}$ such that for each vertex $v \in V(G)$, the vertex weight $\Lambda(v)=f(v)+\sum_{u \in N(v)} f(u v)$ forms an arithmetic progression with first term $a>0$ and common difference $d \geq 0$. In the case where the vertices are labeled with the smallest possible integers $1,2, \ldots, p$, the (a, d)-vertex antimagic total labeling is called a super (a, d)-vertex antimagic total labeling.
In [4] Baca et al. have proved that every super magic graph has an ($a, 1$)-vertex antimagic total labeling. They also proved that every (a, d)-antimagic graph has an $(a+q+1, d+1)$-vertex antimagic total labeling and an $(a+p+q, d-1)$-vertex antimagic total labeling for $d>1$. In the same paper they have presented labeling schemes for paths P_{n}, cycles C_{n}. They also investigated (a, d)-vertex antimagic total labeling for prisms, antiprisms and generalised Petersen graphs.
As a variation of (a, d)-vertex antimagic edge labeling, Simanjuntak et al. [12] introduced (a, d)-edge antimagic vertex labeling and they defined an (a, d)-edge antimagic vertex $((a, d)$-EAV) labeling of a (p, q)-graph G as a bijection f from $V(G)$ to $\{1,2, \ldots, p\}$ such that for each edge $u v \in E(G)$, the edge weight $\Lambda(u v)=f(u)+f(v)$ forms an arithmetic progression with first term $a>0$ and common difference $d \geq 0$. They have also defined an (a, d)-edge antimagic total labeling and a super (a, d)-edge antimagic total labeling of a graph G as follows: An (a, d)-edge antimagic total labeling of a graph G is defined as a bijection f from $V(G) \cup E(G)$ to $\{1,2, \ldots, p+q\}$ such that for each edge $u v \in E(G)$, the edge weight $\Lambda(u v)=f(u)+f(u v)+f(v)$ forms an arithmetic progression with first term $a>0$ and common difference $d \geq 0$. An (a, d)-edge antimagic total labeling in which the vertex labels are $1,2, \ldots, p$ and the edge labels are $p+1, p+2, \ldots, p+q$ is called a super (a, d)-edge antimagic total ((a, d)-SEAT) labeling.
A collection of graphs have been studied in the past that admit (a, d)-SEAT labeling. Bača et al. [1-3] have discussed the existence of (a, d)-SEAT labeling for paths, cycles, friendship graphs, fan graphs, wheel graphs, complete graphs, generalized Petersen
graphs and trees. Sugeng et al. [13, 15, 16] have studied various properties of (a, d) SEAT labeling and proved several results on ladders, prisms and caterpillars. For a detailed survey about super edge antimagic graphs one can refer to [5].
Another variant of (a, d)-edge antimagic total labeling called as e-super (a, d)-edge antimagic total labeling was introduced by Sugeng et al. [14]. Similar to (a, d)-edge antimagic total labeling, they defined an e-super (a,d)-edge antimagic total labeling of a graph G as a bijection f from $V(G) \cup E(G)$ to $\{1,2, \ldots, q+p\}$ such that for each edge $u v \in E(G)$, the edge weight $\Lambda(u v)=f(u)+f(u v)+f(v)$ forms an arithmetic progression $a, a+d, \ldots, a+(q-1) d$ with an additional property that the edge labels are $1,2, \ldots, q$ and the vertex labels are $q+1, q+2, \ldots, q+p$.
Sugeng et al. [14] have proved that the generalized Petersen graph $P(m, n)$ has an e-super (a, d)-edge antimagic total labeling for odd $n \geq 3, m \in\left\{1,2, \frac{n-1}{2}\right\}$ and $d \in\{0,1,2\}$. They also proved that every caterpillar has an e-super ($a, 0$)-edge antimagic total labeling and an e-super ($a, 2$)-edge antimagic total labeling for any number of vertices $p \geq 3$ and has an e-super ($a, 1$)-edge antimagic total labeling for even number of vertices $p \geq 4$. Further the relationship between (a, d)-EAV labeling and e-super (a, d)-edge antimagic total labeling are also obtained in [14].
The total graph of a graph G denoted by $T(G)$ is defined as a graph in which the set of vertices is both the set of vertices and edges of G and any two vertices in $T(G)$ are adjacent if and only if their corresponding elements are either adjacent or incident in G.
In this paper, we investigate the existence of e-super (a, d)-edge antimagic total labeling for total graphs of paths, copies of cycles and disjoint union of cycles.

2. Properties of e-super (a, d)-edge antimagic total labeling

The following theorem gives an upper bound for d of an e-super (a, d)-edge antimagic total labeling.

Theorem 2.1. If a graph G has an e-super (a,d)-edge antimagic total labeling, then $d \leq \frac{2 p+q-5}{q-1}$.

Proof. Let us assume that the graph G has an e-super (a, d)-edge antimagic total labeling. Then by definition, there exist a bijection $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, q+p\}$ such that
(i) $f(E(G))=\{1,2, \ldots, q\}$
(ii) $f(V(G))=\{q+1, q+2, \ldots, q+p\}$ and
(iii) for any edge $u v \in E(G)$, the set of edge weight

$$
\Lambda(u v)=\{a, a+d, a+2 d, \ldots, a+(q-1) d\} .
$$

Clearly the minimum possible edge weight is $(q+1)+1+(q+2)=2 q+4$. Thus, we have

$$
\begin{equation*}
a \geq 2 q+4 \tag{2.1}
\end{equation*}
$$

Also, the maximum possible edge weight is $(q+p-1)+q+(q+p)=3 q+2 p-1$ Thus, we have

$$
\begin{equation*}
a+(q-1) d \leq 3 q+2 p-1 \Rightarrow a \leq 3 q+2 p-1-(q-1) d \tag{2.2}
\end{equation*}
$$

From (2.1) and (2.2) we get, $2 q+4 \leq 3 q+2 p-1-(q-1) d$ implying that $(q-1) d \leq$ $3 q+2 p-1-2 q-4$. Hence, d $\leq \frac{2 p+q-5}{(q-1)}$.

