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Abstract: For a connected graph G of order n, the distance Laplacian matrix DL(G)
is defined as DL(G) = Tr(G) − D(G), where Tr(G) is the diagonal matrix of vertex

transmissions and D(G) is the distance matrix of G. The largest eigenvalue of DL(G) is

the distance Laplacian spectral radius of G and the quantity DLE(G) =
∑n
i=1 |ρLi (G)−

2W (G)
n
|, where W (G) is the Wiener index of G, is the distance Laplacian energy of G.

Brooms of diameter 4 are the trees obtained from the path P5 by appending pendent

vertices at some vertex of P5. One of the interesting and important problems in spectral
graph theory is to find extremal graphs for a spectral graph invariant and ordering them

according to this graph invariant. This problem has been considered for many families

of graphs with respect to different graph matrices. In the present article, we consider
this problem for brooms of diameter 4 and their complements with respect to their

distance Laplacian matrix. Formally, we discuss the distance Laplacian spectrum and
the distance Laplacian energy of brooms of diameter 4. We will prove that these families
of trees can be ordered in terms of their distance Laplacian energy and the distance

Laplacian spectral radius. Further, we obtain the distance Laplacian spectrum and
the distance Laplacian energy of complement of the family of double brooms and order
them in terms of the smallest non-zero distance Laplacian eigenvalue and the distance

Laplacian energy.
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2 On distance Laplacian spectral invariants

1. Introduction

The present article considers only connected, simple and undirected graphs. A graph

G is as usual denoted by G = G(V,E), where V and E are its vertex and edge set.

The number of elements in V and E is the order n and the size m of G, respectively.

The complement of G is denoted by G. For other undefined notations, see [8].

The adjacency matrix A(G) associated to G is a (0, 1)-square matrix indexed by order

n, where (i, j) term is 1, if i is adjacent to j and taken 0, otherwise. Let Deg(G) be the

diagonal matrix of vertex degrees . The real symmetric matrix L(G) = Deg(G)−A(G

is called the Laplacian matrix. L(G) is positive semi-definite matrix, so its eigenvalues

are non-negative real numbers and can be ordered as µ1 ≥ µ2 ≥ · · · ≥ µn−1 > µn = 0.

The Laplacian spectral ordering and the ordering of complements of trees on the basis

of µn−1 are given [1, 16, 21].

In a connected graph G, the distance between two vertices u 6= v ∈ V , denoted by

d(u, v), is defined as the length of the smallest path between them. The diameter

of G is the largest distance among any pair of vertices of G. The distance matrix

D(G) of G, is defined as D(G) = (d(u, v))u,v∈V . The transmission degree TrG(u) of

u ∈ V is the sum of the distances from u to every other vertex of G, mathematically,

TrG(u) =
∑
v∈V (G) d(u, v). We observe that TrG(u) is same as the u-th row sum of

D(G). The Weiner index W (G) of G is the sum of distances between all unordered

pairs of vertices. Let Tr(G) be the diagonal matrix with entries as the row sums of

D(G). The distance Laplacian matrix of G is defined by DL(G) = Tr(G)−D(G) and

is shortly denoted by DL. It immediately follows that DL(G) is the real symmetric

and positive semi-definite matrix. Besides, every row sum of DL(G) is 0, so 0 must

be the smallest eigenvalue of DL(G). The collection of all eigenvalues of DL(G) is

called the distance Laplacian spectrum (DL-spectrum) of G and we index them from

the largest to the smallest as follows

ρ1 ≥ ρ2 ≥ · · · ≥ ρn−1 ≥ ρn = 0,

where ρ1 and ρn−1 are known as the distance Laplacian spectral radius and the

second smallest distance Laplacian eigenvalue of graph G. More about DL matrix

can be found in [4–6, 19].

The distance Laplacian energy DLE(G) of a connected graph G is defined as

DLE(G) =

n∑
i=1

∣∣∣∣ρi − 2W

n

∣∣∣∣ .

Let σ be the positive integer such that ρσ ≥ 2W (G)
n and let Sk(G) =

k∑
i=1

ρi be the sum

of k largest DL-eigenvalues of G. Then using the fact that

n∑
i=1

ρi = 2W , it follows
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that [9]

DLE(G) = 2

(
Sσ(G)−

2σW

n

)
= 2 max

1≤j≤n

 j∑
i=1

ρi(G)−
2jW

n

 = 2 max
1≤i≤n

(
Si(G)−

2iW

n

)
.

For some recent progress on DLE(G), we refer to [9, 11, 12]. The DL spectral or-

dering of trees on the basis of DLE(G) and the DL spectral radius ρ1 can be seen in

[13, 17, 18]. The distance based spectral ordering of graph invariants can be seen in

[2, 3, 7, 20].

One of the interesting and important problems in spectral graph theory is to find

extremal graphs among all graphs of order n or among a class of graphs for a spectral

graph invariant. Another related problem is to order the graphs with respect a spec-

tral graph invariant. These problems has been considered for many families of graphs

with respect to different graph matrices(like adjacency matrix, (signless)Laplacian

matrix, distance matrix, distance (signless)Laplacian matrix) and is one of the hot

topics of the present research in spectral graph theory. The importance of these prob-

lems is manifold. In matrix theory it is a well known problem to find the extremal

values for the spectral and trace norms of a class of matrices. Also ordering the

matrices in a given class with respect to spectral and trace norms is an interesting

and hard problem in matrix theory. Since for a symmetric non-negative matrix the

spectral norm is same as the largest eigenvalue and the trace norm is the sum of the

absolute values of the eigenvalues of the matrix. It follows that distance Laplacian

spectral radius is the spectral norm of the matrix DL(G) and the distance Laplacian

energy is the trace norm of the matrix DL(G) − 2W (G)
n I, where I is the identity

matrix. These problems are also important from application point of view in dif-

ferent branches of science and social science. Applications of graph energies in the

chemistry of unsaturated conjugated molecules are well known. Somewhat related

are applications in crystallography, theory of macromolecules, as well as analysis and

comparison of protein sequences. Also not particularly unexpected are attempts to

apply graph energies in network analysis, including problems of air transportation,

satellite communication, and biology, see [14].

Here, in this paper our motive is to study these problems for brooms of diameter 4

and their complements with respect to their distance Laplacian matrix.

The manuscript is organized as follows: In Section 2, we find the DL spectrum and

the DL energy of broom trees of diameter 4 and discuss their ordering. We show

these trees can be arranged in order on the basis of both these spectral invariants.

In Section 3, we obtain DL eigenvalues and DLE of the complement of the family

of double broom of diameter 4 and order them in terms of the second smallest DL

eigenvalue and DLE.
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2. Distance Laplacian eigenvalues and energy of brooms of
diameter 4

For a connected graph G with V (G) = {v1, v2, . . . , vn}, a real valued vector X =

(x1, x2, . . . , xn)T ∈ Rn can be regarded as a mapping with domain V (G) which maps

vi to xi, for every i = 1, 2, 3, . . . , n. Also, it is known that

XTDL(G)X =
∑

{u,v}⊆V (G)

d(u, v)
(
xu − xv

)2
,

and ρ is the DL eigenvalue with the corresponding eigenvector 0 6= X if and only if

for every v ∈ V (G),

ρxv =
∑

u∈V (G)

d(u, v)
(
xv − xu

)
,

or equivalently,
ρxv = Tr(v)xv −

∑
u∈V (G)

d(u, v)xu. (2.1)

Equation (2.1) is known as (ρ,X)-eigenequation of DL(G) at v.

The following results can be found in [6] and is helpful in finding some DL-eigenvalues

of G.

Lemma 1. [6] Let G be a graph of order n. If S = {v1, v2, . . . , vs} is the independent set
of G satisfying N(vi) = N(vj) for every i, j ∈ {1, 2, . . . , s}. Then ∂ = Tr(vi) = Tr(vj) for
each i, j ∈ {1, 2, . . . , s} and ∂ + 2 is the DL eigenvalue of G with multiplicity at least s− 1.

Lemma 2. [6] Let G be a graph of order n. If W = {v1, v2, . . . , vω} is the clique of G
satisfying N(vi)−W = N(vj)−W for every i, j ∈ {1, 2, . . . , ω}, then ∂ = Tr(vi) = Tr(vj)
for each i, j ∈ {1, 2, . . . , ω} and ∂ + 1 is the DL eigenvalue of G with multiplicity at least
ω − 1.

The next result gives connects the eigenvalues of real symmetric matrix with the

eigenvalues of its principal submatrix.

Theorem 1 (Interlacing Theorem, [15]). Let M ∈ Mn be a real symmetric matrix.
Let A be a principal submatrix of M of order m, (m ≤ n). Then the eigenvalues of M and
A satisfy the following inequalities

λi+n−m(M) ≤ λi(A) ≤ λi(M), with 1 ≤ i ≤ m.

The broom P5(2, a) (see [10]) of diameter of 4 is obtained by attaching a pendent

vertices to the vertex v2 of P5, the generalized broom P5(3, a) is the obtained by

attaching a ≥ 2 pendent vertices to the vertex v3 of P5. Similarly, the double broom

P5(a, b), (or P5(1, a|n, b)) has degree 2 at the central vertex, while the other two non

pendent vertices may have arbitrary degree (say a and b with (a < b)). For reference,

we will denote these graphs by B(a), B(a′) and B(a, b) and are shown in Figure 1.
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Figure 1. Brooms of diameter 4.

