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Abstract: A graph G is said to be H-free if G does not contain H as an induced sub-
graph. Let S2n(m) be a variation of double star S2n obtained by adding m(≤ n) disjoint

edges between the pendant vertices which are at distance 3 in S2n. A graph having

integer eigenvalues for its signless Laplacian matrix is known as a Q-integral graph.
The Q-spectral radius of a graph is the largest eigenvalue of its signless Laplacian. Any

connected Q-integral graph G with Q-spectral radius 7 and maximum edge-degree 8

is either K1,4�K2 or contains S24 (0) as an induced subgraph or is a bipartite graph
having at least one of the induced subgraphs S24 (m), (m = 1, 2, 3). In this article,

we improve this result by showing that every connected Q-integral graph G having

Q-spectral radius 7, maximum edge-degree 8 is always bipartite and S24 (3)-free.
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1. Introduction

All the graphs considered in this article are simple and undirected. Let G =

(V (G), E(G)) be a graph, where V (G) and E(G) denote the set of vertices and edges,

respectively. Let d(v) be the degree of a vertex v and N(v) be the neighborhood of

v ∈ V (G). The Cartesian product G1�G2 obtained from the graphs G1 and G2 is

a graph with vertex set V (G1) × V (G2), and two vertices (v1, v2) and (u1, u2) are

adjacent in G1�G2 if and only if either v1 = u1 and v2 is adjacent to u2 in G2 or

v2 = u2 and v1 is adjacent to u1 in G1. A graph G is said to be H-free if H is not an

induced subgraph of G.
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(a) S2n (b) S2n(m)

Figure 1.

Let D(G) be the diagonal matrix with D(G)vv = d(v), for v ∈ V (G). The signless

Laplacian Q(G) of G is defined by the matrix D(G) + A(G). The matrix Q(G) is

positive semidefinite and irreducible. The Q-eigenvalues and Q-spectral radius q(G)

of G are the eigenvalues and largest eigenvalue of Q(G), respectively. A graph G is

called Q-integral if all the Q-eigenvalues of G are integral. For some more studies

related to signless Laplacian and Q-integral graphs, see [2–4, 6, 10–14, 16].

We define a double star S2
n by taking two disjoint copies of star graph K1,n and adding

an edge between the vertices of degree n. Let S2
n(m) be a variation of double star S2

n

obtained by adding m(≤ n) disjoint edges between the pendant vertices which are at

distance 3 in S2
n (see Figure 1).

We use e′ = uv ∈ E(G) to denote an edge having u, v as incident vertices and the

edge-degree e-degG(e′) is given by |N(u)∪N(v)| − 2. The maximum edge-degree of G

is denoted by e-degmax
G . Simić and Stanić [15] studied connected Q-integral graphs

with e-degmax
G ≤ 4 and also gave partial results about the spectra of Q(G) for e-

degG = 5. Park and Sano [8] investigated on connected Q-integral graphs G having

e-degmax
G ≤ 6 and gave a structural theorem when q(G) = 6. An improvement of this

result can be found in [7].

In 2022 [9], we studied connected Q-integral graph having e-degmax
G ≤ 8 and gave

a structural characterization under the restriction q(G) = 7. We have shown that

G(6= K1,4�K2) must contain one of the four special subgraphs S2
4 (m) for m = 0, . . . , 3

(as shown in Figure 2) as an induced subgraph.

2. Preliminaries

Let n ∈ N be any number. We use 0 and 1 to denote the matrices of appropriate

orders whose entries are all equal to 0 and 1, respectively. The multiset of all the

eigenvalues of N together with their multiplicities is called as the spectrum Spec(N) of

the matrix Nn×n. The spectral radius of N is ρ(N) = max{|β| | β ∈ Spec(N)}. The

least, second smallest, and the second largest eigenvalues of a matrix N are denoted

by λmin(N), λs2(N), and λl2(N), respectively.

The principal submatrix of Q(G) corresponding to the vertices of H ⊆ V (G) is de-
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noted by Qp(H). For any two distinct vertices u, v ∈ V (G), the (u, v)-th entry of

Qp(H) is denoted by auv. We use a.. and d(·) in place of auv and d(z) when u, v and

z are suitable vertices within the context.

Proposition 1 ([1], Proposition 1.3.9). The number of connected bipartite compo-
nents of G is equal to the multiplicity of the Q-eigenvalue 0 in G.