The following theorem provides a relationship between e-super ($a, 0$)-edge antimagic total labeling and e-super ($b, 2$)-edge antimagic total labeling of a graph G.

Theorem 2.2. If a graph G has an e-super ($a_{1}, 0$)-edge antimagic total labeling then it has an e-super $\left(a_{2}, 2\right)$-edge antimagic total labeling where $a_{2}=a_{1}+1-q$.

Proof. Let us assume that the graph G has an e-super $\left(a_{1}, 0\right)$-edge antimagic total labeling. Then by definition, there exist a bijection $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, q+p\}$ such that
(i) $f(E(G))=\{1,2, \ldots, q\}$
(ii) $f(V(G))=\{q+1, q+2, \ldots, q+p\}$ and
(iii) for every edge $u v \in E(G), f(u)+f(u v)+f(v)=a_{1}$.

Let us define an induced function $g: V(G) \cup E(G) \rightarrow\{1,2, \ldots, q+p\}$ as follows:
(i) for every vertex $v \in V(G), g(v)=f(v)$
(ii) for every edge $u v \in E(G), g(u v)=q+1-f(u v)$.

Then, we have
(i) $g(E(G))=\{1,2, \ldots, q\}$
(ii) $g(V(G))=\{q+1, q+2, \ldots, q+p\}$
and for any edge $u v \in E(G)$,

$$
\begin{aligned}
g(u)+g(u v)+g(v) & =f(u)+q+1-f(u v)+f(v) \\
& =q+1+f(u)+f(u v)+f(v)-2 f(u v) \\
& =q+1+a_{1}-2 f(u v) \\
& =\left(a_{1}+1-q\right)+2(q-f(u v)) .
\end{aligned}
$$

Since $f(E(G))=\{1,2, \ldots, q\}$, for any edge $u v \in E(G)$, we have the set of edge weights as

$$
\begin{aligned}
g(u)+g(u v)+g(v) & =\left\{\begin{array}{c}
\left(a_{1}+1-q\right)+2(q-1),\left(a_{1}+1-q\right)+2(q-2), \\
\ldots,\left(a_{1}+1-q\right)+2(q-q)
\end{array}\right\} \\
& =\left\{a_{2}, a_{2}+2(1), \ldots, a_{2}+2(q-1)\right\}, \text { where } a_{2}=a_{1}+1-q .
\end{aligned}
$$

Thus, g is an e-super $\left(a_{2}, 2\right)$-edge antimagic total labeling of G.
Hence, if G has an e-super ($a_{1}, 0$)-edge antimagic total labeling then it has an e-super $\left(a_{2}, 2\right)$-edge antimagic total labeling where $a_{2}=a_{1}+1-q$.

3. Total graph of paths P_{n}

In this section we establish the e-super (a, d)-edge antimagic total labeling for the total graph of paths P_{n}.
Let $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $\left\{e_{i}=v_{i} v_{i+1}: 1 \leq i \leq n-1\right\}$ be the set of vertices and edges respectively of a path P_{n}. Then we have, $V\left(T\left[P_{n}\right]\right)=\left\{v_{i}: 1 \leq i \leq n\right\} \cup\left\{e_{i}: 1 \leq i \leq n-1\right\}$ and $E\left(T\left[P_{n}\right]\right)=E_{1} \cup E_{2} \cup E_{3} \cup E_{4}$ where

$$
\begin{gathered}
E_{1}=\left\{v_{i} v_{i+1}: 1 \leq i \leq n-1\right\} \\
E_{2}=\left\{v_{i} e_{i}: 1 \leq i \leq n-1\right\} \\
E_{3}=\left\{v_{i} e_{i-1}: 2 \leq i \leq n\right\} \\
E_{4}=\left\{e_{i} e_{i+1}: 1 \leq i \leq n-2\right\} .
\end{gathered}
$$

It is clear that, for the graph $T\left[P_{n}\right], p=2 n-1$ and $q=4 n-5$.
By Theorem 2.1, the following lemma is immediate.

Lemma 3.1. If the graph $T\left[P_{n}\right], n \geq 3$, has an e-super (a,d)-edge antimagic total labeling, then $d \leq 2$.

Lemma 3.2. For every path $P_{n}, n \geq 3$, the graph $G=T\left[P_{n}\right]$ has an e-super (a,0)-edge antimagic total labeling.

Proof. Let us define a bijection $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, q+p\}$ as follows:
(i) $f\left(v_{i} v_{i+1}\right)=4 n-6-4(i-1)$; for $1 \leq i \leq n-1$
(ii) $f\left(v_{i} e_{i}\right)=4 n-5-4(i-1)$; for $1 \leq i \leq n-1$
(iii) $f\left(v_{i} e_{i-1}\right)=4 n-7-4(i-2)$; for $2 \leq i \leq n$
(iv) $f\left(e_{i} e_{i+1}\right)=4 n-8-4(i-1)$; for $1 \leq i \leq n-2$
(v) $f\left(v_{i}\right)=4 n-6+2 i$; for $1 \leq i \leq n$
(vi) $f\left(e_{i}\right)=4 n-5+2 i$; for $1 \leq i \leq n-1$.