In Spectral graph theory one of the most attractive and difficult problems is “ to find

the extremal graphs for a spectral invariant and to order the graphs on the basis of this

spectral invariant”. This problem has been considered for various families of graphs

with respect to different graph matrices and as such many articles have been published

in this direction. In general for a given graph matrix these types of problems are not

so easy. However, if one picks a class of graphs with some symmetry then such type of

problems can be solved up to some extent. For example, the DL spectral ordering of

trees on the basis of DLE(G) and the DL spectral radius can be seen in [13, 17, 18].

The distance based spectral ordering of graph invariants can be seen in [2, 3, 7, 20].

In this work we consider two classes of graphs namely, the brooms of diameter 4 and

their complements. We ask the following problems.

Problem 1. Characterize the brooms of diameter four in terms of spectral graph invari-
ants associated to the DL matrix?

Problem 2. Order the complement of family of brooms in terms of the DL spectral
parameters?

In the rest of present section, we will answer Problem 1 with respect to DL spectral

radius and the DL energy. In fact, we will prove that the brooms of diameter 4 can

be ordered on the basis of DL spectral radius and DL energy.

Next result completely gives the DL(G)-eigenvalues of the family B(a).

Proposition 1. The DL spectrum of B(a) with a = n − 4, consists of the eigenvalue
2a+10 with multiplicity a− 1, the simple eigenvalue 0 and the four zeros y1 ≥ y2 ≥ y3 ≥ y4
of the following polynomial

x4 − x3(10a+ 30) + x2(35a2 + 220a+ 328)− x(50a3 + 504a2 + 1586a+ 1544)

+ 24a4 + 356a3 + 1804a2 + 3716a+ 2640,

with y4 ∈ (a, a+8), y3 ∈ (2a+5, 2a+6), y2 ∈ (3a+6.5, 3a+7), y1 ∈ (4a+10, 4a+11) for
a ≥ 4.

Proof. Clearly, B(a) has a pendent vertices sharing the same vertex with transmis-

sion T = 2(a − 1) + 1 + 2 + 3 + 4 = 2a + 8, so by Lemma 1, T + 2 = 2a + 10 is

the DL eigenvalue of B(a) with multiplicity a − 1. In order to find the remaining
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DL-eigenvalues of B(a), we use eigenequations (2.1). Let X be the eigenvector of

B(a) with xi = X(vi) for i = 1, 2, 3, . . . , n. Then every component of X correspond-

ing to the pendent vertices {v1, v2, . . . , va} is x1 and every components of X related

to the vertices va+1, va+2, va+3 and va+4 are x2, x3, x4 and x5, respectively. By using

equation (2.1), the (ρ,X)-eigenequations of B(a) are given by

ρx1 =10x1 − x2 − 2x3 − 3x4 − 4x5,

ρx2 =− ax1 + (a+ 6)x2 − x3 − 2x4 − 3x5,

ρx3 =− 2ax1 − x2 + (2a+ 4)x3 − x4 − 2x5,

ρx4 =− 3ax1 − 2x2 − x3 + (3a+ 4)x4 − x5,
ρx5 =− 4ax1 − 3x2 − 2x3 − x4 + (4a+ 6)x5.

The other DL eigenvalues of B(a) are the solutions of the above system of equations
and matrix of coefficients of right side is given below


10 −1 −2 −3 −4
−a a+ 6 −1 −2 −3

−2a −1 2a+ 4 −1 −2

−3a −2 −1 3a+ 4 −1
−4a −3 −2 −1 4a+ 6

 . (2.2)

The characteristic polynomial of (2.2) is

f(x) = −x
(
x4 − x3(10a+ 30) + x2(35a2 + 220a+ 328)− x(50a3 + 504a2 + 1586a+ 1544)

+ 24a4 + 356a3 + 1804a2 + 3716a+ 2640
)
.

Next, by using the intermediate value theorem, we approximate the zeros of the

polynomial

p(x) = x4−x3(10a+ 30) + x2(35a2 + 220a+ 328)− x(50a3 + 504a2

+ 1586a+ 1544) + 24a4 + 356a3 + 1804a2 + 3716a+ 2640.
(2.3)

Since, p(a) = 6(7a3 + 91a2 + 362a + 440), which is increasing function of a and is

clearly positive. Also, p(a + 8) = −2(a − 2)
(
3a2 − 3a+ 4

)
< 0, for each a ≥ 3.

Similarly, we can verify that

p(2a+ 5) = −(2a3 + a2 − 8a+ 5) < 0,

p(2a+ 6) = 4a(a− 2) > 0,

p(3a+ 6.5) = a3 − 21a2

4
+

15a

4
+ 8.3125 > 0, for a ≥ 4

p(3a+ 7) = −3(a− 1)(3a+ 5) < 0,

p(4a+ 10) = −16a(2a+ 5) < 0,

p(4a+ 11) = 6a3 + 15a2 + 4a+ 55 > 0.
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If y1 ≥ y2 ≥ y3 ≥ y4 are the zeros of (2.3), then by above observation, it follows that

y4 ∈ (a, a+ 8), y3 ∈ (2a+ 5, 2a+ 6), y2 ∈ (3a+ 6.5, 3a+ 7), y1 ∈ (4a+ 10, 4a+ 11).

Proceeding similar to Proposition 1, we obtain the DL-spectrum of the family B(a′),

given in the next result.

Proposition 2. The DL spectrum of B(a′) consists of the eigenvalue 2a + 11 with

multiplicity a− 1, the simple eigenvalue 0, the eigenvalues
5a+23±

√
a2+10a+41

2
and the three

zeros x′1 ≥ x′2 ≥ x′3 of the following polynomial

x3 − x2(6a+ 28) + x(11a2 + 107a+ 257)− 6a3 − 93a2 − 469a− 770,

where a = n− 5, a ≥ 4 with x′3 ∈ (a, a+8), x′2 ∈ (2a+9, 2a+9.1), x′1 ∈ (3a+11.8, 3a+12).

Proof. The proof follows similar to the proof of Proposition 1. For the polynomial

g(x) = x3−x2(6a+28)+x(11a2 +107a+257)−6a3−93a2−469a−770, it can easily

seen that g(a) = −(14a2 + 212a+ 770) < 0, g(a+ 8) = 2a2 + 4a+ 6 > 0, g(2a+ 9) =

4 > 0, g(2a+ 9.1) = −a
2

10 −
a
2 + 3.591 < 0, g(3a+ 11.8) = − 2a2

5 −
2a
25 + 6.912 < 0 and

g(3a+ 12) = 2a+ 10 > 0. The result now follows.

The next result shows that for a ≥ 5 the DL spectral radius ρ1 of the family B(a) is

bigger than the DL spectral radius of the family B(a′).

Proposition 3. For a ≥ 5, ρ1(B(a)) > ρ1(B(a′)).

Proof. By Proposition 1, the DL spectral radius of B(a) is bounded below by

4a + 10 and by Proposition 2, ρ1 of B(a′) is 5a+23+
√
a2+10a+41
2 . Therefore,

5a+23+
√
a2+10a+41
2 < 4a+ 10 implies that

√
a2 + 10a+ 41 < 3a− 3,

which gives 4(2a2 − 7a− 8) > 0, and this quadratic inequality is true for a ≥ 5.

It is clear that ρ1 of the family B(a′) is an increasing function of a while as ρ1 of the

family B(a) is ρ1(B(a)) = 4a + 10 + εa, where 0 < εa < 1. Since, 0 < εa < 1, it is

clear that ρ1(B(a)) is also an increasing function of a. Thus, we note the following

observation which gives the ordering of the trees belonging to the class B(a) ∪B(a′)

on the basis of their DL spectral radius.
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Corollary 1. For a ≥ 5, we have

ρ1(B(5′)) ≤ ρ1(B(6′)) ≤ · · · ≤ ρ1(B((n− 5)′))

; ρ1(B(5)) ≤ ρ1(B(6)) ≤ · · · ≤ ρ1(B(n− 5)) ≤ ρ1(B(n− 4)).

The following result presents the DL energy of the families B(a) and B(a′) for a ≥ 5.

Theorem 2. Let ρ1(G) ≥ ρ2(G) ≥ · · · ≥ ρn−1(G) ≥ ρn(G) = 0 be the DL eigenvalues of
G. Then the following holds.

(i) The DL energy of B(a) with n− 4 = a, a ≥ 5 is

DLE(B(a)) = 2

(
ρ1(B(a)) + ρ2(B(a))− 4a2 + 16a+ 60

a+ 4

)
.

(ii) If a ≥ 6, then the DL energy of B(a′) is DLE(B(a′)) = 2ρ2(B(a′))+
√
a2 + 10a+ 41−

a2+4a+75
a+5

and if a = 5, then the DL energy of B(a′) is DLE(B(a′)) = 53.57962961.

