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Abstract: A (p, q)-graph G is (a, d)-edge antimagic total if there exists a bijection

f from V (G) ∪ E(G) to {1, 2, . . . , p + q} such that for each edge uv ∈ E(G), the edge

weight Λ(uv) = f(u) + f(uv) + f(v) forms an arithmetic progression with first term
a > 0 and common difference d ≥ 0. An (a, d)-edge antimagic total labeling in which

the vertex labels are 1, 2, . . . , p and edge labels are p + 1, p + 2, . . . , p + q is called a

super (a, d)-edge antimagic total labeling. Another variant of (a, d)-edge antimagic total
labeling called as e-super (a, d)-edge antimagic total labeling in which the edge labels

are 1, 2, . . . , q and vertex labels are q + 1, q + 2, . . . , q + p. In this paper, we investigate

the existence of e-super (a, d)-edge antimagic total labeling for total graphs of paths,
copies of cycles and disjoint union of cycles.

Keywords: graph Labeling, magic Labeling, antimagic Labeling.
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1. Introduction

All graphs G considered in this paper are finite, undirected, connected without any

loops or multiple edges. Let V (G) and E(G) be the set of vertices and edges of a

graph G respectively. The order and size of a graph G is denoted as p = |V (G)| and

q = |E(G)| respectively. For general graph theoretic notions we refer to Harary [8].

A labeling of a graph G is a one-to-one mapping that carries the set of graph elements

onto a set of numbers (usually positive or non-negative integers), called labels. There
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2 e-super (a, d)-edge antimagic total labeling of total graphs

are several types of labeling and a detailed survey of many of them can be found in

the dynamic survey of graph labeling by Gallian [7].

Kotzig and Rosa [10] introduced the concept of magic labeling. They defined an

edge-magic total labeling of a (p, q)-graph G as a bijection f from V (G) ∪ E(G) to

{1, 2, . . . , p + q} such that for all edges uv, the edge weight f(u) + f(uv) + f(v) is

constant.

As a natural extension of the notion of edge-magic total labeling, Hartsfield and Ringel

[9] introduced the concept of an antimagic labeling and they defined an antimagic

labeling of a (p, q)-graph G as a bijection from E(G) to the set {1, 2, . . . , q} such that

the sums of label of the edges incident with each vertex v ∈ V (G) are distinct.

In 1993, Bodendiek and Walther [6] introduced the concept of an (a, d)-antimagic

labelings and they defined a (p, q)-graph G as (a, d)-antimagic if there exist a bijection

f from E(G) to {1, 2, . . . , q} such that for each vertex v ∈ V (G), the vertex weight

Λ(v) =
∑

u∈N(v) f(uv) forms an arithmetic progression with first term a > 0 and

common difference d ≥ 0. In [11] Lin, Miller, Simanjuntak and Slamim called this

labeling as (a, d)-vertex antimagic edge labeling.

In 2000, Baca et al. [4] introduced the notion of (a, d)-vertex antimagic total labeling

of a graph G as a bijection f from V (G)∪E(G) to {1, 2, . . . , p+ q} such that for each

vertex v ∈ V (G), the vertex weight Λ(v) = f(v)+
∑

u∈N(v) f(uv) forms an arithmetic

progression with first term a > 0 and common difference d ≥ 0. In the case where

the vertices are labeled with the smallest possible integers 1, 2, . . . , p, the (a, d)-vertex

antimagic total labeling is called a super (a, d)-vertex antimagic total labeling.

In [4] Baca et al. have proved that every super magic graph has an (a, 1)-vertex

antimagic total labeling. They also proved that every (a, d)-antimagic graph has an

(a + q + 1, d + 1)-vertex antimagic total labeling and an (a + p + q, d − 1)-vertex

antimagic total labeling for d > 1. In the same paper they have presented labeling

schemes for paths Pn, cycles Cn. They also investigated (a, d)-vertex antimagic total

labeling for prisms, antiprisms and generalised Petersen graphs.

As a variation of (a, d)-vertex antimagic edge labeling, Simanjuntak et al. [12] in-

troduced (a, d)-edge antimagic vertex labeling and they defined an (a, d)-edge an-

timagic vertex ((a, d)-EAV) labeling of a (p, q)-graph G as a bijection f from V (G) to

{1, 2, . . . , p} such that for each edge uv ∈ E(G), the edge weight Λ(uv) = f(u) + f(v)

forms an arithmetic progression with first term a > 0 and common difference d ≥ 0.

