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Abstract: In this paper, we generalize the concept of Cayley graphs associated to

finite groups. The aim of this paper is the characterization of graph theoretic properties

of new type of directed graph ΓP (G;S) and algebraic properties of Leavitt path algebra
of order prime Cayley graph OΓ(G;S), where G is a finite group with a generating set

S. We show that the Leavitt path algebra of order prime Cayley graph LK(OΓ(G;S))

of a non trivial finite group G with any generating set S over a field K is a purely
infinite simple ring. Finally, we prove that the Grothendieck group of the Leavitt path

algebra LK(ΓP (Dn;S)) is isomorphic to Z2n−1, where Dn is the dihedral group of

degree n and S = {a, b} is the generating set of Dn.
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1. Introduction

The notion of the Leavitt path algebra LK(E) of a directed graph E over a field

K, natural generalization of the Leavitt algebra investigated by W. G. Leavitt in

[12], was introduced and studied in [2] and [4] for row-finite graph. The study of

algebraic structures of Leavitt path algebras, using the properties of directed graphs,

has become an exciting research topic in the last few years, leading to many fascinating

results and questions. There are many papers devoted on characterizing the algebraic
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2 Leavitt path algebras for order prime Cayley graphs

structures of Leavitt path algebra of a directed Cayley graph associated to a group,

for instance see, [3, 13, 14]. Recently, in [3], the authors studied Leavitt path algebra

of Cayley graph of the finite cyclic group Z/nZ with respect to the subset
{

1, n− 1
}

.

Then in [14], Nam and Phuc studied certain digraphs arising from groups such as

Cayley graphs, power graphs and later in [15], they investigated Leavitt path algebras

of Hopf graphs. In particular, they gave criteria for the Leavitt path algebra of a

Cayley graph arising from a finite group to be purely infinite simple and also provided

criteria for the Leavitt path algebra of a Hopf graph arising from an arbitrary group

to be purely infinite simple. Moreover, they computed completely the stable rank

of the Leavitt path algebra of a Hopf graph arising from an arbitrary group. In [7],

we characterized algebraic properties of Leavitt path algebra of the directed power

graph ~P(G) as well as the directed punctured power graph ~P∗(G) of a finite group

G. Later in [8], we computed the Grothendieck group of purely infinite simple Leavitt

path algebra of the directed punctured power graph of a finite group.

The idea of a graphical representation of a group, called as a Cayley digraph of a

group, was introduced by Cayley in 1878.

Definition 1. (Cayley digraph of a Group)[9] Let G be any finite group and let S
be a generating set for G. We define a directed graph Γ1(G;S) associated to G, called the
directed Cayley graph of G with generating set S, as follows:
(1) Each element of G is a vertex of Γ1(G;S).
(2) For x, y ∈ G, there is an arc from x to y if and only if y = xs, for some s ∈ S.

Throughout this paper, we denote the order of an element x of the group G as o(x)

and also denote the Cayley digraph as Γ1(G;S) because for x, y ∈ G, there is an arc

from x to y if and only if o(y−1xs) = 1, for some element s ∈ S.

Motivating by the definition of directed Cayley graph, we introduce a new type of

directed graph and study its properties in this paper.

Definition 2. For a finite group G with a generating set S, we define a directed graph
ΓP (G;S) associated to G as follows :
(1) Each element of G is a vertex of ΓP (G;S).
(2) For x, y ∈ G, there is an arc from x to y if and only if there is some generator s ∈ S such
that o(y−1xs) = p, for some prime p.

eS3

(1 2)

(2 3)(1 3)

(1 3 2)

(1 2 3)

Figure 1. ΓP (S3; {(12), (123)})
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It is worth mentioning the following note.

Remark 1. Between any two vertices x, y in ΓP (G;S), if o(y−1xsi) are prime numbers
for some si ∈ S, then we consider only one arc from x to y. Therefore, ΓP (G;S) is a
directed graph containing no parallel arcs. To illustrate this, we first consider the graph
ΓP (S3; {(12), (123)}) illustrated in Figure 1.

Remark 2. From Definition 2, it follows that for two vertices x and y in ΓP (G;S), there
is an arc from x to y if and only if y = xst for some s ∈ S and t ∈ G such that o(t) is prime.

Now, for any finite group G along with a generating set S, we define another new

directed graph OΓ(G;S) associated to G, called order prime Cayley graph, as union of

Γ1(G;S) and ΓP (G;S). Therefore, in OΓ(G;S), for any two vertices x, y; there is an

arc from x to y if and only if there is some generator s ∈ S such that o(y−1xs) = 1 or p,

for some prime p. Thus, this new type of digraph can be considered as a generalization

of Cayley digraph associated to finite group and adjacency of vertices are connected

to prime order elements of associated group, that’s why we have named this graph

as order prime Cayley graph. One can easily verify that ΓP (Z2;
{

1
}

) is disconnected

graph with loop at each vertex, whereas Γ1(Z2;
{

1
}

) is strongly connected having no

loops. Thus, Γ1(G;S) and ΓP (G;S) may exhibit different graph theoretic properties

and this observation motivates us to investigate various graph theoretic properties of

ΓP (G;S).

This paper is organized as follows. First we recall the relevant background definitions

and basic facts in the preliminary section. In Section 3, first we characterize strongly

connectedness property for some well known finite groups together with their generat-

ing sets. Here we prove that ΓP (Zn;
{

1
}

) is strongly connected for all n ≥ 3 (Theorem

3). Then we give sufficient conditions on the generating set S (Theorem 5, 6, 7) for

the digraph ΓP (Sn;S) is strongly connected, where Sn is the symmetric group for

every integer n ≥ 3. For each positive integer n ≥ 4, we show that ΓP (Dn;S) is a

complete 2n-graph with one loop at each vertex, where S = {a, b} is the generating

set of dihedral group Dn (Theorem 9). Again we prove that ΓP (Q4n;S) is strongly

connected, where S = {a, b} is the generating set of dicyclic group Q4n for all n ≥ 2

(Theorem 10) and also, for each positive integer k(≥ 2), ΓP (Q2k+1 ;S) is strongly con-

nected, where S = {a, b} is the generating set of generalized quaternian group Q2k+1

(Theorem 11). Another interesting result is that ΓP (SD2m ;S) is strongly connected,

where S = {a, b} is the generating set of semi - dihedral group SD2m for all m ≥ 4

(Theorem 12). In the remainder of the Section 3, we study various graph theoretic

properties of ΓP (G;S) as well as OΓ(G;S). Here we give the criteria for the digraphs

ΓP (G;S) and OΓ(G;S) satisfying Condition (L) (Theorem 18, Theorem 19). In Sec-

tion 4, we study various algebraic properties of the Leavitt path algebras associated

to order prime Cayley graphs of finite groups. Another interesting aspect of this

section is to investigate the algebraic structures of the algebra LK(ΓP (G;S)). Here

we characterize the stable rank, prime ring as well as the purely infinite simplicity

of the Leavitt path algebras associated to order prime Cayley graphs of finite groups
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(Theorem 21). Using the result (Theorem 9), we compute the Grothendieck group of

the Leavitt path algebra LK(ΓP (Dn;S)) for every positive integer n ≥ 4 (Theorem

24).