Proof. By Proposition 1, we can order the DL-spectrum of B(a) from the least

DL-eigenvalue to the largest DL-eigenvalues as:

ρn(B(a)) = 0, ρn−1(B(a)) = y4, ρn−2(B(a)) = y3,

ρi(B(a)) = 2a+ 10, for i = 3, 4, . . . , n− 3,

ρ2(B(a)) = y2, ρ1(B(a)) = y1,

where a < y4 < a + 8, 2a + 5 < y3 < 2a + 6, 3a + 6.5 < y2 < 3a + 7 and 4a + 10 <
y1 < 4a + 11. Since,

∑n−1
i=1 ρi(B(a)) = 2W (B(a)) = 2a2 + 18a + 20, so we obtain

2W (B(a))
n = 2a2+18a+20

a+4 . Let σ = σ(B(a)) be the greatest positive integer such that

ρσ(B(a)) ≥ 2W (B(a))
n , then it is always true that ρ1(B(a)) ≥ 2W

n . Further ρ2 ≥ ρi =

2a + 10, for i = 3, 4, . . . , n − 3 and by direct calculation we have 2a + 10 ≥ 2W
n .

Again, 2a + 5 < ρn−2(B(a)) < 2a + 6 gives that ρn−2(B(a)) = 2a + 5 + t, where

t ∈ (0, 1). We have 2W (B(a))
n = 2a2+18a+20

a+4 = 2(a + 4) − 12
a+4 = 2a + 5 + 3a

a+4 >

2a + 6 > 2a + 5 + t = ρn−2(B(a)) ≥ ρn−1(B(a)), for all t. From this discussion, we
obtain σ = a+ 1. Therefore, the DL energy of B(a) is

DLE(B(a)) = 2

(
σ∑
i=1

ρi(B(a))−
2σW (B(a))

n

)
=

(
a+1∑
i=1

ρi(B(a))−
2(a+ 1)W (B(a))

n

)

= 2

(
ρ1(B(a)) + ρ2(B(a)) + (a− 1)(2a+ 10)−

2(a+ 1)W (B(a))

a+ 4

)
= 2

(
ρ1(B(a)) + ρ2(B(a))−

4a2 + 16a+ 60

a+ 4

)
.

(ii). Let ρ1(B(a′)) ≥ ρ2(B(a′)) ≥ · · · ≥ ρn−1(B(a′)) ≥ ρn(B(a′)) = 0 be the
DL eigenvalues of B(a′). From the Proposition 2, we have a < x′3 < a + 8,
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2a+9 < x′2 < 2a+9.1 and 3a+11.8 < x′1 < 3a+12. Since, 5a+23−
√
a2+10a+41
2 > a+8

gives that 8a2 + 32a+ 8 > 0, which is always true. It follows that ρn−1(B(a′)) = x′3.

Also, 5a+23−
√
a2+10a+41
2 < 2a + 9 gives that 41 > 25, which is always true. It

follows that ρn−2(B(a′)) = 5a+23−
√
a2+10a+41
2 and ρn−3(B(a′)) = x′2. Further,

we have ρ1(B(a′)) = 5a+23−
√
a2+10a+41
2 , ρ2(B(a

′
)) = x

′

1, ρi(B(a′)) = 2a + 11 for

i = 3, . . . , a+ 1. Therefore, the DL eigenvalues of B(a
′
) can be ordered as:

ρn(B(a′)) = 0, ρn−1(B(a′)) = x′3, ρn−2(B(a′)) = 5a+23−
√
a2+10a+41
2 , ρn−3(B(a

′
)) =

x
′

2, ρi(B(a′)) = 2a + 11, for i = 3, 4, . . . , n − 4, ρ2(B(a′)) = x′1, ρ1(B(a′)) =
5a+23+

√
a2+10a+41
2 . Also, the average transmission of B(a

′
) is 2W (B(a

′
))

n = 2a2+20a+40
a+5 .

Let σ = σ(B(a′)) be the greatest positive integer such that ρσ(B(a′)) ≥ 2W (B(a′))
n ,

then it is always true that ρ1(B(a′)) ≥ 2W (B(a′))
n . Now, 2a + 11 ≥ 2W (B(a′))

n
implies that a + 15 ≥ 0, which is always true. It follows that ρ2(B(a′)) ≥
ρi(B(a′)) = 2a + 11 ≥ 2W (B(a′))

n , for all i = 3, 4, . . . , n − 4. For the eigen-

value ρn−2(B(a′)) = 5a+23−
√
a2+10a+41
2 , we have ρn−2(B(a′)) < 2W (B(a′))

n giv-

ing that −4(a3 + 8a2 + 25a − 50) < 0, which is always true. This shows that

ρn−3(B(a′)) ≤ ρn−2(B(a′)) < 2W (B(a′))
n . Since 2a+ 9 < ρn−3(B(a′)) < 2a+ 9.1 and

2a+9.1 < 2W (B(a′))
n gives that 55−9a < 0, which is true for a ≥ 7. For a = 6, the poly-

nomial g(x) of the Proposition 2 becomes g(x) = x3−64x2 + 1295x−8228. By direct

calculation it can be seen that x′2 = 21.0570 < 21.0909 = 2W (B(a′))
n . Lastly, for a = 5,

the polynomial g(x) of the Proposition 2 becomes g(x) = x3 − 58x2 + 1067x− 6190.

By manual calculation it can be seen that x′2 = 19.0739 > 19 = 2W (B(a′))
n . Thus, it

follows that σ = a+ 1, for all a ≥ 6 and σ = a+ 2, for a = 5. So, for a ≥ 6, the DL

energy is

DLE(B(a′)) = 2

(
a+1∑
i=1

ρi(B(a′))−
2(a+ 1)W (B(a′))

n

)

= 2
(5a+ 23 +

√
a2 + 10a+ 41

2
+ ρ2(B(a′)) + (a− 1)(2a+ 11)

−
2(a+ 1)W (B(a′))

a+ 5

)
= 2ρ2(B(a′)) +

√
a2 + 10a+ 41−

a2 + 4a+ 75

a+ 5
.

For a = 5, we have σ = a+ 2, and the DL energy of B(a′) is

DLE(B(a′)) = 2(ρ2(B(a′)) + ρn−3(B(a′))) +
√
a2 + 10a+ 41− 5a2 + 44a+ 155

a+ 5
.

By direct calculation it can be verified that for a = 5, we have ρ2(B(a′)) = x′1 =

26.8307, ρn−3(B(a′)) = x′2 = 19.0739 and ρn−2(B(a′)) = x′3 = 12.0953. Thus, for

a = 5, we have DLE(B(a′)) = 53.57962961. This completes the proof.

Using the fact that 4a+ 10 < ρ1(B(a)) < 4a+ 11, 3a+ 6.5 < ρ2(B(a)) < 3a+ 7 and

3a+ 11.8 < ρ2(B(a′)) < 3a+ 12, we have the following observation from Theorem 2.
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Corollary 2. The DL energy of B(a) and B(a′) lies in the following open intervals.

(i)

6a+ 33− 120

a+ 4
< DLE(B(a)) < 6a+ 36− 120

a+ 4
.

(ii)

5a+24.6+
√
a2 + 10a+ 41− 80

a+ 5
< DLE(B(a′)) < 5a+25+

√
a2 + 10a+ 41− 80

a+ 5
.

From Corollary 2, we see that the DL energy of B(a) lies in the interval of length

3 while as the DL energy of B(a′) lies in the interval of length 0.4. Thus, the DL

energy bounds for B(a) and B(a′) given in Corollary 2 are best approximated.

Since 4a+ 10 < ρ1(B(a)) < 4a+ 11 and 3a+ 6.5 < ρ2(B(a)) < 3a+ 7, it follows that

ρ1(B(a)) = 4a+ 10 + ε1(a) and ρ2(B(a)) = 3a+ 6.5 + ε2(a), where 0 < ε1(a) < 1 and

0 < ε2(a) < 0.5. With this it follows from Theorem 2 that

DLE(B(a)) = 2

(
7a+ 16.5 + ε(a)−

4a2 + 16a+ 60

a+ 4

)
= 6a+ 33 + 2ε(a)−

120

a+ 4
, (2.4)

where ε(a) = ε1(a) + ε2(a), 0 < ε(a) < 1.5. It is clear from (2.4) that DLE(B(a)) is

an increasing function of a, a ≥ 5.

Again, since 3a+ 11.8 < ρ2(B(a′)) < 3a+ 12, it follows that ρ2(B(a′)) = 3a+ 11.8 +

ε3(a), where 0 < ε3(a) < 0.2. With this it follows from Theorem 2 that

DLE(B(a′)) = 6a+ 23.6 + 2ε3(a) +
√
a2 + 10a+ 41−

a2 + 4a+ 75

a+ 4

= 5a+ 24.6 + 2ε3(a) +
√
a2 + 10a+ 41−

80

a+ 5
. (2.5)

It is clear from (2.5) that DLE(B(a′)) is an increasing function of a, a ≥ 5.

Theorem 3. For a ≥ 14, we have DLE(B(a)) > DLE(B(a′)) and for 5 ≤ a ≤
13, we have DLE(B(a)) ≥ DLE(B(a′)), provided that a + 8.4 + 2(ε(a) − ε3(a)) + 80

a+5
≥√

a2 + 10a+ 41 + 120
a+4

, where ε(a), ε3(a) are defined above.

Proof. From the Corollary 2, we have

DLE(B(a))−DLE(B(a′)) = a+ 8−
√
a2 + 10a+ 41 +

80

a+ 5
−

120

a+ 4
= f(a). (2.6)

By direct calculation, we have f(14) = 1114
57 −

√
377 > 0, f(15) = 393

19 − 4
√

26 >

0, f(16) = 458
21 −

√
457 > 0 and f(17) = 1765

77 − 10
√

5 > 0. So, suppose that a ≥ 18.
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We have, a2+10a+41 < a2+12a+36 = (a+6)2 giving that
√
a2 + 10a+ 41 < (a+6).