Proposition 2 ([8], Proposition 2.7). A connected graph G has d(v) ≤ dq(G)− 1e
for any v ∈ V (G), where q(G) is the Q-spectral radius of G. If G has a vertex v having
d(v) = q(G)− 1 and q(G) ∈ Z+, then G = K1,q(G)−1.

The following results give bounds for the maximum edge-degree of a graph G.

Remark 1 ([9], Remark 3.2). For a connected edge-regular graph G, e-degG =
q(G)− 2.

Lemma 1 ([9], Lemma 3.3). Let G be a connected edge-non-regular Q-integral graph.
Then q(G)− 1 ≤ e-degmax

G ≤ 2q(G)− 6.

Remark 2 ([9], Remark 3.4). There does not exist any connected edge-non-regular
Q-integral graph with q(G) ≤ 4. Moreover, if q(G) = 5, then e-degmax

G = 4.

Figure 2.

The following remark is a consequence of the results (Remark 1, Lemma 1, Remark

2) stated above.

Remark 3. A connected Q-integral graph G is edge-regular if and only if q(G) = 4.

Now, suppose G is any connected Q-integral graph with e-degmax
G = 2q(G)− 6.

• q(G) ≤ 3: There does not exist any such graph G.

• q(G) = 4: G must be one of the graphs C3, C4, C6,K1,3. Note that G(6= C3) is

bipartite and G(6= C6) is S2
1 (0)-free.
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• q(G) = 5: G must be one of the graphs K1,2�K2, K3,3 − e (the complement of

the graph K3,3 − e, where e is an edge). Note that both of them are

S2
2 (1)-free.

• q(G) = 6: G is bipartite and S2
3 (2)-free.

Recently in [9], it was proved that Q-integral graph contains S2
4 (m) (0 ≤ m ≤ 3) as

an induced subgraph when q(G) = 7.

Theorem 1 ([9], Theorem 4.1). Suppose G is a connected Q-integral graph having
q(G) = 7. If e-degmax

G = 8, then one of the following hold.

(a) G = K1,4�K2.

(b) G is bipartite with at least one of S2
4 (m)(m = 1, 2, 3), given in Figure 2, as induced

subgraph, and 1, 6 ∈ Spec(Q(G)).

(c) G has S2
4 (0) as induced subgraph, and 1, 6 ∈ Spec(Q(G)).

In this article, we show that a connected Q-integral graph G with q(G) = 7 and

e-degmax
G = 8 is bipartite and S2

4 (3)-free.

3. Main Result

For the rest of the article, G denotes a connected Q-integral graph having q(G) = 7

and maximum edge-degree e-degmax
G = 8. As a main result, we improve Theorem 1

by showing that G is bipartite, and if G 6= K1,4�K2 then it contains at least one of

S2
4 (m), for m = 0, 1, 2 as an induced subgraph.

Theorem 2. (Main Result) Suppose G is a connected Q-integral graph having q(G) = 7.
If e-degmax

G = 8, then G is bipartite and S2
4 (3)-free, where S2

4 (3) is given in Figure 2.

Before we prove the theorem, we require the following notations.

For any S1, S2 ⊆ V (G) and S1 ∩ S2 = φ, let AS1,S2
be a matrix of order |S1| × |S2|

whose rows and columns corresponds to the vertices of S1 and S2, respectively. Let

the (u, v)-th element, auv, for u ∈ S1, v ∈ S2 be such that

auv =

{
1, if uv ∈ E(G),

0, otherwise.

Thus, At
S1,S2

= AS2,S1 . For brevity and clarity, we use γ0 (resp. γ3) to de-

note S2
4 (0) (resp. S2

4 (3)) in the rest of the article. Let Γ0 = V (γ0) = V (γ3) =

{x, y, 1′, 2′, 3′, 4′, 1′′, 2′′, 3′′, 4′′} be the subset of V (G). In the proof, we iteratively
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define Γi+1 = Γi ∪ Si where Si ⊆ V (G) \ Γi, i ≥ 0. For Γi+1 obtained from the pair

(Γi, Si), we have the principal submatrix

Qp(Γi+1) =

(
Qp(Γi) AΓi,Si

ASi,Γi Qp(Si)

)
. (3.1)

We will use these notations repeatedly in rest of the paper with appropriate definitions

of Γi and Si, respectively. We use MATLAB to calculate the eigenvalues of matrices.