They have also defined an (a, d)-edge antimagic total labeling and a super (a, d)-edge

antimagic total labeling of a graph G as follows: An (a, d)-edge antimagic total label-

ing of a graph G is defined as a bijection f from V (G) ∪ E(G) to {1, 2, . . . , p + q}
such that for each edge uv ∈ E(G), the edge weight Λ(uv) = f(u) + f(uv) + f(v)

forms an arithmetic progression with first term a > 0 and common difference d ≥ 0.

An (a, d)-edge antimagic total labeling in which the vertex labels are 1, 2, . . . , p and

the edge labels are p + 1, p + 2, . . . , p + q is called a super (a, d)-edge antimagic total

((a, d)-SEAT) labeling.

A collection of graphs have been studied in the past that admit (a, d)-SEAT labeling.

Bača et al. [1–3] have discussed the existence of (a, d)-SEAT labeling for paths, cycles,

friendship graphs, fan graphs, wheel graphs, complete graphs, generalized Petersen
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graphs and trees. Sugeng et al. [13, 15, 16] have studied various properties of (a, d)-

SEAT labeling and proved several results on ladders, prisms and caterpillars. For a

detailed survey about super edge antimagic graphs one can refer to [5].

Another variant of (a, d)-edge antimagic total labeling called as e-super (a, d)-edge

antimagic total labeling was introduced by Sugeng et al. [14]. Similar to (a, d)-edge

antimagic total labeling, they defined an e-super (a, d)-edge antimagic total labeling

of a graph G as a bijection f from V (G)∪E(G) to {1, 2, . . . , q+p} such that for each

edge uv ∈ E(G), the edge weight Λ(uv) = f(u) + f(uv) + f(v) forms an arithmetic

progression a, a+ d, . . . , a+ (q− 1)d with an additional property that the edge labels

are 1, 2, . . . , q and the vertex labels are q + 1, q + 2, . . . , q + p.

Sugeng et al. [14] have proved that the generalized Petersen graph P (m,n) has

an e-super (a, d)-edge antimagic total labeling for odd n ≥ 3,m ∈
{

1, 2, n−1
2

}
and

d ∈ {0, 1, 2}. They also proved that every caterpillar has an e-super (a, 0)-edge

antimagic total labeling and an e-super (a, 2)-edge antimagic total labeling for any

number of vertices p ≥ 3 and has an e-super (a, 1)-edge antimagic total labeling for

even number of vertices p ≥ 4. Further the relationship between (a, d)-EAV labeling

and e-super (a, d)-edge antimagic total labeling are also obtained in [14].

The total graph of a graph G denoted by T (G) is defined as a graph in which the set

of vertices is both the set of vertices and edges of G and any two vertices in T (G) are

adjacent if and only if their corresponding elements are either adjacent or incident in

G.

In this paper, we investigate the existence of e-super (a, d)-edge antimagic total

labeling for total graphs of paths, copies of cycles and disjoint union of cycles.

2. Properties of e-super (a, d)-edge antimagic total labeling

The following theorem gives an upper bound for d of an e-super (a, d)-edge antimagic

total labeling.

Theorem 2.1 . If a graph G has an e-super (a, d)-edge antimagic total labeling, then
d ≤ 2p+q−5

q−1
.

Proof. Let us assume that the graph G has an e-super (a, d)-edge antimagic total

labeling. Then by definition, there exist a bijection f : V (G)∪E(G)→ {1, 2, . . . , q+p}
such that

(i) f(E(G)) = {1, 2, . . . , q}

(ii) f(V (G)) = {q + 1, q + 2, . . . , q + p} and

(iii) for any edge uv ∈ E(G), the set of edge weight

Λ(uv) = {a, a + d, a + 2d, . . . , a + (q − 1)d}.
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Clearly the minimum possible edge weight is (q + 1) + 1 + (q + 2) = 2q + 4. Thus, we

have

a ≥ 2q + 4. (2.1)

Also, the maximum possible edge weight is (q + p− 1) + q + (q + p) = 3q + 2p− 1

Thus, we have

a + (q − 1)d ≤ 3q + 2p− 1⇒ a ≤ 3q + 2p− 1− (q − 1)d. (2.2)

From (2.1) and (2.2) we get, 2q + 4 ≤ 3q + 2p− 1− (q− 1)d implying that (q− 1)d ≤
3q + 2p− 1− 2q − 4. Hence, d ≤ 2p+q−5

(q−1) .

The following theorem provides a relationship between e-super (a, 0)-edge antimagic

total labeling and e-super (b, 2)-edge antimagic total labeling of a graph G.