With this it follows from (2.6) that

f(a) ≥ a+ 8− (a+ 6) +
80

a+ 5
−

120

a+ 4
= 2 +

80

a+ 5
−

120

a+ 4
=

2(a2 − 11a− 120)

(a+ 4)(a+ 5)
> 0,

for all a ≥ 18. This shows that DLE(B(a))−DLE(B(a′)) > 0, for a ≥ 18 and thus

the proof is complete in this case.

For 5 ≤ a ≤ 13, it follows from (2.4) and (2.5) that

DLE(B(a))−DLE(B(a′)) = a+ 8.4 + 2(ε(a)− ε3(a))−
√
a2 + 10a+ 41 +

80

a+ 5
−

120

a+ 4
≥ 0,

if a+ 8.4 + 2(ε(a)− ε3(a)) + 80
a+5 ≥

√
a2 + 10a+ 41 + 120

a+4 .

From the discussion before Theorem 3, we have the following observation which gives

the ordering of the trees belong to the class B(a) ∪B(a′) on the basis of DLE.

Theorem 4. For a ≥ 5, the following holds.

1. Among all the trees in B(a), the tree B(5) has the minimal DL energy while as the
tree B(n− 4) has the maximal DL energy.

2. Among all the trees in B(a′) the tree B(5′) has the minimal DL energy while as the
tree B(n− 5′) has the maximal DL energy.

The following result gives the DL eigenvalues of the family B(a, b).

Theorem 5. Let B(a, b) be the double broom with 5 ≤ a < b and a+ b = n− 3, a 6= b− 3.
Then the DL spectrum of B(a, b) consists of the eigenvalue 2a+4b+6 with multiplicity a−1,
the eigenvalue 4a+2b+6 with multiplicity b−1, the simple eigenvalue 0 and the eigenvalues
y1 ≥ y2 ≥ y3 ≥ y4, where y1 ∈ (4a + 4b + 6, 4a + 4b + 8), y2 ∈ (a + 3b, a + 3b + 7), y3 ∈
(2a+ 2b+ 3, 2a+ 2b+ 6) and y4 ∈ (2a+ b+ 4, 2a+ 2b+ 3).

Proof. Let V (B(a, b)) = {v1, v2, . . . , va, w1, w2, w3, u1, u2, . . . , ub} be the vertex set

of B(a, b), where v1, v2, . . . , va are the a pendent vertices at the vertex w1 and

u1, u2, . . . , ub are the b pendent vertices at the vertex w3 of the path P3 : w1w2w3.

It is clear that the vertices v1, v2, . . . , va forms an independent set of cardinality of a

sharing the same vertex w1 of degree a + 1 with Tr(v1) = Tr(v2) = · · · = Tr(va) =

2a−2+1+2+3+4b = 2a+4b+6. Thus, by Lemma 1, 2a+4b+4 is the DL eigenvalue

of B(a, b) with multiplicity at least a−1. Again, the set of vertices u1, u2, . . . , ub forms

an independent set of cardinality of b sharing the same vertex w3 of degree b+ 1 with

common transmission degree T = 2b − 2 + 1 + 2 + 3 + 4a = 2b + 4a + 4. So, by

Lemma 1, it follows that 4a+ 2b+ 6 is the DL eigenvalue of B(a, b) with multiplicity

at least b−1. Let X be the eigenvector of B(a, b) with xi = X(vi) for i = 1, 2, 3, . . . , n.
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Then every component of X corresponding to the pendent vertices {v1, v2, . . . , va} is

x1 and every components of X corresponding to other pendent vertices is x5. The

components of X corresponding to vertices of the degrees a+ 1, 2 and b+ 1 are x2, x3
and x4, respectively. By using Equation (2.1), the (ρ,X)-eigenequation of B(a, b) are

given by

ρx1 =(4b+ 6)x1 − x2 − 2x3 − 3x4 − 4bx5,

ρx2 =− ax1 + (a+ 3b+ 3)x2 − x3 − 2x4 − 3bx5,

ρx3 =− 2ax1 − x2 + (2a+ 2b+ 2)x3 − x4 − 2bx5,

ρx4 =− 3ax1 − 2x2 − x3 + (3a+ b+ 3)x4 − bx5,
ρx5 =− 4ax1 − 3x2 − 2x3 − x4 + (4a+ 6)x5.

The remaining non-zero four DL eigenvalues of B(a, b) are the eigenvalues of the fol-

lowing coefficient matrix corresponding to the right side of above system of equations
4b+ 6 −1 −2 −3 −4b

−a a+ 3b+ 3 −1 −2 −3b
−2a −1 2a+ 2b+ 2 −1 −2b

−3a −2 −1 3a+ b+ 3 −b
−4a −3 −2 −1 4a+ 6

 . (2.7)

It is easy to see that the characteristic polynomial of this matrix is −x(f(x)), where

f(x) =x4 − x3(10a+ 10b+ 20) + x2
(
35a2 + 74ab+ 146a+ 35b2 + 146b+ 147

)
− x

(
50a3 + 174a2b+ 330a2 + 174ab2 + 716ab+ 696a+ 50b3 + 330b2 + 696b+ 468

)
+ 24a4 + 128a3b+ 228a3 + 208a2b2 + 828a2b+ 768a2 + 128ab3 + 828ab2 + 1680ab

+ 1080a+ 24b4 + 228b3 + 768b2 + 1080b+ 540.

Let y1 ≥ y2 ≥ y3 ≥ y4 be the zeros of f(x). By manual calculations it is easy to

verify that

f(4a+ 4b+ 8) =12a3 + 64a2 + 20ab2 + 80ab+ 104a+ 12b3 + 64b2 + 20a2b+ 104b+ 60 > 0

f(4a+ 4b+ 6) =− 32ab2 − 48ab− 32a2b < 0.

Thus, by the intermediate value theorem a zero of f(x) namely y1 lies in (4a+ 4b+

6, 4a+ 4b+ 8). Also,

f(a+ 3b+ 7) =8− 2b+ 34ba2 − 4b2 − 2b3 − 46a− 68ab− 14ab2 + 72a2 − 18a3 = φ(a, b).

We will show that φ(a, b) < 0, for all b > a ≥ 5. By direct computations, we obtain

φ(a, 6) = −18a3 + 276a2 − 958a− 580 < 0, for a = 5

φ(a, 7) = −18a3 + 310a2 − 1208a− 888 < 0, for a = 5, 6

φ(a, 8) = −18a3 + 344a2 − 1486a− 1288 < 0, for a = 5, 6, 7

φ(a, 9) = −18a3 + 378a2 − 1792a− 1792 < 0, for a = 5, 6, 7, 8.
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Therefore, suppose that b ≥ 10. For b > a and b ≥ 10, we have ∂φ(a,b)
∂a = 68ab −

46 − 68b − 14b2 + 144a − 72a2. It is easy to verify that ∂φ(a,b)
∂a < 0, for all a >

17b
36 + 1 + θ or a < 17b

36 + 1− θ and ∂φ(a,b)
∂a ≥ 00, for all a ∈

[
17b
36 + 1− θ, 17b36 + 1 + θ

]
,

where θ = 1
144

√
592b2 + 7488. This gives that φ(a, b) is a decreasing function of a,

for a ∈
(
17b
36 + 1 + θ, b − 1

]
or a ∈

[
5, 17b36 + 1 − θ

)
and an increasing function for

a ∈
[
17b
36 + 1− θ, 17b36 + 1 + θ

]
. So, the sign of φ(5, b) and φ

(
17b
36 + 1 + θ, b

)
will decide

the sign of φ(a, b). We have φ(5, b) = −2b3−74b2+508b−672 < 0, for all b ≥ 10. Also,
(24.3b+4)2 < 592b2+7488 < (24.4b+14)2 gives that 923b

1440 + 37
36 <

17b
36 +1+θ < 77b

120 + 79
72 .

By direct calculations, we obtain

φ
( 923b

1440
+

37

36
, b
)

= −
96491329b3

55296000
−

43127623b2

4147200
−

742009b

103680
+

44675

2592
< 0,

φ
( 77b

120
+

79

72
, b
)

= −
501079b3

288000
−

1705423b2

172800
−

573037b

103680
+

423665

20736
< 0,

for all b ≥ 10. Thus, it follows that φ(a, b) < 0, for all b > a ≥ 5. Further,

f(3b+ a) = 24a3 + 219a2 − 222ab+ 612a+ 12b3 + 3b2 − 36a2b− 324b+ 540 = ϕ(a, b).

We will show that ϕ(a, b) ≥ 0, for all b > a ≥ 5. We have ∂ϕ(a,b)
∂a = 72a2 + 438a −

222b + 612 − 72ab = 72a(a − b) + 222(a − b) + 216a + 612. It is easy to see that
∂ϕ(a,b)
∂a < 0, for all a ≤ b − 4, giving that ϕ(a, b) is a decreasing function of a, for

a ∈ [5, b − 4]. Therefore, the sign of ϕ(b − 4, b) will decide the sign of ϕ(a, b) in

[5, b− 4]. We have ϕ(b− 4, b) = 60 > 0, ϕ(b− 3, b) = 27− 36b < 0, ϕ(b− 2, b) = 0 and

ϕ(b− 1, b) = 108b+ 123 > 0 giving that ϕ(a, b) ≥ 0, for all b > a ≥ 5 with a 6= b− 3.