One can easily observe that the edge labels form the set

$$
\{1,2, \ldots, 4 n-5\}=\{1,2, \ldots, q\}
$$

and the vertex labels form the set

$$
\{(4 n-5)+1,(4 n-5)+2, \ldots,(4 n-5)+(2 n-1)\}=\{q+1, q+2, \ldots, q+p\}
$$

To complete the proof, we have to prove that for any edge $u v \in E(G), \Lambda(u v)$ is a constant.
For $1 \leq i \leq n-1$,

$$
\begin{aligned}
\Lambda\left(v_{i} v_{i+1}\right) & =f\left(v_{i}\right)+f\left(v_{i} v_{i+1}\right)+f\left(v_{i+1}\right) \\
& =(4 n-6+2 i)+(4 n-6-4(i-1))+(4 n-6+2(i+1)) \\
& =12 n-12=12(n-1)
\end{aligned}
$$

For $1 \leq i \leq n-1$,

$$
\begin{aligned}
\Lambda\left(v_{i} e_{i}\right) & =f\left(v_{i}\right)+f\left(v_{i} e_{i}\right)+f\left(e_{i}\right) \\
& =(4 n-6+2 i)+(4 n-5-4(i-1))+(4 n-5+2 i) \\
& =12 n-12=12(n-1) .
\end{aligned}
$$

For $2 \leq i \leq n$,

$$
\begin{aligned}
\Lambda\left(v_{i} e_{i-1}\right) & =f\left(v_{i}\right)+f\left(v_{i} e_{i-1}\right)+f\left(e_{i-1}\right) \\
& =(4 n-6+2 i)+(4 n-7-4(i-2))+(4 n-5+2(i-1)) \\
& =12 n-12=12(n-1)
\end{aligned}
$$

For $1 \leq i \leq n-2$,

$$
\begin{aligned}
\Lambda\left(e_{i} e_{i+1}\right) & =f\left(e_{i}\right)+f\left(e_{i} e_{i+1}\right)+f\left(e_{i+1}\right) \\
& =(4 n-5+2 i)+(4 n-8-4(i-1))+(4 n-5+2(i+1)) \\
& =12 n-12=12(n-1)
\end{aligned}
$$

Thus, for any edge $u v \in E(G)$, we have $\Lambda(u v)=12(n-1)$.
Hence, f is an e-super ($a, 0$)-edge antimagic total labeling of $T\left[P_{n}\right]$ where $a=12(n-1)$.

Figure 1. e-Super $(48,0)$-edge antimagic total labeling of $T\left[P_{5}\right]$

Lemma 3.3. For every path $P_{n}, n \geq 3$, the graph $G=T\left[P_{n}\right]$ has an e-super ($a, 1$)-edge antimagic total labeling.

Proof. Let us define a bijection $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, q+p\}$ as follows:
(i) $f\left(v_{i} v_{i+1}\right)=4 n-3-2 i$; for $1 \leq i \leq n-1$
(ii) $f\left(v_{i} e_{i}\right)=2 n-2 i$; for $1 \leq i \leq n-1$
(iii) $f\left(v_{i} e_{i-1}\right)=2 n+1-2 i$; for $2 \leq i \leq n$
(iv) $f\left(e_{i} e_{i+1}\right)=4 n-4-2 i$; for $1 \leq i \leq n-2$
(v) $f\left(v_{i}\right)=4 n-6+2 i$; for $1 \leq i \leq n$
(vi) $f\left(e_{i}\right)=4 n-5+2 i$; for $1 \leq i \leq n-1$.

One can easily observe that the edge labels form the set

$$
\{1,2, \ldots, 4 n-5\}=\{1,2, \ldots, q\}
$$

and the vertex labels form the set

$$
\{(4 n-5)+1,(4 n-5)+2, \ldots,(4 n-5)+(2 n-1)\}=\{q+1, q+2, \ldots, q+p\}
$$

To complete the proof, we have to prove that the edge weights $\Lambda(u v)$ form an arithmetic sequence $\{a, a+1, \ldots, a+(q-1)\}$.
For $1 \leq i \leq n-1$,

$$
\begin{aligned}
\Lambda\left(v_{i} v_{i+1}\right) & =f\left(v_{i}\right)+f\left(v_{i} v_{i+1}\right)+f\left(v_{i+1}\right) \\
& =(4 n-6+2 i)+(4 n-3-2 i)+(4 n-6+2(i+1)) \\
& =12 n-13+2 i=(10 n-9)+2(n+i)-4
\end{aligned}
$$

For $1 \leq i \leq n-1$,

$$
\begin{aligned}
\Lambda\left(v_{i} e_{i}\right) & =f\left(v_{i}\right)+f\left(v_{i} e_{i}\right)+f\left(e_{i}\right) \\
& =(4 n-6+2 i)+(2 n-2 i)+(4 n-5+2 i) \\
& =10 n-11+2 i=(10 n-9)+2(i-1)
\end{aligned}
$$

For $2 \leq i \leq n$,

$$
\begin{aligned}
\Lambda\left(v_{i} e_{i-1}\right) & =f\left(v_{i}\right)+f\left(v_{i} e_{i-1}\right)+f\left(e_{i-1}\right) \\
& =(4 n-6+2 i)+(2 n+1-2 i)+(4 n-5+2(i-1)) \\
& =10 n-12+2 i=(10 n-9)+2(i-1)-1 .
\end{aligned}
$$

For $1 \leq i \leq n-2$,

$$
\begin{aligned}
\Lambda\left(e_{i} e_{i+1}\right) & =f\left(e_{i}\right)+f\left(e_{i} e_{i+1}\right)+f\left(e_{i+1}\right) \\
& =(4 n-5+2 i)+(4 n-4-2 i)+(4 n-5+2(i+1)) \\
& =12 n-12+2 i=(10 n-9)+2(n+i)-3
\end{aligned}
$$

Thus, the edge weights are

$$
(10 n-9),(10 n-9)+1, \ldots,(10 n-9)+(4 n-6)
$$

Hence, f is an e-super ($a, 1$)-edge antimagic total labeling of $T\left[P_{n}\right]$ where $a=10 n-9$.