Throughout this paper, we assume that every directed graph contains no parallel

arcs, the arc from a vertex a to another vertex b is denoted by a→ b, e
G

denotes the

identity element of the group G and K always denotes a field.

2. Preliminaries

In this section, for convenience of the reader and also for later use, we outline some

definitions, notations and results concerning graph theory as well as Leavitt path

algebras. For general notations, terminologies and results concerning Leavitt path

algebras, the reader is referred to the book [1].

2.1. Directed Graph

In this subsection, we first recall some basic definitions and terminologies regarding

graphs.

A directed graph is a quadruple E = (E0, E1, r, s) consisting of two sets E0 and E1

together with two functions r, s : E1 → E0. The elements of E0 are called vertices

and the elements of E1 are called arcs. For any arc e in E1, s(e) and r(e) respectively

denote the source and the range of e. Clearly, for any vertex v ∈ E0, s−1(v) denotes

the set of all arcs whose source is v, while r−1(v) denotes the set of all arcs whose

range is v. A vertex v ∈ E0 is called sink if |s−1(v)| = 0 and also a vertex v ∈ E0

is called regular if 0 < |s−1(v)| < ∞. A graph E is row-finite if |s−1(v)| < ∞ for all

vertices v of E.

A path p = e1e2 · · · en in a directed graph is a sequence of arcs e1, e2, . . . , en such that

r(ei) = s(ei+1) for i = 1, 2, . . . , n − 1. A path p is called a closed path based at v if

s(p) = r(p) = v. Again, a closed path based at v is called a closed simple path at v if

s(ei) 6= v for every i > 1. A cycle is a closed simple path which does not visit any of

its vertices more than once. If c is a cycle with s(c) = r(c) = v, then c is said to be

based at v. A directed graph containing no cycle is called acyclic. An arc e is an exit

to a cycle p = e1e2 · · · en if there exists some i ∈ {1, 2, . . . , n} such that s(ei) = s(e)

but e 6= ei. A graph E is said to satisfy Condition (L) if every cycle in E has an

exit and a graph E is said to satisfy Condition (K ) if for each v ∈ E0 which lies on a

closed simple path, there exist at least two distinct closed simple paths based at v.

A directed graph E is called strongly connected if, given any two vertices v, w of E,

there exists a path p with s(p) = v and r(p) = w. A directed graph E is called

nontrivial if E does not consist solely of a single cycle. Again, a directed graph E is

called essential if E contains no sources and no sinks. Unless otherwise stated, by a

“graph” we always mean a directed graph.
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2.2. Leavitt path algebras

In this subsection, we recall some results related to Leavitt path algebra of a directed

graph E over a field K which will be needed for our discussion.

Let K be a field and E = (E0, E1, r, s) be a directed graph. The Leavitt path algebra

of E with coefficients from K, denoted by LK(E), is the free associative K-algebra

generated by the collection {v, e, e∗ : v ∈ E0, e ∈ E1} satisfying the following rela-

tions:

(A1) uv = δu,vu, for all u, v ∈ E0;

(A2) s(e)e = er(e) = e, r(e)e∗ = e∗s(e) = e∗, for all e ∈ E1;

(CK1) e∗f = δe,fr(e), for all e, f ∈ E1;

(CK2) v =
∑

e∈s−1(v)

ee∗ for every regular vertex v.

The elements of E1 are called real arcs and the elements of (E1)
∗

=
{
e∗ : e ∈ E1

}
are called ghost arcs, where e 7→ e∗ is a bijective function between E1 and (E1)

∗
with

s(e) = r(e∗) and r(e) = s(e∗). We define v∗ = v for every vertex v ∈ E0, and also

define (e∗)∗ = e for all e∗ ∈ (E1)
∗
. Again, for any path p = e1 · · · en (e1, . . . , en ∈ E1),

we denote p∗ = e∗n · · · e∗1 as a ghost path with s(p∗) = r(p) and r(p∗) = s(p). Every

element x of LK(E) can be expressed (though this representation is not unique) as

x =

n∑
i=1

kipiq
∗
i , where ki ∈ K, and paths pi, qi with r(pi) = r(qi) for each 1 ≤ i ≤ n.

3. Graph theoretic properties of ΓP (G;S)

In this section, we construct and discuss different graphs ΓP (G;S) associated to var-

ious kind of finite groups. Before going to discuss properties of ΓP (Zn;S), where

Zn =
{

0, 1, . . . , n− 1
}

is the additive group of integers modulo n and S is any gen-

erating set of Zn, we consider three examples, viz., ΓP (Z4;
{

1
}

), Γ1(Z4;
{

1
}

) and

ΓP (Z5;
{

1
}

) which are given below.

0 3

21

0 1

2

3

4

0 1

23

ΓP (Z4;
{

1
}

) ΓP (Z5;
{

1
}

)Γ1(Z4;
{

1
}

)

Figure 2.

From Figure 2, we observe the following interesting features.

Observation 1. (1) Both ΓP (Z4;
{

1
}

) and ΓP (Z5;
{

1
}

) are strongly connected graphs.
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(2) ΓP (Z4;
{

1
}

) has only one cycle, whereas ΓP (Z5;
{

1
}

) contains more than one cycle each
of which consists of all the vertices.
(3) Here ΓP (Z4;

{
1
}

) 6= Γ1(Z4;
{

1
}

), but it is clear that ΓP (Z4;
{

1
}

) = Γ1(Z4;
{

3
}

).

The above observations motivate us to establish the following results.

Theorem 2. For any positive integer n ≥ 2, ΓP (Z2n ;
{

1
}

) is isomorphic to some Cayley
digraph associated to Z2n .

Proof. First we show that ΓP (Z2n ;
{

1
}

) is a cycle of length 2n, for any positive

integer n ≥ 2. Here 1 + 2n−1 is an odd number for n ≥ 2 and hence
{

1 + 2n−1
}

is another generating set of Z2n . Thus C0 := (0 → 1 + 2n−1 → 2(1 + 2n−1) →
· · · → k(1 + 2n−1) → · · · → 2n(1 + 2n−1) = 0) is cycle based at 0 consisting of

all 2n elements. Again, Z2n has only one prime order element which is 2n−1, so

|s−1(v)| = 1 for every v ∈ ΓP (Z2n ;
{

1
}

) and hence ΓP (Z2n ;
{

1
}

) consists solely of a

single cycle of length 2n. Consequently, ΓP (Z2n ;
{

1
}

) = Γ1(Z2n ;
{

1 + 2n−1
}

). Hence

the theorem.