Theorem 2.2 . If a graph G has an e-super (a1, 0)-edge antimagic total labeling then it
has an e-super (a2, 2)-edge antimagic total labeling where a2 = a1 + 1− q.

Proof. Let us assume that the graph G has an e-super (a1, 0)-edge antimagic total

labeling. Then by definition, there exist a bijection f : V (G)∪E(G)→ {1, 2, . . . , q+p}
such that

(i) f(E(G)) = {1, 2, . . . , q}

(ii) f(V (G)) = {q + 1, q + 2, . . . , q + p} and

(iii) for every edge uv ∈ E(G), f(u) + f(uv) + f(v) = a1.

Let us define an induced function g : V (G) ∪ E(G)→ {1, 2, . . . , q + p} as follows:

(i) for every vertex v ∈ V (G), g(v) = f(v)

(ii) for every edge uv ∈ E(G), g(uv) = q + 1− f(uv).

Then, we have

(i) g(E(G)) = {1, 2, . . . , q}

(ii) g(V (G)) = {q + 1, q + 2, . . . , q + p}

and for any edge uv ∈ E(G),

g(u) + g(uv) + g(v) = f(u) + q + 1− f(uv) + f(v)

= q + 1 + f(u) + f(uv) + f(v)− 2f(uv)

= q + 1 + a1 − 2f(uv)

= (a1 + 1− q) + 2(q − f(uv)).



A. Saibulla, P. R.L. Pushpam 5

Since f(E(G)) = {1, 2, . . . , q}, for any edge uv ∈ E(G), we have the set of edge

weights as

g(u) + g(uv) + g(v) =

{
(a1 + 1− q) + 2(q − 1), (a1 + 1− q) + 2(q − 2),

. . . , (a1 + 1− q) + 2(q − q)

}
= {a2, a2 + 2(1), . . . , a2 + 2(q − 1)}, where a2 = a1 + 1− q.

Thus, g is an e-super (a2, 2)-edge antimagic total labeling of G.

Hence, if G has an e-super (a1, 0)-edge antimagic total labeling then it has an e-super

(a2, 2)-edge antimagic total labeling where a2 = a1 + 1− q.

3. Total graph of paths Pn

In this section we establish the e-super (a, d)-edge antimagic total labeling for the

total graph of paths Pn.

Let {v1, v2, . . . , vn} and {ei = vivi+1 : 1 ≤ i ≤ n− 1} be the set of vertices and edges

respectively of a path Pn. Then we have,

V (T [Pn]) = {vi : 1 ≤ i ≤ n} ∪ {ei : 1 ≤ i ≤ n− 1} and E(T [Pn]) = E1 ∪E2 ∪E3 ∪E4

where

E1 = {vivi+1 : 1 ≤ i ≤ n− 1}

E2 = {viei : 1 ≤ i ≤ n− 1}

E3 = {viei−1 : 2 ≤ i ≤ n}

E4 = {eiei+1 : 1 ≤ i ≤ n− 2}.

It is clear that, for the graph T [Pn], p = 2n− 1 and q = 4n− 5.

By Theorem 2.1 , the following lemma is immediate.

Lemma 3.1. If the graph T [Pn], n ≥ 3, has an e-super (a, d)-edge antimagic total labeling,
then d ≤ 2.

Lemma 3.2. For every path Pn, n ≥ 3, the graph G = T [Pn] has an e-super (a, 0)-edge
antimagic total labeling.

Proof. Let us define a bijection f : V (G) ∪ E(G)→ {1, 2, . . . , q + p} as follows:

(i) f(vivi+1) = 4n− 6− 4(i− 1); for 1 ≤ i ≤ n− 1

(ii) f(viei) = 4n− 5− 4(i− 1); for 1 ≤ i ≤ n− 1

(iii) f(viei−1) = 4n− 7− 4(i− 2); for 2 ≤ i ≤ n

(iv) f(eiei+1) = 4n− 8− 4(i− 1); for 1 ≤ i ≤ n− 2
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(v) f(vi) = 4n− 6 + 2i; for 1 ≤ i ≤ n

(vi) f(ei) = 4n− 5 + 2i; for 1 ≤ i ≤ n− 1.

One can easily observe that the edge labels form the set

{1, 2, . . . , 4n− 5} = {1, 2, . . . , q}

and the vertex labels form the set

{(4n− 5) + 1, (4n− 5) + 2, . . . , (4n− 5) + (2n− 1)} = {q + 1, q + 2, . . . , q + p}.