By Lemmas 3.1, 3.2, 3.3 and Theorem 2.2 , we have the following theorem:
Theorem 3.3. The graph $T\left[P_{n}\right], n \geq 3$, has an e-super (a,d)-edge antimagic total labeling if and only if $d \in\{0,1,2\}$.

4. Total graph of copies of cycles C_{n}

This section deals with the e-super (a, d)-edge antimagic total labeling of total graph of copies of cycles C_{n}.
Let $\left\{v_{j}^{i}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$ and $\left\{e_{j}^{i}=v_{j}^{i} v_{j+1}^{i}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$ (where the subscripts i and j are taken modulo m and modulo n respectively) be the set of vertices and edges of the disjoint union of m copies of cycles C_{n}. Then for the total graph of m copies of C_{n}, we have
$V\left(T\left[m C_{n}\right]\right)=\left\{v_{j}^{i}: 1 \leq i \leq m, 1 \leq j \leq n\right\} \cup\left\{e_{j}^{i}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$ and $E\left(T\left[m C_{n}\right]\right)=E_{1} \cup E_{2} \cup E_{3} \cup E_{4}$ where

$$
\begin{gathered}
E_{1}=\left\{v_{j}^{i} v_{j+1}^{i}: 1 \leq i \leq m, 1 \leq j \leq n\right\} \\
E_{2}=\left\{v_{j}^{i} e_{j}^{i}: 1 \leq i \leq m, 1 \leq j \leq n\right\} \\
E_{3}=\left\{v_{j}^{i} e_{j+1}^{i}: 1 \leq i \leq m, 1 \leq j \leq n\right\} \\
E_{4}=\left\{e_{j}^{i} e_{j+1}^{i}: 1 \leq i \leq m, 1 \leq j \leq n\right\} .
\end{gathered}
$$

It is clear that, for the graph $T\left[m C_{n}\right], p=2 m n$ and $q=4 m n$.
By Theorem 2.1, the following lemma is immediate.

Lemma 4.4. If the graph $T\left[m C_{n}\right], m \geq 1, n \geq 3$ has an e-super (a,d)-edge antimagic total labeling, then $d<2$.

Lemma 4.5. For every disjoint union of m copies of cycles $C_{n}, m \geq 1, n \geq 3$, the graph $G=T\left[m C_{n}\right]$, has no e-super ($a, 0$)-edge antimagic total labeling.

Proof. Suppose G has an e-super ($a, 0$)-edge antimagic total labeling.
Then by definition, there exist a bijection $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, q+p\}$ such that
(i) $f(E(G))=\{1,2, \ldots, q\}$
(ii) $f(V(G))=\{q+1, q+2, \ldots, q+p\}$ and
(iii) for all edge $u v \in E(G), \Lambda(u v)=a$.

Since G is a 4-regular graph, we have the sum of all edge weights is equal to

$$
\begin{equation*}
4 \sum_{v \in V(G)} f(v)+\sum_{e \in E(G)} f(e)=4 \sum_{j=1}^{2 m n}(4 m n+j)+\sum_{i=1}^{4 m n} i=48 m^{2} n^{2}+6 m n . \tag{4.1}
\end{equation*}
$$

Also, since G has an e-super ($a, 0$)-edge antimagic total labeling, the sum of all edge weights is equal to

$$
\begin{equation*}
\sum_{i=1}^{4 m n} a=4 m n a . \tag{4.2}
\end{equation*}
$$

From (4.1) and (4.2) we get, $4 m n a=48 m^{2} n^{2}+6 m n$ implying that $a=12 m n+\frac{3}{2}$ which is not an integer. Hence, for the graph $T\left[m C_{n}\right], m \geq 1, n \geq 3$, there is no e-super ($a, 0$)-edge antimagic total labeling.

Lemma 4.6. For every disjoint union of m copies of cycles $C_{n}, m \geq 1, n \geq 3$, the graph $G=T\left[m C_{n}\right]$, has an e-super ($a, 1$)-edge antimagic total labeling.

Proof. Let us define a bijection $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, q+p\}$ as follows:
(i) $f\left(v_{j}^{i} v_{j+1}^{i}\right)=2 n i+2-2 j$; for $1 \leq i \leq m, 1 \leq j \leq n$
(ii) $f\left(v_{j}^{i} e_{j}^{i}\right)=2 m n+2 n i+1-2 j$; for $1 \leq i \leq m, 1 \leq j \leq n$
(iii) $f\left(v_{j}^{i} e_{j+1}^{i}\right)=2 m n+2 n i-2 j$; for $1 \leq i \leq m, 1 \leq j \leq n-1$ $f\left(v_{n}^{i} e_{1}^{i}\right)=2 m n+2 n i$; for $1 \leq i \leq m$
(iv) $f\left(e_{j}^{i} e_{j+1}^{i}\right)=2 n(i-1)+2 j-1$; for $1 \leq i \leq m, 1 \leq j \leq n$
(v) $f\left(v_{j}^{i}\right)=6 m n-2 n i-1+2 j$; for $1 \leq i \leq m, 1 \leq j \leq n$
(vi) $f\left(e_{j}^{i}\right)=6 m n-2 n(i-1)+4-2 j$; for $1 \leq i \leq m, 2 \leq j \leq n$
$f\left(e_{1}^{i}\right)=6 m n-2 n i+2$; for $1 \leq i \leq m$.
One can easily observe that the edge labels form the set