Lemma 1. For any positive integer n and any odd prime q, ΓP (Zqn ;
{

1
}

) is strongly
connected.

Proof. Clearly, either n is 1 or n is greater than 1. We consider the following cases.

Case 1. We first suppose that n = 1. Then we can find an element t ∈ Zq such

that t 6= q − 1. Thus o(1 + t) = q and hence C0 := (0 → 1 + t → 2(1 + t) → · · · →
q(1 + t) = 0) is cycle based at 0 consisting of all q elements in Zq. Consequently,

ΓP (Zq;
{

1
}

) is strongly connected.

Case 2. We now suppose that n ≥ 2. Clearly,
{

1 + qn−1
}

is another generating set

of Zqn . Thus, C
′

0
:= (0 → 1 + qn−1 → 2(1 + qn−1) → · · · → k(1 + qn−1) → · · · →

qn(1 + qn−1) = 0) is cycle based at 0 consisting of all qn elements in Zqn . This implies

ΓP (Zqn ;
{

1
}

) is strongly connected, where n ≥ 2 is any positive integer.

Corollary 1. For any positive integer n ≥ 2, ΓP (Z2n ;S) is strongly connected, and also
for any positive integer n and any odd prime q, ΓP (Zqn ;S) is strongly connected, where S is
any generating set.

Remark 3. Let q be any odd prime number and n ≥ 2 be an integer. Then C
′

0
:=

(0 → s + qn−1 → 2(s + qn−1) → · · · → k(s + qn−1) → · · · → qn(s + qn−1) = 0) and

C
′′

0
:= (0 → s + 2qn−1 → 2(s + 2qn−1) → · · · → k(s + 2qn−1) → · · · → qn(s + 2qn−1) = 0)

are at least two different cycles consisting of all vertices of ΓP (Zqn ;S).

Lemma 2. Let n ≥ 2 be an integer with factorization n = q1
k1 q2

k2 · · · qrkr in Z, where
r ≥ 2 and q1 , q2 , . . . , qr are distinct primes. Then ΓP (Zn;

{
1
}

) is strongly connected.
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Proof. We consider the following two cases.

Case 1. In this case, we let n = q1
k
1 q2

k
2 . . . qr

kr with at least one ks > 1. Let

k
i
> 1 for some i = 1, 2, . . . , r. Then for any j = 1, 2, . . . , r; q

j
does not divide

1 + q1
k
1 q2

k
2 . . . qi

k
i
−1 . . . qr

kr and hence o(1 + q1
k1 q2

k2 . . . qi
k
i
−1 . . . qr

kr ) = n, i.e.,

1 + q1
k1 q2

k2 . . . qi
k
i
−1 . . . qr

kr is a generator of Zn other than 1. Then by the similar

argument as in the proof of Lemma 1, we can prove that ΓP (Zn;
{

1
}

) is strongly

connected.

Case 2. Here we let n = q
1
k1 q

2
k2 . . . q

r
kr such that k

i
= 1, for all i = 1, 2, . . . , r; i.e.,

n = q
1
q
2
. . . q

r
. Without any loss of generality, we assume that q

1
< q

2
< · · · < q

r
.

Take t = q1q2 . . . qr−1 . If qr does not divide 1 + t, then for any j = 1, 2, . . . , r; qj
does not divide 1 + t and hence 1 + t is a generator of Zn other than 1. Then by the

similar argument as in the proof of Lemma 1, we can find a cycle consisting of all

the vertices of ΓP (Zn;
{

1
}

). Otherwise, if q
r

divides 1 + t, then 1, t can be expressed

as 1 = aqr + x and t = bqr − x, where a, b ∈ Z and qr does not divide x. Then

1+2t = aq
r

+x+2bq
r
−2x = (a+2b)q

r
−x. This implies q

r
can not divide 1+2t and

hence 1 + 2t is a generator of Zn other than 1. Then by the similar argument as in

the proof of Lemma 1, we can find a cycle consisting of all the vertices of ΓP (Zn;
{

1
}

).

Consequently, ΓP (Zn;
{

1
}

) is strongly connected.

Now, we are in a position to characterize the group Zn for which ΓP (Zn;
{

1
}

) is

strongly connected. Combining Theorem 2, Lemma 1 and Lemma 2, we have the

following result.

Theorem 3. Let n ≥ 3 be an integer such that n = q1
k
1 q2

k
2 . . . qr

kr , where q1 , q2 , . . . , qr
are distinct primes. Then ΓP (Zn;

{
1
}

) is strongly connected.

Now, we focus on ΓP (Sn;S), where Sn is the permutation group on n symbols and S

is a generating set of Sn. We know that {(1 2), (1 2 . . . n)} is a generator of Sn. Now,

we give an interesting result for ΓP (Sn; {(1 2), (1 2 . . . n)}).

Theorem 4. Let S = {(1 2), (1 2 . . . n)} for all n ≥ 3. Then the following statements
are equivalent:
(i) There exist two arcs; one from eSn

to (1 2) and another from (1 2) to eSn
in ΓP (Sn;S),

(ii) There exist two arcs; one from eSn
to (1 2 · · · n) and another from (1 2 · · · n) to eSn

in
ΓP (Sn;S),
(iii) n is of the form r + 1, for some prime r.

Proof. (i) =⇒ (ii) : First we assume that there exist two arcs; one from

e
Sn

to (1 2) and another from (1 2) to e
Sn

in ΓP (Sn;S). Then o((1 2)e
Sn
s1)

and o(e
Sn

(1 2)s2) are prime numbers for some s1, s2 ∈ {(1 2), (1 2 . . . n)}. If

s1 = s2 = (1 2), then o((1 2)e
Sn
s1) = 1 and o(e

Sn
(1 2)s2) = 1, a contradiction

to the fact that o((1 2)e
Sn
s1) and o(e

Sn
(1 2)s2) are prime numbers. This implies

we must have s1 = s2 = (1 2 . . . n). By the given conditions, it follows that

o((1 2)(1 2 . . . n)) is prime. Let o((2 3 . . . n)) = q, for some prime number q. Then
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o((2 3 . . . n)−1) = o((2 n (n− 1) . . . 3)) = q. Therefore, o((1 2 . . . n)−1e
Sn

(1 2)) =

o((2 n (n − 1) . . . 3)) = q and o(e
Sn

(1 2 . . . n)(1 2)) = o((1 2)(2 3 . . . n)(1 2)) = q.