Proof of Theorem 2

Let G be as stated in the theorem with e-degmax
G = 8. By Proposition 2, the maximum

vertex-degree of G must be less than or equal to 5. In order to prove this theorem,

we observe that it is sufficient to show that

(a) G is γ3-free, where γ3 is given in Figure 2.

(b) G is bipartite whenever it contains the induced subgraph γ0.

We prove (a) by contradiction, that is, suppose γ3 is an induced subgraph of G. By

Theorem 1, G is bipartite. Thus, 0, 7 are simple Q-eigenvalues of G by Proposition 1

and Perron-Frobenius Theorem [[5], Theorem 8.4.4]. Since Spec(Q(G)) ⊆ Z, we have

λs2(Q(G)) = 1 and λl2(Q(G)) = 6. By Interlacing Theorem [[5], Theorem 4.3.17] on

eigenvalues, we have the following remark which will be used repeatedly to prove our

main theorem.

Remark 4. If G is a bipartite connected Q-integral graph having e-degmax
G = 8 and

q(G) = 7, then every principal submatrix Qp(H) of Q(G) corresponding to a set of vertices
H ⊆ V (G) have λs2(Qp(H)) ≥ 1 and λl2(Qp(H)) ≤ 6.

Recall Γ0 = V (γ3) = {x, y, 1′, 2′, 3′, 4′, 1′′, 2′′, 3′′, 4′′} ⊆ V (G). Note that the subgraph

γ3 is given by Figure 2(d) and its principal submatrix Qp(Γ0) of Q(G) is given by

Qp(Γ0) =



5 1 1 1 1 1 0 0 0 0

1 5 0 0 0 0 1 1 1 1
1 0 d(1′) 0 0 0 1 0 0 0

1 0 0 d(2′) 0 0 0 1 0 0

1 0 0 0 d(3′) 0 0 0 1 0

1 0 0 0 0 d(4′) 0 0 0 0

0 1 1 0 0 0 d(1′′) 0 0 0

0 1 0 1 0 0 0 d(2′′) 0 0

0 1 0 0 1 0 0 0 d(3′′) 0

0 1 0 0 0 0 0 0 0 d(4′′)


(3.2)

where d(·) ∈ {1, . . . , 5}. We have the following 4 non-isomorphic choices for d(·) as G

has Q-spectral radius 7:

Case 1. d(i′) = 3, d(3′) = d(j′′) = 2; i = 1, 2; j = 1, 2, 3;
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Case 2. d(1′) = d(2′′) = 3, d(2′) = d(3′) = d(1′′) = d(3′′) = 2;

Case 3. d(1′) = 3, d(i′) = d(j′′) = 2; i = 2, 3; j = 1, 2, 3;

Case 4. d(j′) = d(j′′) = 2; j = 1, 2, 3.

To complete the proof, we show that all the four cases mentioned above are not

possible with the help of various claims. To this end, we begin by showing that the

first 3 cases are not possible in Claim 1 and all the remaining claims are used to show

that Case 4 can not hold true.

Figure 3.

Claim 1. Cases 1,2, and 3 are not possible.

Suppose either of the three cases hold true. Let N(1′) = {x, 1′′, 5′′}, where 5′′ ∈
V (G) \ Γ0 and Γ1 = Γ0 ∪ {5′′}. With respect to each of the considered cases, the

subgraph on Γ1 along with the degrees of its vertices are given in Figures 3(a)-(c).

Note that the vertex 5′′ is not adjacent to any other vertex of Γ0 as the following

conditions on G has to hold, that is, G is bipartite, q(G) = 7, and d(2′) = 2 (for

Cases 2,3).

However, for all the possible choices of d(·) in Qp(Γ1), we get either λs2(Qp(Γ1)) < 1

or ρ(Qp(Γ1)) > 7, which contradicts Remark 4 or q(G) = 7. Hence, the cases 1, 2,

and 3 are not possible which proves our Claim 1.

Claim 2. Case 4 is not possible.