Thus, it follows that for a 6= b− 3, we have y2 ∈ [3b+ a, 3b+ a+ 7). In a similar way,

we have

f(2a+ 2b+ 6) = 4(a− b)2(a+ b+ 3) > 0,

f(2a+ 2b+ 3) = −(a− b)2(2a+ 2b+ 3) < 0,

f(2a+ b+ 4) = a2b2 + 4a2 + 6ab3 + 14ab2 − 12ab+ 3b2 − 2ba3 − 6ba2 − 4b− 4

= ab(ab− 12) + 2ab(3b2 − a2) + 2ab(7b− 3a) + 4a2 + 3b2 − 4b− 4 > 0.

With the above calculations, it implies that y3 ∈ (2a + 2b + 3, 2a + 2b + 6) and

y4 ∈ (2a+ b+ 4, 2a+ 2b+ 3). Thus, the proof is complete.

Proceeding similar to Theorem 5, we have the following observation which gives the

distance Laplacian eigenvalues of B(a, a).

Corollary 3. The DL spectrum of B(a, a) is

{
0, 3 + 4a, 6 + 4a, (6a+ 6)2a−2,

1

2

(
12a+ 11±

√
16a2 + 24a+ 1

)}
.
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The next result gives the DL energy of B(a, b).

Theorem 6. Let ρ1(B(a, b)) ≥ ρ2(B(a, b)) ≥ · · · ≥ ρn−1(B(a, b)) ≥ ρn(B(a, b)) = 0 be
the DL eigenvalues of B(a, b) with b 6= a+ 3. Then the following hold.

(i) For a < b ≤ a+ 5 + 10
a−1

, the DL energy of B(a, b) is

DLE(B(a, b)) = 2

(
ρ1(B(a, b))− 2a− 2b− 4 +

16(ab− 1)

a+ b+ 3

)
.

(ii) For a+ 5 + 10
a−1

< b < 1
2
(4a+ 1− ε+√γ), the DL energy of B(a, b) is

DLE(B(a, b)) = 2

(
ρ1(B(a, b)) + 2ab− 4b− 6−

4a(ab− 1)

a+ b+ 3

)
,

where γ = 20a2+(36−12ε)a+ε2−14ε+33 and 0 ≤ ε < 7 is given by y2 = a+3b+ε.

(iii) For b ≥ 1
2
(4a+ 1− ε+√γ), the DL energy of B(a, b) is

DLE(B(a, b)) = 2

(
ρ1(B(a, b)) + ρa+1(B(a, b)) + 2ab− 2a− 6b− 10−

4(a+ 1)(ab− 1)

a+ b+ 3

)
.

(iv) For a = b ≥ 5, the DL energy of B(a, a) is

DLE(B(a, b)) = 20a− 1 +
√

16a2 + 24a+ 1 +
40

2a+ 3
.

Proof. (i)-(iii) For 5 ≤ a < b, by Theorem 5, the DL eigenvalues of B(a, b) are

the eigenvalue 2a + 4b + 6 with multiplicity a − 1, the eigenvalue 4a + 2b + 6 with

multiplicity b − 1, the simple eigenvalue 0 and the eigenvalues y1 ≥ y2 ≥ y3 ≥ y4,

where y1 ∈ (4a+4b+6, 4a+4b+8), y2 ∈ (a+3b, a+3b+7), y3 ∈ (2a+2b+3, 2a+2b+6)

and y4 ∈ (2a+b+4, 2a+2b+3). Since, y2 = a+3b+ε, where 0 ≤ ε < 7, it follows that

for b ≥ 3a+ 6− ε, we have 4a+ 4a+ 6 < ρ1(B(a, b)) = y1 < 4a+ 4b+ 8, ρi(B(a, b)) =

2a + 4b + 6, i = 2, 3, . . . , a, 3b + a ≤ ρa+1(B(a, b)) = y2 < 3b + a + 7, ρi(B(a, b)) =

2b + 4a + 6, i = a + 2, a + 2, . . . , a + b, 2a + 2b + 3 < ρa+b+1(B(a, b)) = y3 <

2a+ 2b+ 6, 2a+ b+ 3 < ρa+b+2(B(a, b)) = y4 < 2a+ 2b+ 3 and ρa+b+3(B(a, b)) = 0.

Clearly, the average transmission of B(a, b) is

2W (B(a, b))

n
=

2(a+ b)2 + 4ab+ 10(a+ b) + 8

a+ b+ 3
.

Let σ = σ(B(a, b)) be the number of DL eigenvalues of B(a, b) such that ρσ
2W (B(a,b))

n .

To obtain the DLE of B(a, b), we need to calculate the value of σ. The DL spectral

radius of B(a, b) always satisfies ρ1(B(a, b)) ≥ 2W
n . Besides for 2a+4b+6 ≥ 2W (B(a,b))

n

gives the inequality b2 + 4b + 5 ≥ a(b − 1), which holds for a ≤ b2+4b+5
b−1 . Clearly,
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b2+4b+5
b−1 > b > a and it follows that 2a+4b+6 is greater or equal to 2W (B(a,b))

n . Next,

ρa+1(B(a, b)) = y2 = a+ 3b+ ε ≥ 2W (B(a,b))
n gives that

(a+ b+ 3)ε− 4ab+ b2 − a2 − b− 7a− 8 ≥ 0. (2.8)

Clearly, the inequality (2.8) holds for b ≥ 1
2 (4a + 1 − ε +

√
γ), where γ = 20a2 +

(36 − 12ε)a + ε2 − 14ε + 33. This gives that ρa+1(B(a, b)) ≥ 2W (B(a,b))
n , for b ≥

1
2 (4a+ 1− ε+

√
γ) and ρa+1(B(a, b)) < 2W (B(a,b))

n for b < 1
2 (4a+ 1− ε+

√
γ). Also,

2b+4a+6 ≥ 2W (B(a,b))
n gives that b ≤ a2+4a+5

a−1 = a+5+ 10
a−1 . From this it follows that

2b+4a+6 ≥ 2W (B(a,b))
n , for b ≤ a2+4a+5

a−1 = a+5+ 10
a−1 and 2b+4a+6 < 2W (B(a,b))

n for

b > a2+4a+5
a−1 = a+ 5 + 10

a−1 . Thus, it follows that for b ≥ 1
2 (4a+ 1− ε+

√
γ), we have

σ = a+ 1 and for 3a+ b− ε ≤ b < 1
2 (4a+ 1− ε+

√
γ), we have σ = a. On the other

hand for a+6−ε ≤ b < 3a+6−ε, we have 4a+4a+6 < ρ1(B(a, b)) = y1 < 4a+4b+

8, ρi(B(a, b)) = 2a + 4b + 6, i = 2, 3, . . . , a, ρi(B(a, b)) = 2b + 4a + 6, i = a + 1, a +

2, . . . , a+b−1, 3b+a ≤ ρa+1(B(a, b)) = y2 < 3b+a+7, 2a+2b+3 < ρa+b+1(B(a, b)) =

y3 < 2a+ 2b+ 6, 2a+ b+ 3 < ρa+b+2(B(a, b)) = y4 < 2a+ 2b+ 3, ρa+b+3(B(a, b)) = 0.

Since 2b + 4a + 6 ≥ 2W (B(a,b))
n , for b ≤ a2+4a+5

a−1 = a + 5 + 10
a−1 , it follows that for

a + 5 + 10
a−1 < b < 3a + 6 − ε, we have σ = a. For b ≤ a2+4a+5

a−1 = a + 5 + 10
a−1 ,

we either have ρa+1(B(a, b)) = y2 or y3. In each case we see that ρa+1(B(a, b)) <
2W (B(a,b))

n giving that σ = a+ b− 1. From this discussion, it follows that σ = a, for

a+ 5 + 10
a−1 < b < 3a+ 6− ε or 3a+ 6− ε ≤ b < 1

2 (4a+ 1− ε+
√
γ); σ = a+ 1, for

b ≥ 1
2 (4a + 1 − ε +

√
γ) and σ = a + b − 1, for a < b ≤ a + 5 + 10

a−1 . Therefore, for

a < b ≤ a+ 5 + 10
a−1 , the DL energy of B(a, b) is given by

DLE(B(a, b)) = 2

(
a+b−1∑
i=1

ρi(B(a, b))−
2(a+ b− 1)W (B(a, b))

n

)

= 2
(
ρ1(B(a, b)) + (a− 1)(2a+ 4b+ 6) + (b− 1)(2b+ 4a+ 6)

−
2(a+ b+ 1)W (B(a, b))

n

)
= 2

(
ρ1(B(a, b))− 2a− 2b− 4 +

16(ab− 1)

a+ b+ 3

)
.

For a+ 5 + 10
a−1 < b < 1

2 (4a+ 1− ε+
√
γ), the DL energy of B(a, b) is given by

DLE(B(a, b)) = 2

(
a∑
i=1

ρi(B(a, b))−
2aW (B(a, b))

n

)

= 2

(
ρ1(B(a, b)) + (a− 1)(2a+ 4b+ 6)−

2aW (B(a, b))

a+ b+ 3

)
= 2

(
ρ1(B(a, b)) + 2ab− 4b− 6−

4a(ab− 1)

a+ b+ 3

)
.
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For b ≥ 1
2 (4a+ 1− ε+

√
γ), the DL energy of B(a, b) is given by

DLE(B(a, b)) = 2

(
a+1∑
i=1

ρi(B(a, b))−
2(a+ 1)W (B(a, b))

n

)

= 2

(
ρ1(B(a, b)) + ρa+1(B(a, b)) + (a− 1)(2a+ 4b+ 6)−

2(a+ 1)W (B(a, b))

a+ b+ 3

)
= 2

(
ρ1(B(a, b)) + ρa+1(B(a, b)) + 2ab− 2a− 6b− 10−

4(a+ 1)(ab− 1)

a+ b+ 3

)
.