$$
\{1,2, \ldots, 4 m n\}=\{1,2, \ldots, q\}
$$

and the vertex labels form the set

$$
\{4 m n+1,4 m n+2, \ldots, 6 m n\}=\{q+1, q+2, \ldots, q+p\} .
$$

To complete the proof, we have to prove that the edge weights $\Lambda(u v)$ form an arithmetic sequence $\{a, a+1, \ldots, a+(q-1)\}$.
For $1 \leq i \leq m, 1 \leq j \leq n-1$,

$$
\begin{aligned}
\Lambda\left(v_{j}^{i} v_{j+1}^{i}\right) & =f\left(v_{j}^{i}\right)+f\left(v_{j}^{i} v_{j+1}^{i}\right)+f\left(v_{j+1}^{i}\right) \\
& =(6 m n-2 n i+2 j-1)+(2 n i+2-2 j)+(6 m n-2 n i+2(j+1)-1) \\
& =(12 m n-2 n i+2)+2 j
\end{aligned}
$$

For $1 \leq i \leq m$,

$$
\begin{aligned}
\Lambda\left(v_{n}^{i} v_{1}^{i}\right) & =f\left(v_{n}^{i}\right)+f\left(v_{n}^{i} v_{1}^{i}\right)+f\left(v_{1}^{i}\right) \\
& =(6 m n-2 n i+2 n-1)+2 n(i-1)+2+(6 m n-2 n i+2-1) \\
& =(12 m n-2 n i+2)
\end{aligned}
$$

For $1 \leq i \leq m, 2 \leq j \leq n$,

$$
\begin{aligned}
\Lambda\left(v_{j}^{i} e_{j}^{i}\right)= & f\left(v_{j}^{i}\right)+f\left(v_{j}^{i} e_{j}^{i}\right)+f\left(e_{j}^{i}\right) \\
= & (6 m n-2 n i+2 j-1)+(2 m n+2 n i+1-2 j) \\
& \quad+(6 m n-2 n(i-1)+4-2 j) \\
= & (12 m n-2 n i+2)+(2 m n+2 n+2-2 j)
\end{aligned}
$$

For $1 \leq i \leq m$,

$$
\begin{aligned}
\Lambda\left(v_{1}^{i} e_{1}^{i}\right) & =f\left(v_{1}^{i}\right)+f\left(v_{1}^{i} e_{1}^{i}\right)+f\left(e_{1}^{i}\right) \\
& =(6 m n-2 n i+2-1)+(2 m n+2 n i+1-2)+(6 m n-2 n i+2) \\
& =(12 m n-2 n i+2)+(2 m n)
\end{aligned}
$$

For $1 \leq i \leq m, 1 \leq j \leq n-1$,

$$
\begin{aligned}
\Lambda\left(v_{j}^{i} e_{j+1}^{i}\right)= & f\left(v_{j}^{i}\right)+f\left(v_{j}^{i} e_{j+1}^{i}\right)+f\left(e_{j+1}^{i}\right) \\
= & (6 m n-2 n i+2 j-1)+(2 m n+2 n i-2 j) \\
& \quad+(6 m n-2 n(i-1)+4-2(j+1)) \\
= & (12 m n-2 n i+2)+(2 m n+2 n-2 j-1)
\end{aligned}
$$

For $1 \leq i \leq m$,

$$
\begin{aligned}
\Lambda\left(v_{n}^{i} e_{1}^{i}\right) & =f\left(v_{n}^{i}\right)+f\left(v_{n}^{i} e_{1}^{i}\right)+f\left(e_{1}^{i}\right) \\
& =(6 m n-2 n i+2 n-1)+(2 m n+2 n i)+(6 m n-2 n i+2) \\
& =(12 m n-2 n i+2)+(2 m n+2 n-1)
\end{aligned}
$$

For $1 \leq i \leq m, 2 \leq j \leq n-1$,

$$
\begin{aligned}
\Lambda\left(e_{j}^{i} e_{j+1}^{i}\right)= & f\left(e_{j}^{i}\right)+f\left(e_{j}^{i} e_{j+1}^{i}\right)+f\left(e_{j+1}^{i}\right) \\
= & (6 m n-2 n(i-1)+4-2 j)+(2 n(i-1)+2 j-1) \\
& \quad+(6 m n-2 n(i-1)+4-2(j+1)) \\
= & (12 m n-2 n i+2)+(2 n-2 j+3) .
\end{aligned}
$$

For $1 \leq i \leq m$,

$$
\begin{aligned}
\Lambda\left(e_{n}^{i} e_{1}^{i}\right) & =f\left(e_{n}^{i}\right)+f\left(e_{n}^{i} e_{1}^{i}\right)+f\left(e_{1}^{i}\right) \\
& =(6 m n-2 n(i-1)+4-2 n)+(2 n i-1)+(6 m n-2 n i+2) \\
& =(12 m n-2 n i+2)+3
\end{aligned}
$$

For $1 \leq i \leq m$,

$$
\begin{aligned}
\bar{\Lambda}\left(e_{1}^{i} e_{2}^{i}\right) & =f\left(e_{1}^{i}\right)+f\left(e_{1}^{i} e_{2}^{i}\right)+f\left(e_{2}^{i}\right) \\
& =(6 m n-2 n i+2)+(2 n(i-1)+1)+(6 m n-2 n(i-1)) \\
& =(12 m n-2 n i+2)+1
\end{aligned}
$$

Thus, the edge weights are

$$
(10 m n+2),(10 m n+2)+1, \ldots,(10 m n+2)+(4 m n-1) .
$$

Hence, f is an e-super ($a, 1$)-edge antimagic total labeling of $T\left[m C_{n}\right]$ where $a=10 m n+2$.