To complete the proof, we have to prove that for any edge uv ∈ E(G), Λ(uv) is a

constant.

For 1 ≤ i ≤ n− 1,

Λ(vivi+1) = f(vi) + f(vivi+1) + f(vi+1)

= (4n− 6 + 2i) + (4n− 6− 4(i− 1)) + (4n− 6 + 2(i + 1))

= 12n− 12 = 12(n− 1).

For 1 ≤ i ≤ n− 1,

Λ(viei) = f(vi) + f(viei) + f(ei)

= (4n− 6 + 2i) + (4n− 5− 4(i− 1)) + (4n− 5 + 2i)

= 12n− 12 = 12(n− 1).

For 2 ≤ i ≤ n,

Λ(viei−1) = f(vi) + f(viei−1) + f(ei−1)

= (4n− 6 + 2i) + (4n− 7− 4(i− 2)) + (4n− 5 + 2(i− 1))

= 12n− 12 = 12(n− 1).

For 1 ≤ i ≤ n− 2,

Λ(eiei+1) = f(ei) + f(eiei+1) + f(ei+1)

= (4n− 5 + 2i) + (4n− 8− 4(i− 1)) + (4n− 5 + 2(i + 1))

= 12n− 12 = 12(n− 1).

Thus, for any edge uv ∈ E(G), we have Λ(uv) = 12(n− 1).

Hence, f is an e-super (a, 0)-edge antimagic total labeling of T [Pn] where

a = 12(n− 1).

Figure 1. e-Super (48, 0)-edge antimagic total labeling of T [P5]
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Lemma 3.3. For every path Pn, n ≥ 3, the graph G = T [Pn] has an e-super (a, 1)-edge
antimagic total labeling.

Proof. Let us define a bijection f : V (G) ∪ E(G)→ {1, 2, . . . , q + p} as follows:

(i) f(vivi+1) = 4n− 3− 2i; for 1 ≤ i ≤ n− 1

(ii) f(viei) = 2n− 2i; for 1 ≤ i ≤ n− 1

(iii) f(viei−1) = 2n + 1− 2i; for 2 ≤ i ≤ n

(iv) f(eiei+1) = 4n− 4− 2i; for 1 ≤ i ≤ n− 2

(v) f(vi) = 4n− 6 + 2i; for 1 ≤ i ≤ n

(vi) f(ei) = 4n− 5 + 2i; for 1 ≤ i ≤ n− 1.

One can easily observe that the edge labels form the set

{1, 2, . . . , 4n− 5} = {1, 2, . . . , q}

and the vertex labels form the set

{(4n− 5) + 1, (4n− 5) + 2, . . . , (4n− 5) + (2n− 1)} = {q + 1, q + 2, . . . , q + p}.

To complete the proof, we have to prove that the edge weights Λ(uv) form an arith-

metic sequence {a, a + 1, . . . , a + (q − 1)}.
For 1 ≤ i ≤ n− 1,

Λ(vivi+1) = f(vi) + f(vivi+1) + f(vi+1)

= (4n− 6 + 2i) + (4n− 3− 2i) + (4n− 6 + 2(i + 1))

= 12n− 13 + 2i = (10n− 9) + 2(n + i)− 4.

For 1 ≤ i ≤ n− 1,

Λ(viei) = f(vi) + f(viei) + f(ei)

= (4n− 6 + 2i) + (2n− 2i) + (4n− 5 + 2i)

= 10n− 11 + 2i = (10n− 9) + 2(i− 1).

For 2 ≤ i ≤ n,

Λ(viei−1) = f(vi) + f(viei−1) + f(ei−1)

= (4n− 6 + 2i) + (2n + 1− 2i) + (4n− 5 + 2(i− 1))

= 10n− 12 + 2i = (10n− 9) + 2(i− 1)− 1.

For 1 ≤ i ≤ n− 2,

Λ(eiei+1) = f(ei) + f(eiei+1) + f(ei+1)

= (4n− 5 + 2i) + (4n− 4− 2i) + (4n− 5 + 2(i + 1))

= 12n− 12 + 2i = (10n− 9) + 2(n + i)− 3.

Thus, the edge weights are

(10n− 9), (10n− 9) + 1, . . . , (10n− 9) + (4n− 6).

Hence, f is an e-super (a, 1)-edge antimagic total labeling of T [Pn] where

a = 10n− 9.
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By Lemmas 3.1, 3.2, 3.3 and Theorem 2.2 , we have the following theorem:

Theorem 3.3 . The graph T [Pn], n ≥ 3, has an e-super (a, d)-edge antimagic total labeling
if and only if d ∈ {0, 1, 2}.