On the contrary, suppose Case 4 is true, that is, d(j′) = d(j′′) = 2; j = 1, 2, 3. The

subgraph of G corresponding to the vertices of Γ0 and their vertex degrees is as given

in Figure 3(d). Thus, the principal submatrix Qp(Γ0) is

Qp(Γ0) =


5 1 1 1 1 1 0 0 0 0
1 5 0 0 0 0 1 1 1 1
1 0 2 0 0 0 1 0 0 0
1 0 0 2 0 0 0 1 0 0
1 0 0 0 2 0 0 0 1 0
1 0 0 0 0 d(4′) 0 0 0 0
0 1 1 0 0 0 2 0 0 0
0 1 0 1 0 0 0 2 0 0
0 1 0 0 1 0 0 0 2 0
0 1 0 0 0 0 0 0 0 d(4′′)

. (3.3)
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Claim 2.1. d(4′) = d(4′′) = 2.

The degree of the vertices 4′ and 4′′ can be at most 3, otherwise ρ(Qp(Γ0)) exceeds

7. Let d(4′) = 3 such that the distinct vertices 5′′, 6′′ ∈ V (G) \ Γ0 are the other

neighbors of 4′. Consider S0 = {5′′, 6′′}, and define Γ1 = Γ0 ∪S0. Here 5′′, 6′′ can not

be adjacent to any vertices of Γ1 except 4′ as G is bipartite and d(i′) = 2(i = 1, 2, 3).

Thus, we have a5′′j = a6′′j = a5′′6′′ = 0(j ∈ Γ0 \ {4′}). Now, the matrix Qp(Γ1) is

given by

Qp(Γ1) =
(

Qp(Γ0) AΓ0,S0

AS0,Γ0
Qp(S0)

)
(3.4)

where Qp(Γ0) is given in (3.3), AΓ0,S0
= At

S0,Γ0
,

AS0,Γ0
= ( 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0 ), Qp(S0) =
(

d(5′′) 0

0 d(6′′)

)
,

and d(4′) = 3, 1 ≤ d(4′′) ≤ 3. Also, d(4′′) = 2, otherwise we get a contradiction to

λs2(Q(G)) ≥ 1 and q(G) = 7 by interlacing theorem. Therefore (d(4′), d(4′′)) = (3, 2).

Let 4′′ be adjacent to a vertex 5′ ∈ V (G)\Γ1 and S1 = {5′} and Γ2 = Γ1∪S1. In this

case, 5′ is not adjacent to 5′′, 6′′, otherwise either λs2(Qp(Γ2)) < 1 or λl2(Qp(Γ2)) > 6

or ρ(Qp(Γ2)) > 7. The principal submatrix corresponding to Γ2 is

Qp(Γ2) =
(

Qp(Γ1) AΓ1,S1

AS1,Γ1
Qp(S1)

)
(3.5)

where Qp(Γ1) is given in (3.4) with d(4′) = 3, d(4′′) = 2, and

AS1,Γ1
= ( 0 0 0 0 0 0 0 0 0 1 0 0 ), Qp(S1) = ( d(5′) ).

We have the following three choices for (d(5′′), d(6′′), d(5′)) so that λs2(Qp(Γ2)) ≥ 1,

and λl2(Qp(Γ2)) ≤ 6, ρ(Qp(Γ2)) ≤ 7: (i) (3, 2, 4), (ii) (3, 3, 3), (iii) (3, 2, 3).

Suppose that 5′′ is adjacent to the vertices of S2 = {6′, 7′} ⊆ V (G)\Γ2, where 6′ 6= 7′

and Γ3 = Γ2 ∪S2. Therefore, we conclude the following to have λs2(Qp(Γ3)) ≥ 1 and

ρ(Qp(Γ3)) ≤ 7:

• (d(5′′), d(6′′), d(5′)) = (3, 2, 3);

• a6′i′ = a6′j′′ = a7′i′ = a7′j′′ = 0(i = 1, . . . , 5; j = 1, . . . , 4, 6) in Qp(Γ3).

Hence, d(6′′) = 2 and let S3 = {8′} ⊂ V (G) ∩ N(6′′) \ {Γ3}, and define Γ4 =

Γ3 ∪ S3. Clearly, 8′ is not adjacent to any vertices of Γ4 except 6′′ as G is bipartite,

d(j′′) = 2(j = 1, . . . , 4) and d(5′′) = 3; see Figure 4(a). For every possible choices

of (d(6′), d(7′), d(8′)), we get either λs2(Qp(Γ4)) < 1 or ρ(Qp(Γ4)) > 7, which is a

contradiction by Remark 4. Hence, d(4′) ≤ 2 and by symmetric structure given in

Figure 3(d), we have d(4′′) ≤ 2.

