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Abstract: In this paper, we will point out errors in Theorem 2, Theorem 4, Theorem

5, Proposition 2, Proposition 3, Theorem 8, and Theorem 9 by giving suitable coun-

terexamples. The statements of Theorem 2, Theorem 5, Proposition 2 and Proposition
3 of this paper have been reformulated and proofs are given.
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1. A correction of Theorem 2 of [1]

The following example shows that the statement of Theorem 2 of [1] is not correct.

Consider graph G′ with V (G′) = {a, b, c} and E(G′) = {e1, e2} where e1 = {a, b}
and e2 = {b, c}. Let G1, G2 be subgraphs of G′ as shown in the Figure 1 and let

Figure 1.

β1 = {G1, G2}. We see that both condition (i) and (ii) in Theorem 2 are satisfied.
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However, β1 is not a base for any topology on G′. For if β1 is a base for some graph

topology τ then clearly both G1 and G2 belong to τ . So, G1

⋂
G2 ∈ τ , but G1

⋂
G2

is a subgraph containing only the single vertex b and has no edges, so it cannot be

written as a union of members of β1. Hence β1 is not a base any graph topology on

G′.

We restate Theorem 2 of [1] as follows:

Theorem 1. Let (G,τ) be a graph topological space and let β ⊆ τ . Then, β is a base for
the topological space τ if and only if

i) for each v ∈ V (G), and for each H ∈ τ such that v ∈ V (H), ∃ Gi ∈ β such that
v ∈ V (Gi) ⊆ V (H).

ii) for each e ∈ E(G), and for each H ∈ τ such that e ∈ E(H), ∃ Gi ∈ β such that
e ∈ E(Gi) ⊆ E(H).

Proof. Suppose β is a base of τ .

(i) Let v ∈ V (H) for some H ∈ τ . Since β is a base for τ , therefore H =
⋃

i∈I Gi,

where Gi ∈ β for each i ∈ I. So v ∈ V (Gi) for some i ∈ I. Thus, v ∈ V (Gi) ⊆ V (H)

for some Gi ∈ β holds.

(ii) Let e ∈ E(H) for some H ∈ τ . Again since β is a base for τ we have H =
⋃

i∈I Gi

for some index set I. So e ∈ E(Gi) for some i ∈ I. Thus, e ∈ E(Gi) ⊆ E(H) for some

Gi ∈ β holds.

Conversely, let H ∈ τ and v ∈ V (H). Then by hypothesis, we have v ∈ V (Gi) ⊆ V (H)

for some Gi ∈ β. So, we have V (H) =
⋃

i∈I V (Gi) for some indexing set I.

Similarly, for each e ∈ E(H), we get, e ∈ E(Gi) ⊆ E(H) for some Gi ∈ β. So, we have

E(H) =
⋃

i∈J E(Gi) for some indexing set J . Hence, we have H =
⋃

i∈I∪J Gi which

shows that H can be expressed as the union of members of β. Since H is arbitrary,

we conclude that β is a base for τ .

2. An error in Theorem 4 of [1]

In this section, we point out an error in Theorem 4 of [1]. First we give two examples

to show that the statement is not correct. Consider the graph G in Figure 2.

Let us consider the subgraphs G1, G2, G3 of G as shown in the Figure 2 and let

K = {G1, G2, G3}. Then, clearly, we can see that E(G) =
⋃

Gi∈KE(Gi), i ∈ {1, 2, 3}.
So, K is subgraph cover. But K is not a base for the graph topology τ since no

member of K contains the vertex d.

Next, we consider the connected graph G = G′ in the previous section. Here β1 =

{G1, G2} form subgraph cover of G′ but we have seen that β1 is not a base for any

graph topology on G′.
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Figure 2.

3. Correction of Theorem 5 of [1]

In this section, we point out an error in the statement of Theorem 5 of [1] by giving

some examples and we will restate Theorem 5. Consider the following graph G:

Figure 3.

Consider the subgraph G1 of G as shown in the figure above. Clearly, τ = {K0, G,G1}
is graph topology. By definition of τ -neighbourhood of a vertex [1], we see that G1 is

a τ -neighbourhood of the vertex b. But b is not τ−isolated vertex of G. Similarly, if

we consider the edge e = {a, b} in G, then G1 is τ -neighbourhood of edge e = {a, b},
but e is not τ−isolated edge of G.

