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Abstract: A graph G with a vertex set V and an edge set E is called regular if the
degree of every vertex is the same. A quasi-regular graph is a graph whose vertices

have one of two degrees r and r − 1, for some positive integer r. A graph G is said to

be self-complementary if G is isomorphic to it’s complement Ḡ. In this paper we give
a new method for construction of regular and quasi-regular self-complementary graph.
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1. Introduction

The study of self-complementary graphs was initiated by Sachs in 1962 [5] and later

but independently by Ringel [4]. Each presents a construction algorithm for self-

complementary graphs. Sachs and Ringel also gave a construction algorithm for reg-

ular and quasi-regular self-complementary graphs. In 1972 R. Gibbs [3] gave a new

algorithm for construction of self-complementary graphs. This algorithm provides a

method for constructing all self-complementary graphs having a given complementing

permutation σ with cycles of lengths that are powers of 2.

In this paper we present a new method for construction of regular self-complementary

and quasi-regular self-complementary graphs. In section 2, we give some preliminary

definitions and known results. In section 3, we introduce a new method for construc-

tion of regular self-complementary graphs and in section 4, we provide a new method

for construction of quasi-regular self-complementary graphs.
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2. Preliminary Definitions and Results

In this section we give some preliminary definitions and results. Graphs considered

here are simple.

Definition 1. (Regular graph ) A graph G with a vertex set V and an edge set E is
called regular if the degree of every vertex is the same.

If G is a graph in which the degree of every vertex is k, then G is said to be a k-regular

graph.

Definition 2. (Bi-regular graph) A graph G is said to be bi-regular if there exist two
distinct positive integers d1 and d2 such that the degree of each vertex is either d1 or d2.

Definition 3. (Quasi-regular graph) A graph G is said to be quasi-regular if the
degree of each vertex is either r or r − 1 for some positive integer r.

Definition 4. (Self-complementary graph) A graph G = (V ; E) is called self-
complementary if there exists a permutation σ : V → V , called a complementing permuta-
tion, such that for every edge e of G, e ∈ E if and only if σ(e) /∈ E.

We state below the most basic results on self-complementary graphs and regular

graphs, ones included even in introductory courses on graph theory.

Result 1. [2, 3, 5] If G is a self-complementary graph on n vertices, then n ≡ 0 or 1
(mod 4).

Result 2. [2, 3, 5] A graph G is k-regular graph on n vertices if and only if kn is even.

Result 3. [1, 2] If d1 ≥ d2 ≥ · · · ≥ dn is the degree sequence of a self-complementary
graph G then di + dn+1−i = n− 1.

3. Constructing regular self-complementary graph

Theorem 4 gives a well known result for regular self-complementary graphs due

to Sachs [5]. His proof involves first constructing a self-complementary graph G′

on 4m vertices v1, v2, . . . , v4m, and then by adding a new vertex v4m+1 in the

graph G′ to get the required regular self-complementary graph G on the vertices

v1, v2, . . . , v4m, v4m+1. Two distinct vertices vi, vj in G′ are joined if i + j ≡ 0 or 1

(mod 4) for i, j = 1, 2, 3, . . . , 4m. In G′, d(vi) = 2m if i is odd and d(vi) = 2m−1 if i is

even. Now the vertex v4m+1 is joined to all vertices vi, with even i, i = 1, 2, 3, . . . , 4m.

The graph G so obtained is a regular self-complementary graph on the vertex set

V = {v1, v2, . . . , v4m, v4m+1} with a complementing permutation, σ : V → V defined
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as σ(vi) = vi+1, i = 1, 2, . . . , 4m − 1, σ(v4m) = v1, σ(v4m+1) = v4m+1. There are

several proofs for the theorem, and we introduce a new one.

Theorem 4. There exists a regular self-complementary graph of order n if and only if
n ≡ 1 (mod 4).

Proof. If G is a regular graph on n vertices, then from Result 3, degree of every

vertex must be r = n−1
2 . For r to be an integer, n − 1 must be even, and since G is

self-complementary, by Result 1, we get n ≡ 1 (mod 4).