However, if any one of d(4′), d(4′′) < 2, then λs2(Qp(Γ0)) given in (3.3) becomes less

than 1 which contradicts to Remark 4. Therefore, we conclude that (d(4′), d(4′′)) =

(2, 2) which completes the proof of Claim 2.1.
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Figure 4.

Next, we look into the neighbors of 4′ and 4′′ in the subgraph induced by Γ0 = V (γ3).

Let 5′, 5′′ ∈ V (G) \ Γ0 be the neighbors of 4′′, 4′, respectively. Since G is bipartite,

5′ 6= 5′′. Let Γ1 = Γ0 ∪ S0, where S0 = {5′, 5′′}. So, we get the subgraph given in

Figure 4(b) corresponding to the vertex set Γ1. The principal submatrix Qp(Γ1) is

given by

Qp(Γ1) =



5 1 1 1 1 1 0 0 0 0 0 0
1 5 0 0 0 0 1 1 1 1 0 0
1 0 2 0 0 0 1 0 0 0 0 0
1 0 0 2 0 0 0 1 0 0 0 0
1 0 0 0 2 0 0 0 1 0 0 0
1 0 0 0 0 2 0 0 0 0 0 1
0 1 1 0 0 0 2 0 0 0 0 0
0 1 0 1 0 0 0 2 0 0 0 0
0 1 0 0 1 0 0 0 2 0 0 0
0 1 0 0 0 0 0 0 0 2 1 0
0 0 0 0 0 0 0 0 0 1 d(5′) a5′5′′

0 0 0 0 0 1 0 0 0 0 a5′5′′ d(5′′)

. (3.6)

Now, we claim the following about vertices 5′ and 5′′:

Claim 2.2. 5′ is not adjacent to 5′′.

Assume on the contrary that 5′ is adjacent to 5′′. Since G is connected, d(5′) ≥ 3 or

d(5′′) ≥ 3. Now, we look into all possible degree pairs for 5′ and 5′′.

(i) (d(5′), d(5′′)) ∈ {(2, 3), (3, 3)}: Let 6′ ∈ V (G) \ Γ1 be the remaining neighbor of

5′′. Obviously, 5′ is not adjacent to 6′ as G is bipartite. Define Γ2 = Γ1 ∪ S1,

where S1 = {5′′}. Thus, the matrix Qp(Γ2) is

Qp(Γ2) =
(

Qp(Γ1) AΓ1,S1

AS1,Γ1
Qp(S1)

)
, (3.7)

where Qp(Γ1) is given in (3.6) with d(5′) ∈ {2, 3}, d(5′′) = 3, a5′5′′ = 1, and

AS1,Γ1
= ( 0 0 0 0 0 0 0 0 0 0 0 1 ), Qp(S1) = ( d(6′) ).

Now (d(5′), d(5′′)) 6= (2, 3), otherwise λs2(Qp(Γ2)) ≤ 0.0669 < 1. Let d(5′) = 3

and 6′′ ∈ V (G)\Γ2 be the remaining neighbor of 5′. Define Γ3 = Γ2∪S2, where

S2 = {6′′}. For each admissible choices of d(·), a.., we get a contradiction to

λs2(Qp(Γ3)) ≥ 1. Hence, (d(5′), d(5′′)) 6= (3, 3). Therefore, (i) is not possible.
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(ii) ((d(5′), d(5′′)) = (4, 4): Let S1 = {6′, 7′, 6′′, 7′′} ⊆ V (G) \ Γ1 be a set of distinct

vertices in G and define Γ2 = Γ1 ∪ S1. Assume that 5′′ (resp. 5′) is adjacent to

6′, 7′ (resp. 6′′, 7′′). The matrix AS1,Γ1
and Qp(S1) are given by

AS1,Γ1
=

(
0

0 1
0 1
1 0
1 0

)
, Qp(S1) =


d(6′) 0 a6′6′′ a6′7′′

0 d(7′) a7′6′′ a7′7′′

a6′6′′ a7′6′′ d(6′′) 0

a6′7′′ a7′7′′ 0 d(7′′)

.
Here, ai′j′′ = 0,∀i, j = {6, 7} and d(7′′) = 3 in G to have λs2(Qp(Γ2)) ≥ 1

or λl2(Qp(Γ2)) ≤ 6 or ρ(Qp(Γ2)) = 7. Let S2 = {8′, 9′} ⊆ V (G) \ Γ2 be a

subset of N(7′′) containing distinct vertices and define Γ3 = Γ2 ∪ S2. However,

λs2(Qp(Γ3)) < 1, which contradicts to Remark 4. Therefore, (d(5′), d(5′′)) 6=
(4, 4).