Figure 2. e-Super (82, 1)-edge antimagic total labeling of $T\left[2 C_{4}\right]$

By Lemmas 4.4, 4.5 and 4.6, we have the following theorem:
Theorem 4.4. The graph $T\left[m C_{n}\right], m \geq 1, n \geq 3$, has an e-super (a, d)-edge antimagic total labeling if and only if $d=1$.

As a particular case to the above theorem, when $m=1$, we have the following corollary.

Corollary 4.1. The graph $T\left[C_{n}\right], n \geq 3$, has an e-super (a,d)-edge antimagic total labeling if and only if $d=1$.

5. Total graph of disjoint union of cycles

Let $\left\{u_{1}, u_{2}, \ldots, u_{m}, v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $\left\{e_{i}=u_{i} u_{i+1}: 1 \leq i \leq m\right\} \cup\left\{h_{j}=v_{j} v_{j+1}: 1 \leq\right.$ $j \leq n\}$ (where the subscripts i and j are taken modulo m and modulo n respectively) be the set of vertices and edges of the disjoint union of cycles $C_{m} \cup C_{n}, m \neq n$. Then we have,
$V\left(T\left[C_{m} \cup C_{n}\right]\right)=\left\{u_{i}: 1 \leq i \leq m\right\} \cup\left\{v_{j}: 1 \leq j \leq n\right\} \cup\left\{e_{i}: 1 \leq i \leq m\right\} \cup\left\{h_{j}: 1 \leq j \leq n\right\}$
and $E\left(T\left[C_{m} \cup C_{n}\right]\right)=E_{1} \cup E_{2} \cup E_{3} \cup E_{4}$ where

$$
\begin{gathered}
E_{1}=\left\{u_{i} u_{i+1}, v_{j} v_{j+1}: 1 \leq i \leq m-1,1 \leq j \leq n\right\} \\
E_{2}=\left\{u_{i} e_{i}, v_{j} h_{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\} \\
E_{3}=\left\{u_{i} e_{i+1}, v_{j} h_{j+1}: 1 \leq i \leq m-1,1 \leq j \leq n\right\} \\
E_{4}=\left\{e_{i} e_{i+1}, h_{j} h_{j+1}: 1 \leq i \leq m-1,1 \leq j \leq n\right\} .
\end{gathered}
$$

It is clear that, for the graph $T\left[C_{m} \cup C_{n}\right], p=2(m+n)$ and $q=4(m+n)$.
By Theorem 2.1, the following lemma is immediate.

Lemma 5.7. If the graph $T\left[C_{m} \cup C_{n}\right], m \neq n, m, n \geq 3$, has an e-super (a, d)-edge antimagic total labeling, then $d<2$.

Similar to the proof of Lemma 4.6, we have the following lemma.
Lemma 5.8. For every disjoint union of cycles $C_{m} \cup C_{n}, m \neq n, m, n \geq 3$, the graph $G=T\left[C_{m} \cup C_{n}\right]$, has no e-super (a, 0)-edge antimagic total labeling.

Lemma 5.9. For every disjoint union of cycles $C_{m} \cup C_{n}, m \neq n, m, n \geq 3$, the graph $G=T\left[C_{m} \cup C_{n}\right]$, has an e-super (a,1)-edge antimagic total labeling.

Proof. Let us define a bijection $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, q+p\}$ as follows:
(i) $f\left(u_{i} u_{i+1}\right)=2 m+2-2 i$; for $1 \leq i \leq m$

$$
f\left(v_{j} v_{j+1}\right)=2 m+2 n+2-2 j ; \text { for } 1 \leq j \leq n
$$

(ii) $f\left(u_{i} e_{i}\right)=4 m+2 n+1-2 i$; for $1 \leq i \leq m$

$$
f\left(v_{j} h_{j}\right)=4 m+4 n+1-2 j ; \text { for } 1 \leq j \leq n
$$

(iii) $f\left(u_{i} e_{i+1}\right)=4 m+2 n-2 i$; for $1 \leq i \leq m-1, f\left(u_{m} e_{1}\right)=4 m+2 n$ $f\left(v_{j} h_{j+1}\right)=4 m+4 n-2 j$; for $1 \leq j \leq n-1, f\left(v_{n} h_{1}\right)=4 m+4 n$
(iv) $f\left(e_{i} e_{i+1}\right)=2 i-1$; for $1 \leq i \leq m$

$$
f\left(h_{j} h_{j+1}\right)=2 m-1+2 j ; \text { for } 1 \leq j \leq n
$$

(v) $f\left(u_{i}\right)=4 m+6 n-1+2 i$; for $1 \leq i \leq m$

$$
f\left(v_{j}\right)=4 m+4 n-1+2 j ; \text { for } 1 \leq j \leq n
$$

(vi) $f\left(e_{i}\right)=6 m+6 n+4-2 i$; for $2 \leq i \leq m, f\left(e_{1}\right)=4 m+6 n+2$

$$
f\left(h_{j}\right)=4 m+6 n+4-2 j ; \text { for } 2 \leq j \leq n, f\left(h_{1}\right)=4 m+4 n+2 .
$$