(iv). From the Corollary 3, we have ρ1(B(a, a)) = 1
2 (12a + 11 +√

16a2 + 24a+ 1), ρi(B(a, a)) = 6a + 6, i = 2, 3, . . . , 2a − 1, ρ2a(B(a, a)) = 4a +

6, ρ2a+1(B(a, a)) = 1
2 (12a + 11 −

√
16a2 + 24a+ 1), ρ2a+2(B(a, a)) = 4a + 3 and

ρ2a+3(B(a, a)) = 0. Also, the average of the DL eigenvalues is

2W (B(a, a))

n
=

1

n

n∑
i=1

ρi(B(a, a)) =
12a2 + 20a+ 8

2a+ 3
= 6a+ 1 +

5

2a+ 3
.

Since the DL spectral radius 1
2

(
12a+ 11 +

√
16a2 + 24a+ 1

)
is always greater or

equal to 2W (B(a,a))
n and it is clear that 6a + 6 is also greater or equal to 2W (B(a,a))

n .

Further, it is easy to verify that 4a+6 < 2W (B(a,a))
n giving that σ = 2a−1. Therefore,

the DL energy, is

DLE(B(a, a)) =

(
2a−1∑
i=1

ρi(B(a, a))−
2(2a− 1)W (B(a, a))

n

)

= 20a− 1 +
√

16a2 + 24a+ 1 +
40

2a+ 3
.

This completes the proof.

If ρ1 = ρ is the DL spectral radius of B(a, b), then we have following result.

Proposition 4. For 2 ≤ a ≤
⌊
n−3
2

⌋
, ρ(B(a, b)) > ρ(B(a− 1, b+ 1)).

Proof. From the proof of Theorem 5, ρ = ρ(B(a, b)) is the largest zero of

f(x) =x4 − x3(10a+ 10b+ 20)− x2
(
−35a2 − 74ab− 146a− 35b2 − 146b− 147

)
− x

(
50a3 + 174a2b+ 330a2 + 174ab2 + 716ab+ 696a+ 50b3 + 330b2 + 696b+ 468

)
+ 24a4 + 128a3b+ 228a3 + 208a2b2 + 828a2b+ 768a2 + 128ab3 + 828ab2 + 1680ab

+ 1080a+ 24b4 + 228b3 + 768b2 + 1080b+ 540.

Replacing b = n − a − 3, we get fa(x) = x4 − (10n − 10)x3 + (49n + 35n2 − 4a2 −
12a− 64n+ 24)x2 − (24an2 + 50n3 − 88an− 120n2 + 16a2 + 48a+ 66n)x+ 32an3 −
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32a2n2 +24n4 +48na2−144an2−60n3 +144an+12n2 +36n. It can be easily verified
that

fa(x)− fa−1(x) = (4n− 8a− 8)x2 + (48an− 24n2 + 64n− 32a− 32)x

+ 32n3 − 64an2 + 96an− 112n2 + 96n

= 4(n− 2a− 2)
(
x2 − 6(n−

2

3
)x+ 8n(n−

3

2
)
)

= 4(n− 2a− 2)g(x),

where g(x) = x2−6(n− 2
3 )x+8n(n− 3

2 ). For 2 ≤ i ≤
⌊
n−3
2

⌋
, let ρi = ρ(B(i, n−i−3)).

Since, by Theorem 5, we have 4n−6 < ρi < 4n−4. Therefore, fa(ρa−1) = fa(ρa−1)−
fa−1(ρa−1) = 4(n − 2a − 2)g(ρa−1). It is easy to see that g(ρa−1) = ρ2a−1 − 6(n −
2
3 )ρa−1 + 8n(n − 3

2 ) is an increasing function of ρa−1 for all ρa−1 ≥ 3n − 2. Since

ρa−1 > 4n − 6, it follows that g(ρa−1) is always an increasing function of ρa−1. So,

we have g(ρa−1) ≤ g(4n− 4) = −4n < 0. This gives that fa(ρa−1) < 0, from which,

together with the fact that fa(4n − 4) > 0, fa(4n − 6) < 0 and ρa−1 > 4n − 6, it

follows that ρa > ρa−1, for 2 ≤ a ≤
⌊
n−3
2

⌋
. This completes the proof.

For the family of trees B(a − t, b + t), with t = 0, 1, . . . , a − 5. The following result

shows that DLE of B(a− t, b+ t) is strictly decreasing function of t for some values

of a and a strictly increasing function of t for some values of a.

Theorem 7. For the family B(a − t, b + t) of double brooms with a + b = n − 3 and
b > a ≥ 5, where t = 0, 1, . . . , a− 5. The following holds.

1. If 5 ≤ a < b ≤ a+ 5 + 10
a−1

, then DLE(B(a− t, b+ t)) is a decreasing function of t.

2. If a + 5 + 10
a−1

< b < 1
2
(4a + 1 − ε +√γ), then DLE(B(a − t, b + t)) is a decreasing

function of t, provided that 2n > 6a − 3l − 3k + 1 +
√
ψ(a, l, k) and an increasing

function of t, provided that 2n < 6a− 3l− 3k+
√
ψ(a, l, k)− 12a+ 6k + 6l − 1, where

ψ(a, l, k) = 12a2 − 12a(k + l + 3) + k2 + l2 + 10kl + 18k + 18l − 7.

3. If b ≥ 1
2
(4a+1− ε+√γ), then DLE(B(a− t, b+ t)) is a decreasing function of t, for

all a ≥ 8.

Proof. By Theorem 6, DLE of B(a, b), with 5 ≤ a < b ≤ a+ 5 + 10
a−1 , is

DLE(B(a, b)) = 2
(
ρ1(B(a, b))− 2a− 2b− 4 +

16(ab− 1)

n

)
, (2.9)

where ρ1(B(a, b)) is the DL spectral radius of B(a, b). As b = n − a − 3, so the
equivalent form of (2.9) is

DLE(B(a, b)) = 2
(
ρ1(B(a, b))− 2n+ 2 + 16a−

16a(a+ 3)

n
−

16

n

)
. (2.10)
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Let B1 = B(a− l, b+ l) and B2 = B(a− k, b+ k), with 0 ≤ l < k. We will show that

DLE(B1) > DLE(B2). Assigning a by a− l in (2.10), we have

DLE(B1) = 2
(
ρ1(B1)− 2n+ 2 + 16(a− l)−

16(a− l)(a− l + 3)

n
−

16

n

)
. (2.11)

Similarly, for a = a− k in (2.10), we have

DLE(B2) = 2
(
ρ1(B2)− 2n+ 2 + 16(a− k)−

16(a− k)(a− k + 3)

n
−

16

n

)
. (2.12)

So, from (2.11) and (2.12), we obtain

DLE(B1)−DLE(B2) = 2
(
ρ1(B1)− ρ1(B2) + 16(k − l)−

16

n

[
(k − l)(k + l − 2a− 3)

])
.

Since a ≥ 5, so by Proposition 4 it follows that ρ1(B1) > ρ1(B2). Besides,

16(k− l)− 16
n

[
(k− l)(k+ l− 2a− 3)

]
> 0 implies that n > 2a+ 3− (l+ k), which is

holds true as n > 2a+2. Thus, DLE(B1)−DLE(B2) > 0. That completes first part.

2. If a+ 5 + 10
a−1 < b < 1

2 (4a+ 1− ε+
√
γ), then by Theorem 6, the DLE of B(a, b)

is given by

DLE(B(a, b)) = 2
(
ρ1(B(a, b)) + 2ab− 4b− 6−

4a(ab− 1)

n

)
. (2.13)

Using b = n− a− 3 (2.13), we obtain

DLE(B(a, b)) = 2
(
ρ1(B(a, b)) + 2an− 6a2 − 2a− 4n+ 6 +

4a

n

(
a2 + 3a+ 1

))
. (2.14)

Let B1 = B(a− l, b+ l) and B2 = B(a− k, b+ k), with 0 ≤ l < k be the trees defined
above. We have

DLE(B1)−DLE(B2) = 2
(
ρ1(B1)− ρ1(B2) + 2(k − l)(n− 1)− 6(k − l)(2a− k − l)

+
4(k − l)

n

[
3a2 − 3ak − 3al + 6a+ k2 + kl− 3k + l2 − 3l + 1

])
. (2.15)

Since a ≥ 5, it follows by Proposition 4 that ρ1(B1) > ρ1(B2). Also, 2(k− l)(n− 1)−
6(k− l)(2a−k− l) + 4(k−l)

n [3a2−3ak−3al+ 6a+k2 +kl−3k+ l2−3l+ 1] > 0 giving

that 2n > 6a−3l−3k+1+
√

12a2 − 12a(k + l + 3) + k2 + l2 + 10kl + 18k + 18l − 7.