(iii) (d(5′), d(5′′)) ∈ {(3, 4), (3, 5), (4, 5), (5, 5)}: Similar to (ii), it can be verified

using Remark 4 and q(G) = 7 that this subcase is not possible.

From above, we conclude that Claim 2.2 holds, i.e., a5′5′′ = 0 in Qp(Γ1) given by

(3.6).

From Claim 2.2, the induced subgraph G[Γ1] is as shown in Figure 4(b). Now, we

look into the degrees of d(5′) and d(5′′).

Claim 2.3. d(5′) ≥ 3 and d(5′′) ≥ 3.

The claim holds otherwise λs2(Qp(Γ1)) ≤ 0.9194 < 1, where Qp(Γ1) given in (3.6).

Claim 2.4. (d(5′), d(5′′)) 6= (3, 3).

Assume on the contrary that d(5′) = d(5′′) = 3. Let S1 = {6′, 7′, 6′′, 7′′} ⊆ V (G) \
Γ1 be a set of distinct vertices in G such that 5′′ (resp. 5′) is adjacent to 6′, 7′

(resp. 6′′, 7′′), see Figure 4(c). The corresponding submatrix Qp(Γ1) of the principal

submatrix Qp(Γ2) in (3.1), where Γ2 = Γ1 ∪ S1 is given in (3.6) with a5′5′′ = 0, and

AS1,Γ1
, Qp(S1) are

AS1,Γ1
=

(
0

0 1
0 1
1 0
1 0

)
, Qp(S1) =

 d(6′) 0 a6′6′′ a6′7′′

0 d(7′) a7′6′′ a7′7′′

a6′6′′ a7′6′′ d(6′′) 0

a6′7′′ a7′7′′ 0 d(7′′)

. (3.8)

From q(G) = 7, Remark 4 on Qp(Γ2), we have ai′j′′ = 0; i, j ∈ {6, 7} and d(6′′) ≥ 4.

Let S2 = {8′, 9′, 10′} ⊆ N(6′′) \ Γ2 be set of distinct vertices and Γ3 = Γ2 ∪ S2, see

Figure 4(d). However, for each choices of a.., d(·), we get a contradiction to Remark

4. Hence, (d(5′), d(5′′)) 6= (3, 3).

Claim 2.5. d(i) 6= 5 for i = 5′, 5′′.

Let d(5′′) = 5 and S1 = {6′, 7′, 8′, 9′} ⊆ (V (G) \ Γ1) ∩ N(5′′) be a set of distinct

vertices in G and define Γ2 = Γ1 ∪ S1, see Figure 5(a). We get a contradiction to

Remark 4 for Qp(Γ2). Therefore, neither d(5′) = 5 nor d(5′′) = 5.
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Claim 2.6. d(5′), d(5′′) 6= 4.

Assume on the contrary that the claim holds. From Claim 2.3-2.5, we have the non-

isomorphic choices for (d(5′), d(5′′)) as (3, 4), (4, 4).

Figure 5.

Case 2.6.1. (d(5′), d(5′′)) = (3, 4).

Let S1 = {6′, 7′, 8′, 6′′, 7′′} ⊆ V (G) \ Γ1 be a set of distinct vertices such that

{6′, 7′, 8′} ⊆ N(5′′) and {6′′, 7′′} ⊆ N(5′), see Figure 5(b). Define Γ2 = Γ1 ∪ S1,

and the principal submatrix Qp(Γ2) given by (3.1) contains Qp(Γ1) as given in (3.6).

Hence, each neighbor of 5′ can be adjacent to at most one vertex of {6′, 7′, 8′} in

S1, otherwise either λs2(Qp(Γ2)) < 1 or λl2(Qp(Γ2)) > 6. Since G is bipartite, we

have the following non-isomorphic cases: (2.6.1.1) E(S1) = {6′6′′, 6′7′′}, (2.6.1.2)

E(S1) = {6′6′′, 7′7′′}, (2.6.1.3) E(S1) = {6′6′′}, (2.6.1.4) E(S1) = φ.