4. Total graph of copies of cycles Cn

This section deals with the e-super (a, d)-edge antimagic total labeling of total graph

of copies of cycles Cn.

Let {vij : 1 ≤ i ≤ m, 1 ≤ j ≤ n} and {eij = vijv
i
j+1 : 1 ≤ i ≤ m, 1 ≤ j ≤ n} (where

the subscripts i and j are taken modulo m and modulo n respectively) be the set of

vertices and edges of the disjoint union of m copies of cycles Cn. Then for the total

graph of m copies of Cn, we have

V (T [mCn]) = {vij : 1 ≤ i ≤ m, 1 ≤ j ≤ n} ∪ {eij : 1 ≤ i ≤ m, 1 ≤ j ≤ n} and

E(T [mCn]) = E1 ∪ E2 ∪ E3 ∪ E4 where

E1 = {vijvij+1 : 1 ≤ i ≤ m, 1 ≤ j ≤ n}

E2 = {vijeij : 1 ≤ i ≤ m, 1 ≤ j ≤ n}

E3 = {vijeij+1 : 1 ≤ i ≤ m, 1 ≤ j ≤ n}

E4 = {eijeij+1 : 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

It is clear that, for the graph T [mCn], p = 2mn and q = 4mn.

By Theorem 2.1 , the following lemma is immediate.

Lemma 4.4. If the graph T [mCn], m ≥ 1, n ≥ 3 has an e-super (a, d)-edge antimagic
total labeling, then d < 2.

Lemma 4.5. For every disjoint union of m copies of cycles Cn, m ≥ 1, n ≥ 3, the graph
G = T [mCn], has no e-super (a, 0)-edge antimagic total labeling.

Proof. Suppose G has an e-super (a, 0)-edge antimagic total labeling.

Then by definition, there exist a bijection f : V (G) ∪ E(G) → {1, 2, . . . , q + p} such

that

(i) f(E(G)) = {1, 2, . . . , q}

(ii) f(V (G)) = {q + 1, q + 2, . . . , q + p} and

(iii) for all edge uv ∈ E(G), Λ(uv) = a.
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Since G is a 4-regular graph, we have the sum of all edge weights is equal to

4
∑

v∈V (G)

f(v) +
∑

e∈E(G)

f(e) = 4

2mn∑
j=1

(4mn + j) +

4mn∑
i=1

i = 48m2n2 + 6mn. (4.1)

Also, since G has an e-super (a, 0)-edge antimagic total labeling, the sum of all edge

weights is equal to
4mn∑
i=1

a = 4mna. (4.2)

From (4.1) and (4.2) we get, 4mna = 48m2n2 + 6mn implying that a = 12mn +
3

2
which is not an integer. Hence, for the graph T [mCn], m ≥ 1, n ≥ 3, there is no

e-super (a, 0)-edge antimagic total labeling.

Lemma 4.6. For every disjoint union of m copies of cycles Cn, m ≥ 1, n ≥ 3, the graph
G = T [mCn], has an e-super (a, 1)-edge antimagic total labeling.

Proof. Let us define a bijection f : V (G) ∪ E(G)→ {1, 2, . . . , q + p} as follows:

(i) f(vijv
i
j+1) = 2ni + 2− 2j; for 1 ≤ i ≤ m, 1 ≤ j ≤ n

(ii) f(vije
i
j) = 2mn + 2ni + 1− 2j; for 1 ≤ i ≤ m, 1 ≤ j ≤ n

(iii) f(vije
i
j+1) = 2mn + 2ni− 2j; for 1 ≤ i ≤ m, 1 ≤ j ≤ n− 1

f(vine
i
1) = 2mn + 2ni; for 1 ≤ i ≤ m

(iv) f(eije
i
j+1) = 2n(i− 1) + 2j − 1; for 1 ≤ i ≤ m, 1 ≤ j ≤ n

(v) f(vij) = 6mn− 2ni− 1 + 2j; for 1 ≤ i ≤ m, 1 ≤ j ≤ n

(vi) f(eij) = 6mn− 2n(i− 1) + 4− 2j; for 1 ≤ i ≤ m, 2 ≤ j ≤ n

f(ei1) = 6mn− 2ni + 2; for 1 ≤ i ≤ m.