Consequently, there exist two arcs; one from e
Sn

to (1 2 . . . n) and another from

(1 2 . . . n) to e
Sn

in ΓP (Sn;S).

(ii) =⇒ (iii) : Now, we assume that there exists an arc from e
Sn

to (1 2 · · · n) in

ΓP (Sn;S). Thus o((1 2 . . . n)−1e
Sn
s) is a prime for some s ∈ {(1 2), (1 2 . . . n)}.

Clearly, s must be equal to (1 2). Therefore, o((1 2 . . . n)−1e
Sn

(1 2)) = o((2 n (n −
1) . . . 3)) is r for some prime r. But being an (n− 1)-cycle, o((2 n (n− 1) . . . 3)) =

n− 1. Therefore, n = r + 1, where r is prime.

(iii) =⇒ (i) : Finally, we assume that n = r + 1, for some prime r. Then (1 2) =

e
Sn

(1 2 . . . n)(2 n (n−1) . . . 3) and e
Sn

= (1 2)(1 2 . . . n)(2 n (n−1) . . . 3), where

o((2 n (n − 1) . . . 3)) = n − 1 = r. Consequently, there is an arc from e
Sn

to (1 2)

and another arc from (1 2) to e
Sn

in ΓP (Sn;S).

Theorem 5. Let S = {(1 2), (1 2 . . . n)} for all n ≥ 3. Then ΓP (Sn;S) is strongly
connected.

Proof. First we take n = 3, then from the Figure 1, we have ΓP (S3; {(12), (123)})
is a complete graph with loop at each vertex. Now, we prove that for n ≥ 4, any

permutation α ∈ Sn is strongly connected with e
Sn

. Actually, we prove this theorem

by induction on m, the number of transpositions in α when α is expressed as product

of transpositions. For m = 1, α ∈ Sn is a 2-cycle. If α 6= (1 2), then α = e
Sn

(1 2)(1 2)α

and eSn
= α(1 2)(1 2)α, where e

Sn
is the identity of Sn and o((1 2)α) is either 2 or

3. This implies both eSn → α and α → e
Sn

in ΓP (Sn;S). On the other hand, if

α = (1 2), then there exist two distinct elements a, b such that a, b /∈ {1, 2}. Thus,

there exists (a b) ∈ Sn such that (a b) = (1 2)(1 2)(a b) and (1 2) = (a b)(1 2)(a b),

which implies that (1 2)→ (a b) and (a b)→ (1 2) and hence e
Sn
→ (a b)→ (1 2) and

(1 2)→ (a b)→ e
Sn

exist in ΓP (Sn;S). Therefore the result is true for m = 2.

We assume that the result is true for any permutation with at most (m− 1) (m ≥ 2)

transpositions when that permutation is expressed as product of transpositions, i.e.,

every permutation consisting of (m − 1) or less transpositions is strongly connected

with e
Sn

in ΓP (Sn;S). Let σ = τ(a b) ∈ Sn be a permutation consisting of m

transpositions, where τ ∈ Sn is a permutation consisting of (m − 1) transpositions.

So by induction hypothesis, τ is strongly connected with e
Sn

in ΓP (Sn;S). Here two

cases arise.

Case 1. We first suppose that (a b) 6= (1 2). Then σ = τ(1 2)(1 2)(a b) and τ =

σ(1 2)(1 2)(a b) such that order of (1 2)(a b) is either 2 or 3. Therefore, there exist two

arcs σ → τ and τ → σ in ΓP (Sn;S). Consequently, σ is strongly connected with e
Sn

in ΓP (Sn;S).

Case 2. We assume that (a b) = (1 2). Since n ≥ 4, so there exists (c d) ∈ Sn

such that a, b, c, d are distinct. Then τ(c d) = σ(1 2)(c d) and σ = τ(c d)(1 2)(c d)

which implies that σ → τ(c d) and τ(c d) → σ are two paths in ΓP (Sn;S). Again,

τ = τ(c d)(1 2)(1 2)(c d) and τ(c d) = τ(1 2)(1 2)(c d) such that order of (1 2)(a b)
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is either 2 or 3. Therefore, τ(c d) → τ and τ → τ(c d) are another two paths in

ΓP (Sn;S). Consequently, σ is strongly connected with e
Sn

in ΓP (Sn;S) and hence

by the method of mathematical induction the result follows.

Using similar kind of argument as in the proof of Theorem 5, we can prove following

two theorems.

Theorem 6. For n ≥ 3, the graph ΓP (Sn;S) is strongly connected, where the generating
set S is given by S = {(a b), (1 2 · · · n) : 1 ≤ a < b ≤ n satisfying gcd(b− a, n) = 1}.

Theorem 7. Let S be the set of all 2-cycles in Sn (n ≥ 3). Then ΓP (Sn;S) is strongly
connected.

Now, we characterize strongly connectedness property of ΓP (An;S), where An is the

alternating group on n symbols and S is a generating set of An.

Theorem 8. Let S be the set of all 3-cycles in the alternating group An on n symbols
(n ≥ 3). Then ΓP (An;S) is strongly connected.

Proof. Let An be the alternating group on n symbols in {a1, a2, . . . , an}. We now

show that any nonidentity element σ ∈ An is strongly connected with e
An

, the identity

of An.

Case 1. Let σ = (ai aj ak) be a 3-cycle. Then σ = e
An

(ai ak aj)(ai ak aj) and e
An

=

σ(ai aj ak)(ai aj ak). Therefore, e
An
→ σ and σ → e

An
are two arcs in ΓP (An;S).

Case 2. Let σ ( 6= e
An

) ∈ An be an element such that σ is not a 3-

cycle. Expressing σ as a product of 3-cycles, we get σ=(ai1 ai2 ai3)

(ai4 ai5 ai6) · · · (aik−8
aik−7

aik−6
) (aik−5

aik−4
aik−3

) (aik−2
aik−1

aik)

=e
An

(ai1 ai2 ai3) (ai4 ai5 ai6) · · · (aik−8
aik−7

aik−6
) (aik−5

aik−4
aik−3

) (aik−2

aik−1
aik) = τ

1
(aik−5

aik−4
aik−3

) (aik−2
aik−1

aik), where τ
1

= e
An

(ai1 ai2 ai3) (ai4
ai5 ai6) · · · (aik−8

aik−7
aik−6

). Again, from the relation between τ
1

and σ, we have

τ
1

= σ(aik−2
aik aik−1

)(aik−5
aik−3

aik−4
). Therefore, there exist two arcs τ

1
→ σ and

σ → τ
1

in ΓP (An;S). Now, τ
1

is either the identity permutation or 3-cycle or a

product of more than one 3-cycles. If τ
1

= e
An

, then we have done. Again, if τ
1

is a

3-cycle, then similar to Case 1, we have two paths σ → τ1 → e
An

and e
An
→ τ1 → σ

in ΓP (An;S). Finally, if τ
1

is a product of more than one 3-cycles, then we continue

the same process as in Case 2 and after a finite number of steps (t steps say), we get

τ
t

such that either τ
t

is the identity permutation or a 3-cycle. Therefore, in this case,

there exist two paths one from σ to e
An

and another from e
An

to σ in ΓP (An;S).