Now, we analyze these possible cases. Here, (2.6.1.1), (2.6.1.2) are not possible since

either λs2(Qp(Γ2)) < 1 or λl2(Qp(Γ2)) > 6.

(2.6.1.3) E(S1) = {6′6′′}: Degree of 6′′ is at least 4, otherwise λs2(Qp(Γ2)) ≤
0.9923 < 1. Let 6′′ be adjacent to the set of distinct vertices S2 = {9′, 10′} ⊆
V (G) \ Γ1, and define Γ3 = Γ2 ∪ S2. However, for all the admissible choices

of d(·) and a.. in Qp(Γ3), either λs2(Qp(Γ3)) < 1 or λl2(Qp(Γ3)) > 6. Hence,

E(S1) 6= {6′6′′}.

(2.6.1.4) E(S1) = φ: Similar to (2.6.1.3), it can be verified that this case is not

possible using Remark 4 and q(G) = 7.

Therefore, Case 2.6.1 is not valid i.e., (d(5′), d(5′′)) 6= (3, 4).

Case 2.6.2. (d(5′), d(5′′)) = (4, 4).

Let S1 = {6′, 7′, 8′, 6′′, 7′′, 8′′} ⊆ V (G) \ Γ1 be a set of distinct vertices such that

{6′, 7′, 8′} ⊂ N(5′′) and {6′′, 7′′, 8′′} ⊆ N(5′), see Figure 5(c). Define Γ2 = Γ1 ∪
S1. Now, i′′ ∈ N(5′)(i = 6, 7, 8) is adjacent to at most one vertex of {6′, 7′, 8′},
otherwise either λs2(Qp(Γ2)) < 1 or λl2(Qp(Γ2)) > 6. Since G is bipartite, we have

the following non-isomorphic choices for E(S1): (2.6.2.1) E(S1) = {6′6′′, 7′7′′, 8′8′′},
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(2.6.2.2) E(S1) = {6′6′′, 7′7′′}, (2.6.2.3) E(S1) = {6′6′′}, (2.6.2.4) E(S1) = φ. Now,

we analyze these cases.

(2.6.2.1) E(S1) = {6′6′′, 7′7′′, 8′8′′}: This case is not possible, otherwise either we

get λs2(Qp(Γ2)) < 1 or λl2(Qp(Γ2)) > 6 or ρ(Qp(Γ2)) > 7.

(2.6.2.2) E(S1) = {6′6′′, 7′7′′}: We have d(6′′) ≥ 3, otherwise we arrive at a con-

tradiction using Remark 4. Suppose that S2 = {9′′} ⊆ N(6′′) be such that

Γ2 ∩ S2 = φ and define Γ3 = Γ2 ∪ S2. Then for each possible submatrix

Qp(Γ3) in (3.1), we get λl2(Qp(Γ3)) > 6, which is a contradiction. Therefore,

E(S1) 6= {6′6′′, 7′7′′}.

(2.6.2.3) E(S1) = {6′6′′}: Here we have d(6′), d(6′′) ≥ 3, otherwise λs2(Qp(Γ2)) ≤
0.9893. Let S2 = {9′, 9′′} ⊆ V (G) \ Γ2 be such that 9′ (resp. 9′′) is adjacent to

6′′ (resp. 6′). Since G is bipartite, we have 9′ 6= 9′′. Define Γ3 = Γ2 ∪ S2. We

have N(9′) ∩ {7′′, 8′′, 9′′} = φ = N(9′′) ∩ {7′, 8′, 9′} and d(6′′) = 4, otherwise

we get a contradiction to Remark 4. Let S3 = {10′} ⊆ N(6′′) \ Γ3 and define

Γ4 = Γ3 ∪S3, see Figure 5(d). Now for all the possible choices of d(·), we arrive

at a contradiction to Remark 4 for Qp(Γ4). Hence E(S1) 6= {6′6′′}.

(2.6.2.4) E(S1) = φ: Similar to (2.6.2.3), this case is not possible due to Remark 4,

q(G) = 7, and bipartieness of G.

Therefore Claim 2.6 holds i.e., d(i) 6= 4 for all i = 5′, 5′′.

Further from Claims 2.1- 2.6, we conclude that Case 4 does not hold. Finally from

Claim 1 and 2, we obtain that G is γ3-free.