This shows that DLE(B1) > DLE(B2), provided that 2n > 6a − 3l − 3k + 1 +
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ψ(a, l, k). Again using the fact that 4n − 6 < ρ1(B1), ρ1(B2) < 4n − 4, we get

ρ1(B1)−ρ1(B2) < 2. From this together with (2.15), we have DLE(B1) < DLE(B2),

provided 2 + 2(k − l)(n − 1) − 6(k − l)(2a − k − l) + 4(k−l)
n

[
3a2 − 3ak − 3al + 6a +

k2 + kl − 3k + l2 − 3l + 1
]
< 0. This last inequality gives n2 − (6a − 3k − 3l + 1 −

1
k−1 )n + 2(3a2 − 3ak − 3al + 6a + k2 + kl − 3k + l2 − 3l + 1) < 0. Since k − l ≥ 1,

therefore this inequality will hold provided that the inequality n2− (6a− 3k− 3l)n+

2(3a2 − 3ak − 3al + 6a+ k2 + kl − 3k + l2 − 3l + 1) < 0 holds. From this inequality

we get 2n < 6a− 3l− 3k +
√

12a2 − 12a(k + l + 4) + k2 + l2 + 10kl + 24k + 24l − 8.

Thus, it follows that DLE(B1) < DLE(B2), provided that 2n < 6a − 3l − 3k +√
ψ(a, l, k)− 12a+ 6k + 6l − 1.

3. If b ≥ 1
2 (4a+ 1− ε+

√
γ), then by Theorem 6, DLE of B(a, b) is

DLE(B(a, b)) = 2
(
ρ1(B(a, b)) + ρa+1(B(a, b)) + 2ab− 2a− 6b− 10

−
4(a+ 1)(ab− 1)

n

)
.

(2.16)

Using b = n− a− 3 in (2.16), we get

DLE(B(a, b)) = 2
(
ρ1(B(a, b)) + ρa+1(B(a, b)) + 2an− 6a2 − 6a− 6n+ 8

+
4(a+ 1)

n

(
a2 + 3a+ 1

)
.

(2.17)

Let B1 = B(−l, b+ l) and B2 = B(a− k, b+ k), with 0 ≤ l < k be the trees defined

above. We have from (2.17) that,

DLE(B1)−DLE(B2) =2
(
ρ1(B1)− ρ1(B2) + ρa+1(B1)− ρa+1(B2) + (2n− 6)(k − l)

− 6(k − l)(2a− k − l) +
4(k − l)

n

[
3a2 − 3ak − 3al + 8a

+ k2 + kl− 4k + l2 − 4l + 4
])
.

Since a ≥ 5, it follows by Proposition 4 that ρ1(B1) > ρ1(B2). Also, 3n − 2a −
9 < ρa+1(B1) < 3n − 2a − 2 and 3n − 2a − 7 < ρa+1(B2) < 3n − 2a, it follows

that ρa+1(B1) − ρa+1(B2) > −9. Therefore, with this observation it follows that

DLE(B1)−DLE(B2) > 0, provided that −9 + (k− l)(2n− 6)− 6(k− l)(2a−k− l) +
4(k−l)
n

[
3a2 − 3ak− 3al+ 8a+ k2 + kl− 4k+ l2 − 4l+ 4

]
> 0. This inequality further

gives that 2n2 − (12a− 6k− 6l+ 6 + 9
k−l )n+ 4(3a2 − 3ak− 3al+ 8a+ k2 + kl− 4k+

l2−4l+4) > 0. Since k− l ≥ 1, therefore this last inequality will follow provided that

2n2− (12a− 6k− 6l+ 15)n+ 4(3a2− 3ak− 3al+ 8a+ k2 + kl− 4k+ l2− 4l+ 4) > 0,

which is so if

4n > 12a− 6l − 6k + 15 +
√

48a2 − a(48k + 48l − 104) + 4k2 + 4l2 + 40kl− 52k − 42l + 97.

(2.18)
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Consider the function

γ(l, k) = 12a− 6l − 6k + 15 +
√

48a2 − a(48k + 48l − 104) + 4k2 + 4l2 + 40kl− 52k − 42l + 97.

It can be easily verified that for fixed l, γ(l, k) is a decreasing function of k, so for

l = s, (2.18) holds for k = s + 1, s + 2, . . . , a − 5, provided it holds for k = s + 1.

Thus, Inequality (2.18) holds for all l = s, k, provided that 4n > γ(s, s + 1), where

γ(s, s+ 1) = 12a− 12s+ 9 +
√

48a2 − (96s− 56)a+ 48s2 − 56s+ 49. Now, by given

b ≥ 1
2 (4a+ 1− ε+

√
γ), giving that 4n ≥ 12a+ 14− ε+ 2

√
γ, where γ = 20a2 + (36−

12ε)a+ ε2− 14ε+ 33 and 0 ≤ ε < 7. We claim that γ(s, s+ 1) ≤ 12a+ 14− ε+ 2
√
γ.

Since 12a+ 14− ε+
√
γ is a decreasing function of ε, therefore to prove our claim it

suffices to show γ(s, s + 1) ≤ 12a + 8 + 2
√

20a2 − 36a− 15. If s 6= 0, then using the

fact 12a− 12s+ 9 < 12a+ 8 together with 4(20a2− 36a− 15) > 48a2− (96s− 56)a+

48s2 − 56s + 49, for all a ≥ 7, our claim holds. If s = 0, then by direct calculation

it can be verified that 12a + 8 + 2
√

20a2 − 36a− 15 ≥ 12a + 9 +
√

48a2 + 56a+ 49,

for all a ≥ 8. This completes the proof of our claim. Thus, from this discussion we

conclude that the inequality (2.18) holds for all a ≥ 8 and 0 ≤ l < k ≤ a− 5. This in

turn gives that, DLE(B1) > DLE(B2) for all a ≥ 8 in this case.

The next consequence is immediate from Theorems 7 and orders the trees in the

family B(a, b) in terms of DLE.

Corollary 4. For all trees in the family B(a, b) with b > a ≥ 5 and a + b = n − 3, the
following holds.

(i) If 5 ≤ a < b ≤ a + 5 + 10
a−1

or b ≥ 1
2
(4a + 1 − ε + √γ), a ≥ 8 or a + 5 + 10

a−1
<

b < 1
2
(4a + 1 − ε +

√
γ) and 2n > 6a − 3l − 3k + 1 +

√
ψ(a, l, k), where ψ(a, l, k)

is as in Theorem 7, then the tree B(5, n − 8) has the minimum DLE and the tree
B(bn−3

2
c, dn−3

2
e), if n is odd and the tree B(bn−3

2
c − 1, dn−3

2
e + 1), if n is even has

the maximum DLE.

(ii) If a + 5 + 10
a−1

< b < 1
2
(4a + 1 − ε +

√
γ) and 2n < 6a − 3l − 3k +√

ψ(a, l, k)− 12a+ 6k + 6l − 1, then the tree B(bn−3
2
c, dn−3

2
e), if n is odd and the tree

B(bn−3
2
c− 1, dn−3

2
e+1), if n is even has the minimum DLE and the tree B(5, n− 8)

has the maximum DLE.

3. Distance Laplacian spectrum and energy of complement of
B(a, b)

This section deals with the solution of the Problem 2. Formally, we give an ordering

of complement of B(a, b) on the basis of their smallest non-zero distance Laplacian

eigenvalue and their distance Laplacian energy.

The complement G of a graph G is the graph with vertex set as in G and an edge set

consisting of an edge e if and only if e is not an edge in G.
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In our next result, we find the DL eigenvalues of B(a, b).

Proposition 5. The DL spectrum of B(a, b), a ≤ b, a + b = n − 3 consists of the
eigenvalue (n+1) with multiplicity n−5, the simple eigenvalue 0 and the zeros of polynomial
(3.1)

fa,b(x) =x
4 − x3(5a+ 5b+ 18) + x2(9a2 + 9b2 + 19ab+ 67a+ 67b+ 120)− x(7a3

+ 7b3 + 23a2b+ 23ab2 + 80a2 + 80b2 + 168ab+ 295a+ 295b+ 352) + 2a4

+ 2b4 + 9a3b+ 9ab3 + 14a2b2 + 31(a3 + b3) + 101a2b+ 175(a2 + b2)

+ 365ab+ 428(a+ b) + 384.

(3.1)

Proof. Let V (B(a, b)) = {v1, v2, . . . , va, w1, w2, w3, u1, u2, . . . , ub} be the vertex set

of B(a, b), where v1, v2, . . . , va are the a pendent vertices at the vertex w1 and

u1, u2, . . . , ub are the b pendent vertices at the vertex w3 of the path P3 : w1w2w3.

Clearly, B(a, b) consists of clique on a+b+1 vertices, where vi’s share the same num-

ber of vertices with the transmission a+ b+ 3 and ui’s share the same neighbourhood

with the transmission a + b + 3. Thus by Lemma 2, n + 1 is the DL-eigenvalue of

B(a, b) with multiplicity at least n− 5.

Let X be the eigenvector of B(a, b) with xi = X(vi) for i = 1, 2, 3, . . . , n. Clearly, every

component of X corresponding to vi’s is x1 and every components of X corresponding

to ui’s is x5. Also, components of X corresponding to the vertices of the degree b+ 1

is x2, the degree a+ b is x3 and the degree a+ 1 is x3. By using Equation (2.1), the

(ρ,X)-equation of B(a, b) are given by

ρx1 =(b+ 4)x1 − 2x2 − x3 − x4 − bx5,
ρx2 =− 2ax1 + (2a+ b+ 3)x2 − 2x3 − x4 − bx5,
ρx3 =− ax1 − 2x2 + (a+ b+ 4)x3 − 2x4 − bx5,
ρx4 =− ax1 − x2 − 2x3 + (a+ 2b+ 3)x4 − 2bx5,

ρx5 =− ax1 − x2 − x3 − 2x4 + (a+ 4)x5.