For each positive integer n ≥ 4, the dihedral group of degree n, denoted by Dn, is

defined by Dn = {〈a, b〉 : o(a) = n, o(b) = 2, ba = a−1b}. We know that Dn is a

noncommutative group containing exactly 2n elements.

Now, we study graph theoretic properties of ΓP (Dn;S).
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Theorem 9. For each positive integer n ≥ 4, ΓP (Dn;S) is a complete 2n-graph with one
loop at each vertex, where S = {a, b} is the generating set of Dn.

Proof. Let H = 〈a〉. Then H is a subgroup of Dn of order n. Moreover, Dn = H∪K,

where K = Hb is a right coset of H different from H. Then all the n elements of

K are of order 2. Let x ∈ Dn be an arbitrary element. Since x = xbb, so there is

a loop at each vertex in ΓP (Dn;S). To show ΓP (Dn;S) is complete, let x, y be any

two distinct vertices in ΓP (Dn;S). Then the following four cases arise.

Case 1. Let x, y ∈ H. Then x = at1 and y = at2 for some positive integers t1, t2.

Since y = at2 = at1bbat2−t1 = xbbat2−t1 and o(bat2−t1) = 2, so there is an arc from x

to y in ΓP (Dn;S).

Case 2. Let x, y ∈ K. Then x = as1b and y = as2b for some positive integers s1, s2.

Since y = as2b = as1bbas2−s1b = xbas2−s1b and o(as2−s1b) = 2, so there is an arc from

x to y in ΓP (Dn;S).

Case 3. Let x ∈ H and y ∈ K. Then x = ar1 and y = ar2b for some positive integers

r1, r2. Since y = ar2b = ar1aar2−r1−1b = xaar2−r1−1b and o(ar2−r1−1b) = 2, so there

is an arc from x to y in ΓP (Dn;S).

Case 4. Let x ∈ K and y ∈ H. Then x = al1b and y = al2 for some positive integers

l1, l2. Since y = al2 = al1babal2−l1+1 = xabal2−l1+1 with o(bal2−l1+1) = 2, it follows

that there is an arc from x to y in ΓP (Dn;S).

Considering all the cases, we conclude that ΓP (Dn;S) is a complete 2n-graph with

loop at each vertex.

A dicyclic group Q4n is a group of order 4n with generators a and b such that the

group has the presentation Q4n =
{
〈a, b〉 : o(a) = 2n, an = b2, aba = b

}
, where n > 1

is a positive integer.

Theorem 10. For each positive integer n ≥ 2, ΓP (Q4n;S) is strongly connected, where
S = {a, b} is the generating set of Q4n.

Proof. Clearly, Q4n =
{
〈a, b〉 : o(a) = 2n, an = b2, aba = b

}
= {e

Q4n
, a, . . . , a2n−1,

b, ba, . . . , ba2n−1} =
{
e
Q4n

, a, a2, . . . , a2n−1
}
∪
{
b, ba, ba2, . . . , ba2n−1

}
= U ∪V , where

e
Q4n

is the identity element ofQ4n and U = 〈a〉 is the cyclic subgroup ofQ4n generated

by a and also V = bU is a left coset of U different from U . Since ΓP (U ; {a}) ∼=
ΓP (Z2n;

{
1
}

), so by the similar argument as in the proof of Lemma 2, we can prove

that ΓP (U ; {a}) is strongly connected. Since o(a) = o(an+1) and aba = b, so we have

a cycle Cb := (b → ban+1 → ba2(n+1) → · · · → bai(n+1) → · · · → ba(2n−1)(n+1) → b)

based at b consisting of all 2n elements of V . Since e
Q4n

= bbb2 and ban = e
Q4n

ban,

so we have two arcs one from b to e
Q4n

and another from e
Q4n

to ban in ΓP (Q4n;S).

Therefore ΓP (Q4n;S) is strongly connected for all n ≥ 2.

A generalized quaternion group Q2k+1 is a group of order 2k+1 with gen-

erators a and b such that the group has the presentation Q2k+1 =
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〈a, b〉 : o(a) = 2k, a2k−1

= b2, aba = b
}

. So, it is the dicyclic group with parameter

2k−1. But here we discuss strongly connectedness property of ΓP (Q2k+1 ;S) indepen-

dent from Theorem 10.

Theorem 11. For each positive integer k(≥ 2), ΓP (Q2k+1 ;S) is strongly connected,
where S = {a, b} is the generating set of Q2k+1 .

Proof. Clearly, Q2k+1 = U ∪ V , where U = 〈a〉 is the cyclic subgroup of order 2k

in Q2k+1 generated by a and also V = Ub is a right coset of U different from U .

Since o(a) is 2k, so o(a2k−1+1) is 2k and hence U = 〈a2k−1+1〉. Therefore Ce :=

(e
Q

2k+1
→ a2k−1+1 → a2 → · · · → ai2

k−1+i → · · · → a2k−2k−1−1 → e
Q

2k+1
) is cycle

based at e
Q

2k+1
consisting of all 2k elements of U . Since a2k−1+1 is generator of U

and aba = b, so we have a cycle Cb := (b → a2k−1−1b → a−2b → · · · → ai2
k−1+ib →

· · · → a2k−2k−1−1b → b) based at b consisting of all 2k elements of V . Also we have

two arcs one from b to e
Q

2k+1
and another from e

Q
2k+1

to a2k−1

b in ΓP (Q2k+1 ;S).

Therefore ΓP (Q2k+1 ;S) is strongly connected for all k ≥ 2.

A semi-dihedral group SD2m is a group of order 2m with generators a and b such that

the group has the presentation SD2m={〈a, b〉 : o(a)=2m−1, o(b)=2, ba=a2m−2−1b},
where m ≥ 4 is any positive integer. Here SD2m ={e

SD2m
, a, . . . , a2m−1−1, b, ab, . . . ,

a2m−1−1b}={e
SD2m

, a, . . . , a2m−1−1} ∪{b, ab, . . . , a2m−1−1b} = H ∪K, where e
SD2m

is

the identity element of SD2m and H = 〈a〉 is the cyclic subgroup of SD2m generated

by a and also K = Hb is a right coset of H different from H.