To prove the converse, we construct a regular self-complementary graph G of order

n, where n is congruent to 1 modulo 4.

Let m be a positive integer and V = {u}∪V0∪V1∪V2∪V3, where Vi = {vij : j ∈ Zm}
for all i ∈ Z4. For pairwise distinct i, i′ ∈ Z4, we define the following subsets of V (2),

where V (2) denotes the set of all 2-subsets of V :

Ei = V
(2)
i , E(i,i′) = {{vij1 , v

i′

j2} : j1, j2 ∈ Zm}, Eu
i = {{u, vij} : j ∈ Zm}.

Let E =
⋃

i=0,1

(Ei ∪ Eu
i ) ∪ E(0,3) ∪ E(2,3) ∪ E(1,2) and let G be the graph with vertex

set V and edge set E as defined above, having n = 4m+ 1 vertices.

Figure 1. The types of edges of the graph G

Figure 1 explains the construction of the graph G in another way.

First we show that G is regular. Take any vertex vij . Then, for fixed i, the vertex vij
lies in m− 1 subsets of Ei, m subsets of E(i,i′) and one subset of Eu

i .

Hence, for every vertex vij in G with i ∈ {0, 1}, we have deg(vi
j) = m−1+m+1 = 2m,

and for every vertex vij in G with i ∈ {2, 3}, we have deg(vi
j) = m + m = 2m.

Furthermore, deg(u) = m + m = 2m. We conclude that G is regular.

Define a bijection φ : V → V as φ(u) = u, φ(v0j ) = v3j , φ(v1j ) = v2j , φ(v2j ) = v0j , and
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φ(v3j ) = v1j , for all j ∈ Zm. It can be easily checked that G is self-complementary,

with φ as its complementing permutation.

4. Constructing quasi-regular self-complementary graph

The known result for quasi-regular self-complementary graphs due to Sachs [5] is as

follows. There are several proofs for the theorem, and we provide a new one.

Theorem 5. There exists a quasi-regular self-complementary graph of order n if and only
n ≡ 0 (mod 4).

Proof. Let G be a quasi-regular self-complementary graph on n vertices. By Result

3, s+ (s− 1) = 2s− 1 = n− 1. Then n = 2s, and since G is self-complementary, by

Result 1, it follows that n ≡ 0 (mod 4).

To prove the converse, we construct a graph G of order congruent to 0 modulo 4,

which is quasi-regular and self-complementary.

Let m be a positive integer and V = V0 ∪ V1 ∪ V2 ∪ V3, where Vi = {vij : j ∈ Zm} for

all i ∈ Z4. For pairwise distinct i, i′ ∈ Z4, define the following subsets of V (2) where

V (2) denotes the set of all 2-subsets of V :

Ei = V
(2)
i , E(i,i′) = {{vij1 , v

i′

j2} : j1, j2 ∈ Zm}.

Let E =
⋃

i=0,1

(Ei) ∪ E(0,3) ∪ E(2,3) ∪ E(1,2) and let G be the graph with vertex set V

Figure 2. The types of edges of the graph G

and edge set E as defined above having n = 4m vertices.

Figure 2 explains the construction of the graph G in another way.

First we show that G is quasi-regular. Take any vertex vij . Then, for fixed i, the
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vertex vij lies in m− 1 subsets of Ei and m subsets of E(i,i′). Hence, for every vertex

vij in G with i ∈ {0, 1}, we have deg(vi
j) = m− 1 + m = 2m− 1, and for every vertex

vij in G with i ∈ {2, 3}, we have deg(vi
j) = m + m = 2m. Therefore, there are 2m

vertices having degree 2m− 1 and 2m vertices of degree 2m.

We conclude that G is quasi-regular.

Define a bijection φ : V → V as φ(v0j ) = v3j , φ(v1j ) = v2j , φ(v2j ) = v0j , and φ(v3j ) = v1j ,

for all j ∈ Zm. It can be easily checked that G is self-complementary, with φ as its

complementing permutation.
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