We now restate Theorem 5 of [1] as follows:

Theorem 2. Let v be a vertex and e be an edge in a graph G . Then

i) Every subgraph H of G containing v is a τ -neighbourhood of v if and only if v is a
τ -isolated vertex of G.

ii) Every subgraph H of G containing e is a τ -neighbourhood of e if and only if e is a
τ -isolated edge of G.
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Proof. (i) Suppose every subgraph H of G containing vertex v is a τ -neighbourhood

of v. Therefore, G[v] is a τ -neighbourhood of v which means that v is a τ -isolated

vertex of G. Conversely, let v be a τ -isolated vertex of G and a subgraph H of G

contains v. Then v ∈ G[v] ⊂ H which shows that H is a τ -neighbourhood of v.

The proof of (ii) is similar.

4. Error in Proposition 2 and Proposition 3 of [1]

In this section, we point out the errors in Proposition 2 and Proposition 3 of [1] by

giving some examples:

In Proposition 2, the graph G is d-closed as stated, however for K0 to be d-closed,

the graph under consideration must be without any isolated vertex. This can be

illustrated by taking G = K2 ∪K1 where V (K2) = {a, b} and V (K1) = {c}.
If we take τ = {K0, G,G[b]} then clearly τ is graph topology. But K∗0 =< E(G) > is

a subgraph induced by E(G) which has only one edge and only two vertex a and b.

Clearly, K∗0 /∈ τ that is K∗0 is not open which show that K0 is not d-closed.

Similarly in Proposition 3 of [1] , the graph under consideration must be a graph

without any isolated vertex. For a graph having isolated vertex, the statement of the

proposition need not be true. This can be seen by taking G to be the graph shown

in Figure 4. Consider the subgraph N3 of G as illustrated.

Figure 4.

If we take τ = {K0, G,G[b]} then clearly τ is graph topology. Also, we see that N3 has

no edges, so N3 is an empty graph that is also not open in τ . But, N∗3 =< E(G) >

is the path abc and clearly it is not open. So, N3 is not d-closed.

Proposition 2 and Proposition 3 of [1] may be reformulated as follows. The proofs of

both the two statements are straightforward.

Correction of Proposition 2 of [1] For graph G without isolated vertex, the null

graph K0 and the graph G in a graph topological space is d-closed.

Correction of Proposition 3 of [1] Let G be a graph without any isolated vertex.

If N is an empty subgraph of G which is not open in τ then N is d-closed.
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5. Error in Theorem 8 of [1]

In this section, we show that Theorem 8 of [1] is not true by giving some examples. As

demonstrated in the previous section, K0 is not d-closed in general. We will illustrate

that union of d-closed subgraphs need not be d-closed. Consider the connected graph

G illustrated in Figure 5. If G1, G2, G3 are the subgraphs as in the figure below and

if we take τ = {K0, G,G1, G2, G3}, then clearly τ is a graph topology on G.

Figure 5.

Here we consider the subgraphs H1, H2 of G as indicated in Figure 6. Clearly, we see

that E(H∗1 ) = {{a, b}, {b, c}, {c, d}} and E(H∗2 ) = {{a, b}, {b, d}}. We observe that

Figure 6.

H∗1 = G1 and H∗2 = G2 which are open in τ . So by definition of d-closed we have

both H1 and H2 are d-closed. Now the subgraph H1

⋃
H2 is a 3-cycle bcdb.

So, E((H1

⋃
H2)∗) = {{a, b}} and so (H1

⋃
H2)∗=< E(G) − E(H1

⋃
H2) > is

K2 = ab and it is not open in τ . This shows that H1

⋃
H2 is not d-closed.

6. Error in Theorem 9 of [1]

In this section, we point out an error in Theorem 9 of [1] by giving some examples to

show that the statement is not true. We will consider the following example to show
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that condition (iii) of Theorem 9 of [1] is false.

Let G be the graph shown in Figure 7 and H1 a subgraph of G. If we take τ =

{K0, G,H1, G[e], G[d]} then we see that τ is a graph topology. Now consider two

subgraph H2, H3 of G illustrated in Figure 8.

Figure 7.

Figure 8.

Here we have V (H2) = {a, b}, V (H3) = {b, c}, N(V (H2)) = {e, c} and

N(V (H3)) = {a, d}. So, (V (H2))ς = (V (H2)
⋃
N(V (H2)))ς = {d} and (V (H3))ς =

(V (H3)
⋃
N(V (H3)))ς = {e}. The subgraphs induced by {d} and {e} are G[d] and

G[e] which are open in τ . So, by definition of n-closed we have both H2 and

H3 are n-closed. However, H2

⋂
H3 = {b} and N(V (H2

⋂
H3)) = {a, c}. So,

(V (H2

⋂
H3))ς = (V (H2

⋂
H3)

⋃
N(V (H2

⋂
H3)))ς = {d, e}. But the subgraph in-

duced by (V (H2

⋂
H3))ς is a subgraph containing two vertex d and e and one edge

joining d and e, which is not open. Thus, H2

⋂
H3 is not n-closed.
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