Here (aib)(aib) = aiai(2
m−2−1) = ai2

m−2(mod 2m−1), for all i ∈
{

1, 2, . . . , 2m−1
}

. Hence

for all i ∈
{

1, 2, . . . , 2m−1
}

,

o(aib) =

{
2, if i is even,

4, otherwise.

Thus the order of any element of K is either 2 or 4 and also o(a2m−2

) = 2. Therefore

prime order elements of SD2m are a2m−2

, b, a2b, a4b, . . . , a2m−1−2b.

Theorem 12. For each positive integer m ≥ 4, ΓP (SD2m ;S) is strongly connected,
where S = {a, b} is the generating set of SD2m .

Proof. Clearly, SD2m = H ∪ K, where H = 〈a〉 is the cyclic subgroup of order

2m−1 in SD2m and also K = Hb is a right coset of H different from H. Since

o(a) = o(a2m−2+1), so by the similar argument as in the proof of Theorem 11, we

have a cycle Ce based at e
SD2m

consisting of all 2m−1 elements of H. Since a2m−2+1

is a generator of H and ba = a2m−2−1b, so by the similar argument as in the proof

of Theorem 11, we have a cycle Cb based at b consisting of all 2m−1 elements of
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K. Also we have two arcs one from e
SD2m

to ab and another from ab to a2m−2+1 in

ΓP (SD2m ;S). Consequently, ΓP (SD2m ;S) is strongly connected for all m ≥ 4.

In [10], the authors described the groups U6n and V8n for even positive integer n; and

in [6], the authors further studied the group V8n. According to them, U6n and V8n

are described as follows :

U6n =
{
〈a, b〉 : o(a) = 2n, o(b) = 3, a−1ba = b−1

}
,

V8n =
{
〈a, b〉 : o(a) = 2n, o(b) = 4, aba = b−1, ab−1a = b

}
,

where n is a positive integer.

Theorem 13. For each positive integer n, ΓP (U6n;S) is strongly connected, where
S = {a, b} is the generating set of U6n.

Proof. Clearly, U6n =
{
〈a, b〉 : o(a) = 2n, o(b) = 3, a−1ba = b−1

}
= {e

U6n
, a, a2, . . . ,

a2n−1, b, ba, ba2, . . . , ba2n−1, b2, b2a, b2a2, . . . , b2a2n−1} = {e
U6n

, a, a2, . . . , a2n−1} ∪
{b, ba, ba2, . . . , ba2n−1} ∪ {b2, b2a, b2a2, . . . , b2a2n−1} = W1 ∪ W2 ∪ W3, where e

U6n

is the identity element of U6n, W1 = 〈a〉 is the cyclic subgroup of U6n generated

by a, W2 = bW1 and W3 = b2W1 are both left cosets of W1. Since ΓP (W1; {a}) ∼=
ΓP (Z2n;

{
1
}

), so by the similar argument as in the proof of Lemma 2, we can prove

that ΓP (W1; {a}) is strongly connected. Since o(a) = o(an+1) and a−1ba = b−1, so

by the similar argument as in the proof of Theorem 10, we have two cycles; one cycle

Cb containing every 2n elements of W2 and another cycle Cb2 consisting of all 2n

elements of W3. Also, we have four arcs; e
U6n
→ ban, b→ e

U6n
, b2 → b, b→ b2an in

ΓP (U6n;S). Consequently, ΓP (U6n;S) is strongly connected for every positive integer

n.

By similar kind of argument as in the proof of Theorem 13, we can prove the following

theorem.

Theorem 14. For every positive integer n, ΓP (V8n;S) is strongly connected, where
S = {a, b} is the generating set of V8n.

Now, we investigate various graph theoretic properties of ΓP (G;S) of a finite group

G with a generating set S. We know that if S contains the identity element of a

finite group G, then in Γ1(G;S) and in OΓ(G;S) there is a loop at every vertex.

But ΓP (G;S) may not contain any loop even if the identity element belongs to the

generating set S of G. In fact, the graph ΓP (Z4; {0, 1}) is such a graph which does

not contain any loop.

Theorem 15. For a finite group G and its any generating set S, ΓP (G;S) has one loop
at each vertex if and only if generating set S contains a prime order element.
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Proof. First we assume that ΓP (G;S) has a loop at any vertex x. Then there exists

an element s ∈ S such that o(x−1xs) is prime, i.e., o(s) is prime. Therefore, S contains

an element of prime order.

Conversely, suppose that generating set S contains an element b of prime order. Let

x ∈ G be an arbitrary element. Then x = xbb−1 such that o(b−1) is prime. This

implies there is a loop at each vertex in ΓP (G;S).

Theorem 16. If G is a finite group and S is a generating set of G such that S = S−1,
then ΓP (G;S) is undirected, i.e., for two distinct vertices a, b, if a→ b is an arc in ΓP (G;S),
then b→ a is also an arc in ΓP (G;S).

Proof. Let a, b ∈ G such that a → b is an arc in ΓP (G;S). Then o(b−1as) = p, for

some prime p. This implies o((b−1as)−1) = p, i.e., o(s−1a−1b) = p, i.e., o(a−1bs−1) =

p. Now, S = S−1 implies s−1 ∈ S and hence b→ a is an arc in ΓP (G;S).

Theorem 17. The graph ΓP (G;S) of a non trivial finite group G together with its any
generating set S is an essential graph. Moreover, the order prime Cayley graph OΓ(G;S) of
a non trivial finite group G together with its any generating set S is an essential graph.

Proof. By Theorem 15, it follows that ΓP (Z2;
{

1
}

) has loop at each vertex and also

ΓP (Z2;
{

0, 1
}

) ∼= OΓ(Z2;
{

1
}

) ∼= OΓ(Z2;
{

0, 1
}

) is the complete graph with one loop

at each vertex. Therefore, both ΓP (Z2;
{

1
}

) and ΓP (Z2;
{

0, 1
}

) contain no sources

and no sinks and hence they are all essential graphs.

Now, let G be a finite group with |G| > 2 and S be a generating set of G. Also, let

g ∈ G be an arbitrary element. Since G contains at least one element a (say) of prime

order, so for an element s ∈ S with o(sa) = n, clearly (Cg : g → g(sa) → g(sa)2 →
· · · → g(sa)n = g) is a cycle based at g in ΓP (G;S). Therefore, ΓP (G;S) contain no

sources and no sinks and hence ΓP (G;S) is essential graph. Consequently, OΓ(G;S)

is also an essential graph.