The coefficient matrix of the right side of above eigenequations is


b+ 4 −2 −1 −1 −b
−2a 2a+ b+ 3 −2 −1 −b
−a −2 a+ b+ 4 −2 −b
−a −1 −2 a+ 2b+ 3 −2b
−a −1 −1 −2 a+ 4

 ,

and its characteristic polynomial is given by

−x
(
x4−x3(5a+ 5b+ 18) + x2(9a2 + 9b2 + 19ab+ 67a+ 67b+ 120)− x

(
7a3 + 7b3 + 23a2b+ 23ab2

+ 80a2 + 80b2 + 168ab+ 295a+ 295b+ 352
)

+ 2a4 + 2b4 + 9a3b+ 9ab3 + 14a2b2 + 31a3

+ 31b3 + 101a2b+ 175a2 + 175b2 + 365ab+ 428a+ 428b+ 384
)
.
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This proves the result.

By manual calculation, we have

fa,b(n) =n > 0,

fa,b(n+ 1) =− ab < 0,

fa,b(n+ 2) =a+ b− 1 > 0.

If z1 ≥ z2 ≥ z3 ≥ z4 be the zeros of fa,b(x), then by intermediate value theorem, it

follows that z4 ∈ (n, n+ 1) and z3 ∈ (n+ 1, n+ 2).

The next result orders the graphs in the family B(a, b) in terms of ρn−1.

Theorem 8. For positive integers a, b (a ≤ b) and a+ b = n− 3, we have

ρn−1

(
B(a, b)

)
≤ ρn−1

(
B(a− 1, b+ 1)

)
.

Proof. By Proposition 5, the second smallest DL-eigenvalue of B(a, b) is the smallest

root of fa,b(x) = 0. It can be seen that,

fa,b(x)− fa−1,b+1(x) = (x− n)(x− n− 2)(n− 2a− 2).

By Proposition 5, we have n < ρn−1
(
B(a − 1, b + 1)

)
< n + 1. Also,

fa−1,b+1(ρn−1
(
B(a− 1, b+ 1)) = 0, therefore we obtain

fa,b(ρn−1

(
B(a− 1, b+ 1))

= fa,b(ρn−1

(
B(a− 1, b+ 1))− fa−1,b+1(ρn−1

(
B(a− 1, b+ 1))

= (ρn−1

(
B(a− 1, b+ 1)− n)(ρn−1

(
B(a− 1, b+ 1)− n− 2)(n− 2a− 2) < 0,

for all a ≤ b. This together with the fact that fa,b(n) > 0 and fa,b(n + 1) < 0, we

arrive at ρn−1(B(a, b)) < ρn−1(B(a− 1, b+ 1)).

Similar to Theorem 8, we have the following result, which gives the ordering of the

graphs belonging to the family B(a, b) on the basis of ρ1.

Theorem 9. For positive integers a, b (a ≤ b) and a+ b = n− 3, we have

ρ1
(
B(a, b)

)
≤ ρ1

(
B(a− 1, b+ 1)

)
.

The following result gives the DLE of B(a, b).
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Theorem 10. For the graph B(a, b) with n− 3 = a+ b, (a ≤ b) and let ρn−1(B(a, b)) be
its second smallest DL eigenvalue. Then

DLE
(
B(a, b)

)
= 2

(
2n2 − 6− ρn−1

(
B(a, b)

)
+

4

n

)
.

Proof. Let ρ1 ≥ ρ2 ≥ · · · ≥ ρn−1 > ρn = 0, be the DL eigenvalues of B(a, b).

By Proposition 5, the DL-eigenvalues of B(a, b) consists of the simple eigenvalue 0,

the eigenvalue n + 1 with multiplicity n − 5 and the four zeros of fa,b(x) given by

(3.1). Besides, by Proposition 5, the eigenvalue ρn−1 is same as the zero z4 of fa,b(x).

Thus, we order the DL-eigenvalues of B(a, b) from the smallest to the largest as:

ρn = 0, ρn−1 ∈ (n, n+ 1), ρi = n + 1 for i = 4, 5, . . . , n− 2, ρ3 = z3 ∈ (n + 1, n+ 2)

and ρ1 ≥ ρ2 ≥ z3. In order to validate the ordering, we show that ρ2 ≥ n + 2. For

a = 1, 2, 3, we see by direct calculation that ρ2 ≥ n + 2 holds. So, suppose that

a ≥ 4. The 2 × 2 principal submatrix of DL(B(a, b)) corresponding to the vertex of

maximum transmission and the vertex of second maximum transmission is(
2a+ b+ 3 −2

−2 a+ 2b+ 3

)
,

and its eigenvalues are 1
2

(
3a+ 3b+ 6±

√
(a− b)2 + 16

)
. By using the interlacing

property of Theorem 1, we have

ρ2 ≥
1

2

(
3a+ 3b+ 6−

√
(a− b)2 + 16

)
,

and to show that ρ2 ≥ n+ 2, it is equivalent to show that

b(a− 2) ≥ 2a. (3.2)

It is clear that this inequality holds for b ≥ a ≥ 4. Also, the average transmission of

B(a, b) is

2W
(
B(a, b)

)
n

=
(n+ 1)(n− 5) + 5a+ 5b+ 18

n
=
n(n+ 1)− 2

n
= n+ 1−

2

n
.

Clearly,
2W
(
B(a,b)

)
n is function of n and is constant for any values of a and b. Let

σ = σ(B(a, b)) be the greatest positive integer such that ρσ ≥
2W
(
B(a,b)

)
n , then

ρ1 ≥
2W
(
B(a,b)

)
n is always true and by above DL-eigenvalue ordering its is clear that

ρ2 ≥ ρ3 ≥ ρ4 = · · · = ρn−2 = n + 1 >
2W
(
B(a,b)

)
n = n + 1 − 2

n . It follows that

σ = n− 2, so by the definition of distance Laplacian energy, we have

DLE(B(a, b)) = 2

(
Sn−2(G)−

2(n− 2)W (B(a, b))

n

)

= 2

(
ρ1 + ρ2 + ρn−2 + (n− 5)(n+ 1)− (n− 2)(n+ 1−

2

n
)

)
= 2

(
ρ1 + ρ2 + ρn−2 + 2n2 − 5n− 9 +

4

n

)
.
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From (3.1), we see that ρ1 + ρ2 + ρ3 + ρn−2 = 5a+ 5b+ 18− ρn−1 = 5n+ 3− ρn−1.

Therefore, DLE of B(a, b), a ≤ b is given by

DLE(B(a, b)) = 2

(
2n2 − 6− ρn−1

(
B(a, b)

)
+

4

n

)
.

The following consequence of Theorem 10 is immediate from Proposition 5.

Corollary 5. The DL energy of B(a, b), with a < b and n − 3 = a + b satisfies the
following

2

(
2n2 − n− 7 +

4

n

)
< DLE(B(a, b)) < 2

(
2n2 − n− 6 +

4

n

)
.

By Corollary 5, we observe that DLE of B(a, b) lies in an open interval of length 2.

Let B(a− t, b+ t), with t = 1, . . . , a− 1 be the family of graphs with a+ b = n− 3.

Next result shows that DLE of B(a− t, b+ t) is strictly decreasing function of t.

Theorem 11. For t = 1, 2, . . . , a − 1, a + b = n − 3, and a ≤ b, the DL energy of the
family B(a− t, b+ t) is a decreasing function of t.

Proof. By Theorem 10, DLE of B(a, b) is given by

DLE
(
B(a, b)

)
= 2

(
2n2 − 6 +

4

n
− ρn−1(B(a, b))

)
.

where ρn−1 is the second smallest DL eigenvalue of B(a, b). In order to prove the re-

sult, it is enough to show that DLE(G1) > DLE(G2), where G1 = B(a− l, b+ l) and

G2 = B(a − k, b + k), 1 ≤ l < k. Now, DLE(G1) − DLE(G2) = 2(−ρn−1(G1) +

ρn−1(G2)), which is positive, since by Proposition 8, ρn−1(B(a − k, b + k))) >

ρn−1(B(a − l, b + l)). Therefore, DLE(B(a − t, b + t)) is a decreasing function of

t.

Remark 1. An important observation from Theorem 10 is that only one non-zero distance

Laplacian eigenvalue of B(a, b) is strictly less than the graph invariant 2W (B(a,b))
n

. Thus

σ = n− 2 for the family of graphs B(a− t, b+ t), t = 0, 1, 2, 3, . . . , a− 1.

4. Conclusion

The article gives the distance Laplacian spectral invariant ordering of the brooms

and their complements. Formally, we determine the extremal graphs with respect

to spectral parameters like the largest distance Laplacian eigenvalue, the smallest

non-zero distance Laplacian eigenvalue and the distance Laplacian energy of brooms

of diameter 4 and their complements. For general graphs these properties are very

hard and restriction to special graphs is considered to carry a deep rigorous study of
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these spectral invariants. In future, a similar type of analysis can be interesting for

more general families of graphs.
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