Next, we prove the second part of the theorem, namely (b), by contradiction. Let us

assume thatG is non-bipartite and has an induced subgraph γ0. Thus λmin(Q(G)) ≥ 1

by Proposition 1, and hence λmin(Qp(H)) ≥ 1 for every H ⊆ V (G). The principal

submatrix corresponding to Γ0 is

Qp(Γ0) =



5 1 1 1 1 1 0 0 0 0
1 5 0 0 0 0 1 1 1 1
1 0 d(1′) 0 0 0 0 0 0 0

1 0 0 d(2′) 0 0 0 0 0 0

1 0 0 0 d(3′) 0 0 0 0 0

1 0 0 0 0 d(4′) 0 0 0 0

0 1 0 0 0 0 d(1′′) 0 0 0

0 1 0 0 0 0 0 d(2′′) 0 0

0 1 0 0 0 0 0 0 d(3′′) 0

0 1 0 0 0 0 0 0 0 d(4′′)


.

There exist at least one i, j ∈ {1, 2, 3, 4} such that d(i′), d(j′′) ≥ 3, otherwise we get

a contradiction to the Remark 4 with λmin(Qp(Γ0)) ≤ 0.9317 < 1. Without any loss

of generality, let d(1′), d(1′′) ≥ 3 and S0 = {5′, 6′, 5′′, 6′′} ⊆ V (G) \ Γ0 be a set of

distinct vertices such that 5′, 6′ (resp. 5′′, 6′′) are adjacent to 1′′ (resp. 1′) in G. Thus

the principal submatrix Qp(Γ1) where Γ1 = Γ0 ∪ S0, is given by

Qp(Γ1) =
(

Qp(Γ0) AΓ0,S0

AS0,Γ0
Qp(S0)

)
,
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where AS0,Γ0 =

(
0 a1′5′ a2′5′ a3′5′ a4′5′

a1′6′ a2′6′ a3′6′ a4′6′
1 a2′′5′ a3′′5′ a4′′5′
1 a2′′6′ a3′′6′ a4′′6′

0 1 a2′5′′ a3′5′′ a4′5′′
1 a2′6′′ a3′6′′ a4′6′′

a1′′5′′ a2′′5′′ a3′′5′′ a4′′5′′
a1′′6′′ a2′′6′′ a3′′6′′ a4′′6′′

)
.

We have the following claims due to the fact that λmin(Qp(Γ1)) ≥ 1 and ρ(Qp(Γ1)) ≤
7:

• a5′i = a6′i = a5′′j = a6′′j = 0, for i ∈ Γ0 \ {1′′}, j ∈ Γ0 \ {1′};

• d(1′) = d(1′′) = 3, a5′i′′ = a6′i′′ = 0, i = 5, 6;

• d(i′) ≥ 3, for some i ∈ {2′, 3′, 4′}; say d(2′) ≥ 3.

Thus the matrix AS0,Γ0
, Qp(S0) now becomes

AS0,Γ0
=

(
0 0

0
0 1

1
0

0 1
1
0 0

0
0

)
, Qp(S0) =

 d(5′) a5′6′

a5′6′ d(6′)
0

0 d(5′′) a5′′6′′

a5′′6′′ d(6′′)

.
Let 7′′ be a neighbor of 2′ in G, where S1 = {7′′} ⊂ V (G)\Γ1, and thus Γ2 = Γ1∪S1.

Now for all the choices of 1 ≤ d(·) ≤ 5 and a.. ∈ {0, 1}, we get either λmin(Qp(Γ2)) < 1

or ρ(Qp(Γ2)) > 7, which contradicts to the fact that λs2(Q(G)) ≥ 1 and q(G) = 7.

Therefore, G must be a bipartite graph if it contains γ0 as an induced subgraph.

4. Conclusion

We have improved one of our earlier results from [9] on the structural characterization

of Q-integral connected graph G having q(G) = 7 and maximum edge-degree 8. We

have shown that G must be a bipartite graph. If G 6= K1,4�K2, then G contains

one of the three graphs, namely S2
4 (m)(m = 0, 1, 2) as an induced subgraph. Further,

0, 1, 6 and 7 are Q-eigenvalues of G.

Thus, we conclude that whenever G /∈ {C3, C6,K3,3 − e} is a connected Q-

integral graph with maximum edge-degree 2q(G) − 6, then G is bipartite and

S2
q(G)−3(q(G)− 4)-free for q(G) ≤ 7.
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