Corollary 2. The graph ΓP (G;S) of a non trivial finite group G together with its
any generating set S cannot be an acyclic graph. Moreover, the order prime Cayley graph
OΓ(G;S) of a non trivial finite group G together with its any generating set S cannot be
acyclic.

We know that the Cayley graph Γ1(G;S) of a finite cyclic group G = 〈g〉 with a

generating set S = {g} does not satisfy Condition (L) and hence does not satisfy

Condition (K). Again, the graph ΓP (Z2;
{

1
}

) does not satisfy Condition (L).

Theorem 18. The graph ΓP (G;S) of a non trivial finite group G together with minimal
generating set S satisfies Condition (L) if and only if G is not isomorphic to a cyclic 2-group.
Moreover, ΓP (G;S) satisfies Condition (L) if and only if every vertex in ΓP (G;S) is the base
of two or more cycles.
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Proof. First we suppose that G � Z2n for any positive integer n. Then two cases

arise.

Case 1. If |G| has an odd prime factor, then G contents at least two elements a and

b (say) of prime order and thus it follows that |s−1(v)| ≥ 2 for every v ∈ ΓP (G;S).

Hence ΓP (G;S) satisfies Condition (L). To show every vertex in ΓP (G;S) is the

base of two or more cycles, let g be any element in ΓP (G;S) such that there exists

a cycle P
′

g based at g. Then for an element s ∈ S, either g → gsa is a subpath

of P
′

g or g → gsa is not a subpath of P
′

g. If g → gsa is a subpath of P
′

g, then

there exists a cycle (C1 : g → g(sb) → g(sb)2 → · · · → g(sb)n = g) based at g.

On the other hand, if g → gsa is not a subpath of P
′

g, then there exists a cycle

(C2 : g → g(sa)→ g(sa)2 → · · · → g(sa)n = g) based at g.

Case 2. If |G| has no odd prime factor, then |G| = 2m for some positive integer

m. Moreover, since G � Z2n for any positive integer n, it follows that G is non-

cyclic. Thus, minimal generating set of G contains at least two elements s1, s2 (say).

Therefore, |s−1(v)| ≥ 2 for every v ∈ ΓP (G;S) and hence ΓP (G;S) satisfies Con-

dition (L). To show ΓP (G;S) has two or more cycles at every vertex, let P
′′

g
1

be a

cycle in ΓP (G;S) based at any vertex g1 . Also, let d ∈ G be such that o(d) = 2

and o(s1d) = n1, o(s2d) = n2. Then either g
1
→ g

1
s1d is a subpath of P

′′

g
1

or

g
1
→ g

1
s1d is not a subpath of P

′′

g
1
. If g

1
→ g

1
s1d is a subpath of P

′′

g
1
, then there

exists a cycle (C ′2 : g1 → g1s2d → g1(s2d)2 → · · · → g1(s2d)n2 = g1) based at g1 .

On the other hand, if g
1
→ g

1
s1d is not a subpath of P

′′

g
1
, then there exists a cycle

(C ′1 : g
1
→ g

1
s1d → g

1
(s1d)2 → · · · → g

1
(s1d)n1 = g

1
) based at g

1
. Hence every

vertex in ΓP (G;S) is the base of two or more cycles.

Conversely, suppose that G ∼= Z2k for some positive integer k. Then minimal gener-

ating set of G contains exactly one element and also G contains a unique element of

prime order. Then from the proof of Theorem 2, it follows that ΓP (G;S) is isomorphic

to a cycle of length 2n and hence ΓP (G;S) does not satisfy Condition (L).

From the above theorem, it is clear that ΓP (G;S) of a finite group G satisfies Condi-

tion (K) if and only if G � Z2k .

The next theorem describes when OΓ(G;S) of a finite group G with any generating

set S satisfies Condition (L).

Theorem 19. Let G be a finite group with at least 3 elements and S be a generating set
of G. Then the order prime Cayley graph OΓ(G;S) satisfies Condition (L).

Proof. If G is a non-cyclic group containing at least 3 elements, then clearly |S| ≥ 2

and so there are at least two arcs emitted from every vertex ofOΓ(G;S). Consequently

OΓ(G;S) satisfies Condition (L). On the other hand, if G is a cyclic group of order

n > 2 and |S| ≥ 2, then by the similar argument, we conclude that OΓ(G;S) satisfies

Condition (L).

Finally, we consider the case when G is cyclic and S contains exactly one element.

Then two cases arise.
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Case 1. Suppose |G| = n(> 2) is a prime number. Then there is an arc between any

two vertices of OΓ(G;S) and therefore, OΓ(G;S) satisfies Condition (L).

Case 2. Assume that |G| = n(> 2) is a composite number. Then there exists at

least one element a ∈ G such that o(a) is prime. Clearly, a 6∈ S = {s} and therefore,

it follows that |s−1(v)| ≥ 2 for every v ∈ ΓP (G;S). Consequently, OΓ(G;S) satisfies

Condition (L).

Remark 4. By similar argument as in Theorem 18, we can show that the order prime
Cayley graph OΓ(G;S) satisfies Condition (K), where G is a finite group containing at least
3 elements and S is a generating set of G. Also, OΓ(Z2;

{
1
}

) satisfies Condition (L) as well
as Condition (K).

Theorem 20. Let G be a nontrivial finite group and S be a minimal generating set.
Then ΓP (G;S) is a nontrivial graph if and only if G � Z2n for any positive integer n > 1.

Proof. Clearly, the graph ΓP (Z2;
{

1
}

) is a disconnected graph and has loop at each

of its vertices. Therefore, ΓP (Z2;
{

1
}

) is a nontrivial graph. Now, we assume that

G � Z2n for any positive integer n > 1. Then by Theorem 18, it follows that every

vertex in ΓP (G;S) is the base of two or more cycles. Consequently, ΓP (G;S) is a

nontrivial graph.

Converse part follows from Theorem 2.

4. Leavitt path algebras of order prime Cayley graphs

In this section, we study some interesting properties of the Leavitt path algebra of

the order prime Cayley graph of a finite group G together with a generating set S of

G.

The authors (in their paper [5]) proved that the only possible values for the stable

rank of the Leavitt path algebras of row-finite graphs are 1, 2 and ∞. Later, in [11],

Larki and Riazi extended this result to an arbitrary graph. In [15], Nam and Phuc

computed the stable rank of Leavitt path algebras of Hopf graphs via ramification

datas and proved that possible values for the stable rank of the Leavitt path algebras

of Hopf graphs are 1, 2 and ∞. In the following theorem, we prove that the stable

rank of Leavitt path algebra LK(OΓ(G;S)) of non trivial finite group G together

its generating set S is 2. Moreover, we establish the following theorem which lists a

number of important properties of the Leavitt path algebra LK(OΓ(G;S)) that will

be useful in our further discussion.