One can easily observe that the edge labels form the set

{1, 2, . . . , 4mn} = {1, 2, . . . , q}

and the vertex labels form the set

{4mn + 1, 4mn + 2, . . . , 6mn} = {q + 1, q + 2, . . . , q + p}.

To complete the proof, we have to prove that the edge weights Λ(uv) form an arith-

metic sequence {a, a + 1, . . . , a + (q − 1)}.
For 1 ≤ i ≤ m, 1 ≤ j ≤ n− 1,

Λ(vijv
i
j+1) = f(vij) + f(vijv

i
j+1) + f(vij+1)

= (6mn− 2ni + 2j − 1) + (2ni + 2− 2j) + (6mn− 2ni + 2(j + 1)− 1)

= (12mn− 2ni + 2) + 2j.



10 e-super (a, d)-edge antimagic total labeling of total graphs

For 1 ≤ i ≤ m,

Λ(vinv
i
1) = f(vin) + f(vinv

i
1) + f(vi1)

= (6mn− 2ni + 2n− 1) + 2n(i− 1) + 2 + (6mn− 2ni + 2− 1)

= (12mn− 2ni + 2).

For 1 ≤ i ≤ m, 2 ≤ j ≤ n,

Λ(vije
i
j) = f(vij) + f(vije

i
j) + f(eij)

= (6mn− 2ni + 2j − 1) + (2mn + 2ni + 1− 2j)

+ (6mn− 2n(i− 1) + 4− 2j)

= (12mn− 2ni + 2) + (2mn + 2n + 2− 2j).

For 1 ≤ i ≤ m,

Λ(vi1e
i
1) = f(vi1) + f(vi1e

i
1) + f(ei1)

= (6mn− 2ni + 2− 1) + (2mn + 2ni + 1− 2) + (6mn− 2ni + 2)

= (12mn− 2ni + 2) + (2mn).

For 1 ≤ i ≤ m, 1 ≤ j ≤ n− 1,

Λ(vije
i
j+1) = f(vij) + f(vije

i
j+1) + f(eij+1)

= (6mn− 2ni + 2j − 1) + (2mn + 2ni− 2j)

+ (6mn− 2n(i− 1) + 4− 2(j + 1))

= (12mn− 2ni + 2) + (2mn + 2n− 2j − 1).

For 1 ≤ i ≤ m,

Λ(vine
i
1) = f(vin) + f(vine

i
1) + f(ei1)

= (6mn− 2ni + 2n− 1) + (2mn + 2ni) + (6mn− 2ni + 2)

= (12mn− 2ni + 2) + (2mn + 2n− 1).

For 1 ≤ i ≤ m, 2 ≤ j ≤ n− 1,

Λ(eije
i
j+1) = f(eij) + f(eije

i
j+1) + f(eij+1)

= (6mn− 2n(i− 1) + 4− 2j) + (2n(i− 1) + 2j − 1)

+ (6mn− 2n(i− 1) + 4− 2(j + 1))

= (12mn− 2ni + 2) + (2n− 2j + 3).

For 1 ≤ i ≤ m,

Λ(eine
i
1) = f(ein) + f(eine

i
1) + f(ei1)

= (6mn− 2n(i− 1) + 4− 2n) + (2ni− 1) + (6mn− 2ni + 2)

= (12mn− 2ni + 2) + 3.

For 1 ≤ i ≤ m,

Λ(ei1e
i
2) = f(ei1) + f(ei1e

i
2) + f(ei2)

= (6mn− 2ni + 2) + (2n(i− 1) + 1) + (6mn− 2n(i− 1))

= (12mn− 2ni + 2) + 1.

Thus, the edge weights are

(10mn + 2), (10mn + 2) + 1, . . . , (10mn + 2) + (4mn− 1).

Hence, f is an e-super (a, 1)-edge antimagic total labeling of T [mCn] where

a = 10mn + 2.
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Figure 2. e-Super (82, 1)-edge antimagic total labeling of T [2C4]

By Lemmas 4.4, 4.5 and 4.6, we have the following theorem:

Theorem 4.4 . The graph T [mCn], m ≥ 1, n ≥ 3, has an e-super (a, d)-edge antimagic
total labeling if and only if d = 1.

As a particular case to the above theorem, when m = 1, we have the following

corollary.

Corollary 4.1. The graph T [Cn], n ≥ 3, has an e-super (a, d)-edge antimagic total labeling
if and only if d = 1.