One can easily observe that the edge labels form the set

$$
\{1,2, \ldots, 4(m+n)\}=\{1,2, \ldots, q\}
$$

and the vertex labels form the set

$$
\{4(m+n)+1,4(m+n)+2, \ldots, 6(m+n)\}=\{q+1, q+2, \ldots, q+p\} .
$$

To complete the proof, we have to prove that the edge weights $\Lambda(u v)$ form an arithmetic sequence $\{a, a+1, \ldots, a+(q-1)$.
For $1 \leq i \leq m-1$,

$$
\begin{aligned}
\Lambda\left(u_{i} u_{i+1}\right) & =f\left(u_{i}\right)+f\left(u_{i} u_{i+1}\right)+f\left(u_{i+1}\right) \\
& =(4 m+6 n-1+2 i)+(2 m+2-2 i)+(4 m+6 n-1+2(i+1)) \\
& =(10(m+n)+2)+(2 n+2 i)
\end{aligned}
$$

and

$$
\begin{aligned}
\Lambda\left(u_{m} u_{1}\right) & =f\left(u_{m}\right)+f\left(u_{m} u_{1}\right)+f\left(u_{1}\right) \\
& =(4 m+6 n-1+2 m)+2+(4 m+6 n-1+2) \\
& =(10(m+n)+2)+2 n
\end{aligned}
$$

For $1 \leq j \leq n-1$,

$$
\begin{aligned}
\Lambda\left(v_{j} v_{j+1}\right) & =f\left(v_{j}\right)+f\left(v_{j} v_{j+1}\right)+f\left(v_{j+1}\right) \\
& =(4 m+4 n-1+2 j)+(2 m+2 n+2-2 j)+(4 m+4 n-1+2(j+1)) \\
& =(10(m+n)+2)+2 j
\end{aligned}
$$

and

$$
\begin{aligned}
\Lambda\left(v_{n} v_{1}\right) & =f\left(v_{n}\right)+f\left(v_{n} v_{1}\right)+f\left(v_{1}\right) \\
& =(4 m+4 n-1+2 n)+(2 m+2)+(4 m+4 n-1+2) \\
& =(10(m+n)+2)
\end{aligned}
$$

For $2 \leq i \leq m$,

$$
\begin{aligned}
\Lambda\left(u_{i} e_{i}\right) & =f\left(u_{i}\right)+f\left(u_{i} e_{i}\right)+f\left(e_{i}\right) \\
& =(4 m+6 n-1+2 i)+(4 m+2 n+1-2 i)+(6 m+6 n+4-2 i) \\
& =(10(m+n)+2)+(4 m+4 n+2-2 i)
\end{aligned}
$$

and

$$
\begin{aligned}
\Lambda\left(u_{1} e_{1}\right) & =f\left(u_{1}\right)+f\left(u_{1} e_{1}\right)+f\left(e_{1}\right) \\
& =(4 m+6 n-1+2)+(4 m+2 n+1-2)+(4 m+6 n+2) \\
& =(10(m+n)+2)+(2 m+4 n)
\end{aligned}
$$

For $2 \leq j \leq n$,

$$
\begin{aligned}
\Lambda\left(v_{j} h_{j}\right) & =f\left(v_{j}\right)+f\left(v_{j} h_{j}\right)+f\left(h_{j}\right) \\
& =(4 m+4 n-1+2 j)+(4 m+4 n+1-2 j)+(4 m+6 n+4-2 j) \\
& =(10(m+n)+2)+(2 m+4 n+2-2 j)
\end{aligned}
$$

and

$$
\begin{aligned}
\Lambda\left(v_{1} h_{1}\right) & =f\left(v_{1}\right)+f\left(v_{1} h_{1}\right)+f\left(h_{1}\right) \\
& =(4 m+4 n-1+2)+(4 m+4 n+1-2)+(4 m+4 n+2) \\
& =(10(m+n)+2)+(2 m+2 n)
\end{aligned}
$$

For $1 \leq i \leq m-1$,

$$
\begin{aligned}
\Lambda\left(u_{i} e_{i+1}\right) & =f\left(u_{i}\right)+f\left(u_{i} e_{i+1}\right)+f\left(e_{i+1}\right) \\
& =(4 m+6 n-1+2 i)+(4 m+2 n-2 i)+(6 m+6 n+4-2(i+1)) \\
& =(10(m+n)+2)+(4 m+4 n-1-2 i)
\end{aligned}
$$

and

$$
\begin{aligned}
\Lambda\left(u_{m} e_{1}\right) & =f\left(u_{m}\right)+f\left(u_{m} e_{1}\right)+f\left(e_{1}\right) \\
& =(4 m+6 n-1+2 m)+(4 m+2 n)+(4 m+6 n+2) \\
& =(10(m+n)+2)+(4 m+4 n-1) .
\end{aligned}
$$

For $1 \leq j \leq n-1$,

$$
\begin{aligned}
\Lambda\left(v_{j} h_{j+1}\right) & =f\left(v_{j}\right)+f\left(v_{j} h_{j+1}\right)+f\left(h_{j+1}\right) \\
& =(4 m+4 n-1+2 j)+(4 m+4 n-2 j)+(4 m+6 n+4-2(j+1)) \\
& =(10(m+n)+2)+(2 m+4 n-1-2 j)
\end{aligned}
$$

and

$$
\begin{aligned}
\Lambda\left(v_{n} h_{1}\right) & =f\left(v_{n}\right)+f\left(v_{n} h_{1}\right)+f\left(h_{1}\right) \\
& =(4 m+4 n-1+2 n)+(4 m+4 n)+(4 m+4 n+2) \\
& =(10(m+n)+2)+(2 m+4 n-1) .
\end{aligned}
$$