Theorem 21. Let G be a non trivial finite group and S be any generating set. Then
(i) The Leavitt path algebra LK(OΓ(G;S)) is a purely infinite simple ring,
(ii) The Leavitt path algebra LK(OΓ(G;S)) is a prime ring,
(iii) The stable rank of LK(OΓ(G;S)) is 2.
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Proof. (i) By Theorem 19 and Remark 4, it is clear that OΓ(G;S) satisfies Con-

dition (L). Since 〈S〉 = G, Cayley graph Γ1(G;S) is strongly connected. Here Cay-

ley graph Γ1(G;S) is a subdirected graph of OΓ(G;S). Hence for any two vertices

v1, v2 ∈ (OΓ(G;S))0, there exists a path from v1 to v2 and vice versa and therefore,

the hereditary and saturated subsets of (OΓ(G;S))0 are ∅ and G = (OΓ(G;S))0.

Also, strongly connectedness property of OΓ(G;S) implies OΓ(G;S) contains a cy-

cle. Therefore, by [1, Theorem 3.1.10], it follows that LK(OΓ(G;S)) is purely infinite

simple.

(ii) Since OΓ(G;S) is strongly connected, so OΓ(G;S) must be downward di-

rected. Therefore, by [1, Theorem 4.1.5], it follows that the Leavitt path algebra

LK(OΓ(G;S)) is a prime ring.

(iii) It is clear that OΓ(G;S) is not an acyclic graph. Also, the hereditary and

saturated subsets of (OΓ(G;S))0 are ∅ and G = (OΓ(G;S))0. Therefore, by [1,

Theorem 4.4.19], we conclude that the stable rank of LK(OΓ(G;S)) is 2.

Next we mention some interesting note.

Remark 5. (1) By Theorem 2 and [1, Corollary 2.5.15], it is clear that LK(ΓP (Z2n ;
{

1
}

))
is graded simple. Also, from [1, Corollary 4.2.14], it follows that LK(ΓP (Z2n ;

{
1
}

)) is iso-
morphic to M2n(K[x, x−1]).
(2) From Theorem 3 and Theorem 18, it is clear that LK(ΓP (Zn;

{
1
}

)) is purely infinite
simple if and only if n is of the form pm, where p is any odd prime and m is any positive
integer.
(3) From Fig.1, Theorem 5 and Theorem 18, it follows that LK(ΓP (Sn;S)) is purely infinite
simple, where S = {(12), (12 · · ·n)}. Also, by Theorem 8 and Theorem 18, we conclude that
LK(ΓP (An;S)) is purely infinite simple, where S is the set of all 3-cycles in An.
(4) From Theorem 10 and Theorem 18, LK(ΓP (Q4n;S)) is purely infinite simple, where
S = {a, b} is the generating set of Q4n.
(5) From Theorem 11 and Theorem 18, LK(ΓP (Q2k+1 ;S)) is purely infinite simple, where
S = {a, b} is the generating set of Q2k+1 .
(6) From Theorem 12 and Theorem 18, LK(ΓP (SD2m ;S)) is purely infinite simple, where
S = {a, b} is the generating set of SD2m .
(7) From Theorem 13 and Theorem 18, LK(ΓP (U6n;S)) is purely infinite simple, where
S = {a, b} is the generating set of U6n.

The Cuntz-Krieger Uniqueness theorem for Leavitt path algebra in [1, Theorem 2.2.16]

states that a ring homomorphism ϕ : LK(E)→ A, from a Leavitt path algebra LK(E)

to an K-algebra A is injective if the graph E satisfies Condition (L) and ϕ(v) 6= 0 for

all vertices v in E. For the Leavitt path algebra LK(OΓ(G;S)), we have the following

stronger version of the uniqueness theorem.

Theorem 22. Let G be a finite group with a generating set S and A be any K-algebra.
Then a ring homomorphism ϕ : LK(OΓ(G;S)) → A is injective if and only if ϕ(eG) 6= 0,
where eG is the identity element of G.
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Proof. Suppose ϕ(e
G

) 6= 0. Then for any vertex a ∈ (OΓ(G;S))0, ϕ(a) 6= 0 as

an = e
G

for some positive integer n. Also, by Theorem 19 and Remark 4, OΓ(G;S)

satisfies Condition (L). So by the Cuntz-Krieger Uniqueness theorem, we conclude

that ϕ is injective. The converse part is obvious.

Now, we calculate socle of the Leavitt path algebra LK(ΓP (G;S)) for any non trivial

finite group G together with its any generating set S.

Theorem 23. Let G be a non trivial finite group and S be its generating set. Then socle
of the Leavitt path algebra LK(ΓP (G;S)) is {0}, i.e., LK(ΓP (G;S)) contains no minimal
one sided left ideal.

Proof. Every vertex of ΓP (G;S) is a base vertex of some cycle in ΓP (G;S). Thus

ΓP (G;S) contains no line point. So by [1, Theorem 2.6.14], we conclude that socle of

the Leavitt path algebra LK(ΓP (G;S)) is {0}.

We know that finding out the Grothendieck group of a purely infinite simple

Leavitt path algebra is an important area of the study of Leavitt path alge-

bra. If we consider the Leavitt path algebras LK(ΓP (Q8;S)), LK(ΓP (Q16;S)) and

LK(ΓP (D4;S)), then one can find out that their Grothendieck groups K0 are given

by K0(LK(ΓP (Q8;S))) ∼= Z3 ⊕ Z3 ⊕ Z3, K0(LK(ΓP (Q16;S))) ∼= Z7 ⊕ Z21 and

K0(LK(ΓP (D4;S))) ∼= Z7. Moreover, using the following theorem one can find out

the Grothendieck group of the Leavitt path algebra LK(ΓP (Dn;S)) for any positive

integer n ≥ 4.

Theorem 24. For any positive integer n ≥ 4, the Leavitt path algebra LK(ΓP (Dn;S))
is isomorphic to the Leavitt algebra L(1, 2n), where S = {a, b} is the generating set of Dn.
Moreover, the Grothendieck group of the Leavitt path algebra LK(ΓP (Dn;S)) is isomorphic
to Z2n−1.

Proof. By Theorem 9, we have ΓP (Dn;S) is the complete 2n-graph with one loop

at each vertex. Then from [13, Theorem 4.2], it follows that LK(ΓP (Dn;S)) is iso-

morphic to Leavitt algebra L(1, 2n). Since the Grothendieck group K0(L(1, 2n)) is

isomorphic to Z2n−1, so we have K0(LK(ΓP (Dn;S))) ∼= Z2n−1.
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