5. Total graph of disjoint union of cycles

Let {u1, u2, . . . , um, v1, v2, . . . , vn} and {ei = uiui+1 : 1 ≤ i ≤ m}∪{hj = vjvj+1 : 1 ≤
j ≤ n} (where the subscripts i and j are taken modulo m and modulo n respectively)

be the set of vertices and edges of the disjoint union of cycles Cm ∪Cn, m 6= n. Then

we have,

V (T [Cm∪Cn]) = {ui : 1 ≤ i ≤ m}∪{vj : 1 ≤ j ≤ n}∪{ei : 1 ≤ i ≤ m}∪{hj : 1 ≤ j ≤ n}

and E(T [Cm ∪ Cn]) = E1 ∪ E2 ∪ E3 ∪ E4 where

E1 = {uiui+1, vjvj+1 : 1 ≤ i ≤ m− 1, 1 ≤ j ≤ n}

E2 = {uiei, vjhj : 1 ≤ i ≤ m, 1 ≤ j ≤ n}

E3 = {uiei+1, vjhj+1 : 1 ≤ i ≤ m− 1, 1 ≤ j ≤ n}

E4 = {eiei+1, hjhj+1 : 1 ≤ i ≤ m− 1, 1 ≤ j ≤ n}.

It is clear that, for the graph T [Cm ∪ Cn], p = 2(m + n) and q = 4(m + n).

By Theorem 2.1 , the following lemma is immediate.
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Lemma 5.7. If the graph T [Cm ∪ Cn], m 6= n, m,n ≥ 3, has an e-super (a, d)-edge
antimagic total labeling, then d < 2.

Similar to the proof of Lemma 4.6, we have the following lemma.

Lemma 5.8. For every disjoint union of cycles Cm ∪ Cn, m 6= n, m,n ≥ 3, the graph
G = T [Cm ∪ Cn], has no e-super (a, 0)-edge antimagic total labeling.

Lemma 5.9. For every disjoint union of cycles Cm ∪ Cn, m 6= n, m,n ≥ 3, the graph
G = T [Cm ∪ Cn], has an e-super (a, 1)-edge antimagic total labeling.

Proof. Let us define a bijection f : V (G) ∪ E(G)→ {1, 2, . . . , q + p} as follows:

(i) f(uiui+1) = 2m + 2− 2i; for 1 ≤ i ≤ m

f(vjvj+1) = 2m + 2n + 2− 2j; for 1 ≤ j ≤ n

(ii) f(uiei) = 4m + 2n + 1− 2i; for 1 ≤ i ≤ m

f(vjhj) = 4m + 4n + 1− 2j; for 1 ≤ j ≤ n

(iii) f(uiei+1) = 4m + 2n− 2i; for 1 ≤ i ≤ m− 1, f(ume1) = 4m + 2n

f(vjhj+1) = 4m + 4n− 2j; for 1 ≤ j ≤ n− 1, f(vnh1) = 4m + 4n

(iv) f(eiei+1) = 2i− 1; for 1 ≤ i ≤ m

f(hjhj+1) = 2m− 1 + 2j; for 1 ≤ j ≤ n

(v) f(ui) = 4m + 6n− 1 + 2i; for 1 ≤ i ≤ m

f(vj) = 4m + 4n− 1 + 2j; for 1 ≤ j ≤ n

(vi) f(ei) = 6m + 6n + 4− 2i; for 2 ≤ i ≤ m, f(e1) = 4m + 6n + 2

f(hj) = 4m + 6n + 4− 2j; for 2 ≤ j ≤ n, f(h1) = 4m + 4n + 2.

One can easily observe that the edge labels form the set

{1, 2, . . . , 4(m + n)} = {1, 2, . . . , q}
and the vertex labels form the set

{4(m + n) + 1, 4(m + n) + 2, . . . , 6(m + n)} = {q + 1, q + 2, . . . , q + p}.
To complete the proof, we have to prove that the edge weights Λ(uv) form an arith-

metic sequence {a, a + 1, . . . , a + (q − 1).

For 1 ≤ i ≤ m− 1,

Λ(uiui+1) = f(ui) + f(uiui+1) + f(ui+1)

= (4m + 6n− 1 + 2i) + (2m + 2− 2i) + (4m + 6n− 1 + 2(i + 1))

= (10(m + n) + 2) + (2n + 2i)



A. Saibulla, P. R.L. Pushpam 13

and

Λ(umu1) = f(um) + f(umu1) + f(u1)

= (4m + 6n− 1 + 2m) + 2 + (4m + 6n− 1 + 2)

= (10(m + n) + 2) + 2n.