For $2 \leq i \leq m$,

$$
\begin{aligned}
\Lambda\left(e_{i} e_{i+1}\right) & =f\left(e_{i}\right)+f\left(e_{i} e_{i+1}\right)+f\left(e_{i+1}\right) \\
& =(6 m+6 n+4-2 i)+(2 i-1)+(6 m+6 n+4-2(i+1)) \\
& =(10(m+n)+2)+(2 m+2 n+3-2 i)
\end{aligned}
$$

and

$$
\begin{aligned}
\Lambda\left(e_{1} e_{2}\right) & =f\left(e_{1}\right)+f\left(e_{1} e_{2}\right)+f\left(e_{2}\right) \\
& =(4 m+6 n+2)+(2-1)+(6 m+6 n+4-4) \\
& =(10(m+n)+2)+(2 n+1) .
\end{aligned}
$$

For $2 \leq j \leq n$,

$$
\begin{aligned}
\Lambda\left(h_{j} h_{j+1}\right) & =f\left(h_{j}\right)+f\left(h_{j} h_{j+1}\right)+f\left(h_{j+1}\right) \\
& =(4 m+6 n+4-2 j)+(2 m+2 j-1)+(4 m+6 n+4-2(j+1)) \\
& =(10(m+n)+2)+(2 n+3-2 j)
\end{aligned}
$$

and

$$
\begin{aligned}
\Lambda\left(h_{1} h_{2}\right) & =f\left(h_{1}\right)+f\left(h_{1} h_{2}\right)+f\left(h_{2}\right) \\
& =(4 m+4 n+2)+(2 m+2-1)+(4 m+6 n+4-4) \\
& =(10(m+n)+2)+1
\end{aligned}
$$

Thus, the edge weights are

$$
(10(m+n)+2),(10(m+n)+2)+1, \ldots,(10(m+n)+2)+(4 m+4 n-1)
$$

Hence, f is an e-super ($a, 1$)-edge antimagic total labeling of $T\left[C_{m} \cup C_{n}\right]$ where $a=$ $10(m+n)+2$.

Figure 3. e-Super (82, 1)-edge antimagic total labeling of $T\left[C_{5} \cup C_{3}\right]$

By Lemmas 5.7, 5.8 and 5.9, we have the following theorem:
Theorem 5.5. The graph $T\left[C_{m} \cup C_{n}\right], m \neq n, m, n \geq 3$, has an e-super (a, d)-edge antimagic total labeling if and only if $d=1$.

Acknowledgement. The authors wish to thank the referees for their valuable suggestions which were instrumental in transforming the paper to its present form.

Conflict of interest. The authors declare that they have no conflict of interest.
Data Availability. Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

[1] M. Bača, E.T. Baskoro, and R. Simanjuntak, Super edge-antimagic labelings of the generalized Petersen graph $P\left(n,\left\lfloor\frac{n-1}{2}\right\rfloor\right)$, Util. Math. 70 (2006), 119-127.
[2] M. Bača, Y. Lin, M. Miller, and M.Z. Youssef, Edge-antimagic graphs, Discrete Mathe. 307 (2007), no. 11-12, 1232-1244. https://doi.org/10.1016/j.disc.2005.10.038.
[3] M. Bača, Y. Lin, and F.A. Muntaner-Batle, Super edge-antimagic labelings of the path-like trees, Util. Math. 73 (2007), 117-128.
[4] M. Bača, J. MacDougall, F. Bertault, M. Miller, R. Simanjuntak, and Slamin, Vertex-antimagic total labelings of graphs, Discuss. Math. Graph Theory 23 (2003), no. 1, 67-83. http://doi.org/10.7151/dmgt. 1186.
[5] M. Bača and M. Miller, Super Edge-Antimagic Graphs: A Wealth of Problems and Some Solutions, Universal-Publishers, 2008.
[6] R. Bodendiek and G. Walther, Arithmetisch antimagische graphen, graphentheorie III, Wagner and R. Bodendiek (eds.), Mannhein (1993).
[7] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Comb. 18 (2021), Article ID: \#DS6.
[8] F. Harary, Graph Theory, Addison-Wesley Publishing Company, 1994.
[9] N. Hartsfield and G. Ringel, Pearls in Graph Theory, Academic Press, 1990.
[10] A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13 (1970), no. 4, 451-461. https://doi.org/10.4153/CMB-1970-084-1.
[11] Y. Lin, M. Miller, R. Simanjuntak, and Slamin, Magic and antimagic labelings of wheels, Proceedings of Eleventh Australasian Workshop of Combinatorial Algo-
rithm (Australia) (J. Akiyama, E.T. Baskoro, and M. Kano, eds.), Hunter Valley, 2000.
[12] R. Simanjuntak, F. Bertault, and M. Miller, Two new (a,d)-antimagic graph labelings, Proceedings of Eleventh Australasian Workshop of Combinatorial Algorithm (Australia) (J. Ryan, ed.), Hunter Valley, 2000, pp. 179-189.
[13] K.A. Sugeng, M. Miller, and M. Bača, Super edge-antimagic total labelings, Util. Math. 71 (2006), 131-141.
[14] _ Super antimagic total labeling of graphs, Util. Math. 76 (2008), 161-171.
[15] K.A. Sugeng, M. Miller, Slamin, and M. Bača, (a, d)-edge-antimagic total labelings of caterpillars, Combinatorial Geometry and Graph Theory (Berlin, Heidelberg) (J. Akiyama, E.T. Baskoro, and M. Kano, eds.), Springer Berlin Heidelberg, 2005, pp. 169-180
https://doi.org/10.1007/978-3-540-30540-8_19.
[16] K.A. Sugeng and W. Xie, Construction of super edge magic total graphs, Proceedings of Sixteenth Australasian Workshop of Combinatorial Algorithm (Australia) (J. Ryan, ed.), Ballarat, 2005, pp. 303-310.

[^0]: * Corresponding Author