For 1 ≤ j ≤ n− 1,

Λ(vjvj+1) = f(vj) + f(vjvj+1) + f(vj+1)

= (4m + 4n− 1 + 2j) + (2m + 2n + 2− 2j) + (4m + 4n− 1 + 2(j + 1))

= (10(m + n) + 2) + 2j

and

Λ(vnv1) = f(vn) + f(vnv1) + f(v1)

= (4m + 4n− 1 + 2n) + (2m + 2) + (4m + 4n− 1 + 2)

= (10(m + n) + 2).

For 2 ≤ i ≤ m,

Λ(uiei) = f(ui) + f(uiei) + f(ei)

= (4m + 6n− 1 + 2i) + (4m + 2n + 1− 2i) + (6m + 6n + 4− 2i)

= (10(m + n) + 2) + (4m + 4n + 2− 2i)

and

Λ(u1e1) = f(u1) + f(u1e1) + f(e1)

= (4m + 6n− 1 + 2) + (4m + 2n + 1− 2) + (4m + 6n + 2)

= (10(m + n) + 2) + (2m + 4n).

For 2 ≤ j ≤ n,

Λ(vjhj) = f(vj) + f(vjhj) + f(hj)

= (4m + 4n− 1 + 2j) + (4m + 4n + 1− 2j) + (4m + 6n + 4− 2j)

= (10(m + n) + 2) + (2m + 4n + 2− 2j)

and

Λ(v1h1) = f(v1) + f(v1h1) + f(h1)

= (4m + 4n− 1 + 2) + (4m + 4n + 1− 2) + (4m + 4n + 2)

= (10(m + n) + 2) + (2m + 2n).

For 1 ≤ i ≤ m− 1,

Λ(uiei+1) = f(ui) + f(uiei+1) + f(ei+1)

= (4m + 6n− 1 + 2i) + (4m + 2n− 2i) + (6m + 6n + 4− 2(i + 1))

= (10(m + n) + 2) + (4m + 4n− 1− 2i)

and

Λ(ume1) = f(um) + f(ume1) + f(e1)

= (4m + 6n− 1 + 2m) + (4m + 2n) + (4m + 6n + 2)

= (10(m + n) + 2) + (4m + 4n− 1).
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For 1 ≤ j ≤ n− 1,

Λ(vjhj+1) = f(vj) + f(vjhj+1) + f(hj+1)

= (4m + 4n− 1 + 2j) + (4m + 4n− 2j) + (4m + 6n + 4− 2(j + 1))

= (10(m + n) + 2) + (2m + 4n− 1− 2j)

and

Λ(vnh1) = f(vn) + f(vnh1) + f(h1)

= (4m + 4n− 1 + 2n) + (4m + 4n) + (4m + 4n + 2)

= (10(m + n) + 2) + (2m + 4n− 1).

For 2 ≤ i ≤ m,

Λ(eiei+1) = f(ei) + f(eiei+1) + f(ei+1)

= (6m + 6n + 4− 2i) + (2i− 1) + (6m + 6n + 4− 2(i + 1))

= (10(m + n) + 2) + (2m + 2n + 3− 2i)

and

Λ(e1e2) = f(e1) + f(e1e2) + f(e2)

= (4m + 6n + 2) + (2− 1) + (6m + 6n + 4− 4)

= (10(m + n) + 2) + (2n + 1).

For 2 ≤ j ≤ n,

Λ(hjhj+1) = f(hj) + f(hjhj+1) + f(hj+1)

= (4m + 6n + 4− 2j) + (2m + 2j − 1) + (4m + 6n + 4− 2(j + 1))

= (10(m + n) + 2) + (2n + 3− 2j)

and

Λ(h1h2) = f(h1) + f(h1h2) + f(h2)

= (4m + 4n + 2) + (2m + 2− 1) + (4m + 6n + 4− 4)

= (10(m + n) + 2) + 1.

Thus, the edge weights are

(10(m + n) + 2), (10(m + n) + 2) + 1, . . . , (10(m + n) + 2) + (4m + 4n− 1).

Hence, f is an e-super (a, 1)-edge antimagic total labeling of T [Cm ∪ Cn] where a =

10(m + n) + 2.

Figure 3. e-Super (82, 1)-edge antimagic total labeling of T [C5 ∪ C3]
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By Lemmas 5.7, 5.8 and 5.9, we have the following theorem:

Theorem 5.5 . The graph T [Cm ∪ Cn], m 6= n, m,n ≥ 3, has an e-super (a, d)-edge
antimagic total labeling if and only if d = 1.
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