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Abstract: The independent domination number i(G) of a graph G is the minimum
cardinality of a maximal independent set of G, also called an i(G)-set. The i-graph of

G, denoted I (G), is the graph whose vertices correspond to the i(G)-sets, and where

two i(G)-sets are adjacent if and only if they differ by two adjacent vertices. We show
that not all graphs are i-graph realizable, that is, given a target graph H, there does

not necessarily exist a seed graph G such that H ∼= I (G). Examples of such graphs

include K4 − e and K2,3. We build a series of tools to show that known i-graphs can
be used to construct new i-graphs and apply these results to build other classes of

i-graphs, such as block graphs, hypercubes, forests, cacti, and unicyclic graphs.
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1. Introduction

The i-graph H of a graph G is an example of a “reconfiguration graph”. It has as

its vertex set the minimum independent dominating sets of G, and two vertices of H

are adjacent whenever the symmetric difference of their corresponding sets consists of

two vertices that are adjacent in G. We consider the following realizability question:

for which graphs H does there exist a graph G such that H is the i-graph of G?

Following definitions and general discussions in the remainder of this section, we

begin our investigation into i-graph realizability in Section 2 by composing a series of
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observations and technical lemmas concerning the adjacency of vertices in an i-graph

and the structure of their associated i-sets in the seed graph. In Section 3, we present

the three smallest graphs which are not i-graphs, and in Section 4, we show that

several common graph classes, like trees and cycles, are i-graphs. We conclude by

examining, in Section 5, how new i-graphs can be constructed from known ones.

1.1. Reconfiguration

In general, a reconfiguration problem asks whether it is possible to transform a given

source solution to a given problem into a target solution through a series of incremental

transformations (called reconfiguration steps) under some specified rule, such that

each intermediate step is also a solution. The resulting chain of the source solution,

intermediate solutions, and target solution is a reconfiguration sequence.

In graph theory, reconfiguration problems are often concerned with solutions that

are vertex/edge subsets or labellings of a graph. In particular, when the solution

is a vertex (or edge) subset, the reconfiguration problem can be viewed as a token

manipulation problem, where a solution subset is represented by placing a token at

each vertex or edge of the subset. The reconfiguration step for vertex subsets can be

of one of three variants (edge subsets are handled analogously):

B Token Slide (TS) Model: A single token is slid along an edge between adja-

cent vertices.

B Token Jump (TJ) Model: A single token jumps from one vertex to another

(without the vertices necessarily being adjacent).

B Token Addition/Removal (TAR) Model: A single token can either be

added to a vertex or be removed from a vertex.

To represent the many possible solutions in a reconfiguration problem, each solution

can be represented as a vertex of a new graph, referred to as a reconfiguration graph,

where adjacency between vertices follows one of the three token adjacency models,

producing the slide graph, the jump graph, or the TAR graph, respectively. See [16, 20].

More formally, given a graph G, the slide graph of G under some specified reconfigu-

ration rule is the graph H such that each vertex of H represents a solution of some

problem on G, and two vertices u and v of H are adjacent if and only if the solution

in G corresponding to u can be transformed into the solution corresponding to v by

sliding a single token along an edge of G.

1.2. γ-Graphs

We use the standard notation of γ(G) for the cardinality of a minimum dominating

set of a graph G. The private neighbourhood of a vertex v with respect to a vertex

set S is the set pn(v, S) = N [v] − N [S − {v}]; therefore, a dominating set S is

minimal dominating if, for each u ∈ S, pn(u, S) is nonempty. The external private

neighbourhood of v with respect to S is the set epn(v, S) = pn(v, S) − {v}. The
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independent domination number i(G) of G is the minimum cardinality of a maximal

independent set of G, or, equivalently, the minimum cardinality of an independent

domination set of G. An independent dominating set of G of cardinality i(G) is also

called an i-set of G, or an i(G)-set.

In general, we follow the notation of [7]. In particular, the disjoint union of two graphs

G and H is denoted G∪H, whereas the join of G and H, denoted G∨H, is the graph

obtained from G ∪H by joining every vertex of G with every vertex of H. For other

domination principles and terminology, see [14, 15].

First defined by Fricke, Hedetniemi, Hedetniemi, and Hutson [10] in 2011, the γ-graph

of a graph G is the graph G(γ) = (V (G(γ)), E(G(γ))), where each vertex v ∈ V (G(γ))

corresponds to a γ-set Sv of G. The vertices u and v in G(γ) are adjacent if and only

if there exist vertices u′ and v′ in G such that u′v′ ∈ E(G) and Sv = (Su−u′)∪{v′};
this is a token-slide model of adjacency.

An initial question of Fricke et al. [10] was to determine exactly which graphs are

γ-graphs; they showed that every tree is the γ-graph of some graph and conjectured

that every graph is the γ-graph of some graph. Later that year, Connelly, Hutson, and

Hedetniemi [8] proved this conjecture to be true. For additional results on γ-graphs,

see [3, 8–10]. Mynhardt and Teshima [19] investigated slide model reconfiguration

graphs with respect to other domination parameters.

Subramanian and Sridharan [23] independently defined a different γ-graph of a graph

G, denoted γ · G. The vertex set of γ · G is the same as that of G(γ); however, for

u,w ∈ V (γ ·G) with associated γ-sets Su and Sw in G, u and w are adjacent in γ ·G if

and only if there exist some vu ∈ Su and vw ∈ Sw such that Sw = (Su−{vu})∪{vw}.
This version of the γ-graph was dubbed the “single vertex replacement adjacency

model” by Edwards [9], and is sometimes referred to as the “jump γ-graph” as it

follows the TJ-Model for token reconfiguration. Further results concerning γ ·G can

be found in [17, 21, 22]. Notably, if G is a tree or a unicyclic graph, then there exists

a graph H such that γ ·H = G [22]. Conversely, if G is the (jump) γ-graph of some

graph H, then G does not contain any induced K2,3, P3 ∨K2, or (K1 ∪K2) ∨ 2K1

[17].

Using a token addition/removal model, Haas and Seyffarth [11] define the k-

dominating graph Dk(G) of G as the graph with vertices corresponding to the k-

dominating sets of G (i.e., the dominating sets of cardinality at most k). Two ver-

tices in the k-dominating graph are adjacent if and only if the symmetric difference of

their associated k-dominating sets contains exactly one element. Additional results

can be found in [1, 2, 12, 13, 24], and a survey on reconfiguration of colourings and

dominating sets of graphs in [18].

1.3. i-Graphs

The i-graph of a graph G, denoted I (G) = (V (I (G)), E(I (G))), is the graph with

vertices representing the minimum independent dominating sets of G (that is, the

i-sets of G). As in the case of γ-graphs as defined in [10], adjacency in I (G) follows

a slide model where u, v ∈ V (I (G)), corresponding to the i(G)-sets Su and Sv,
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respectively, are adjacent in I (G) if and only if there exists xy ∈ E(G) such that

Su = (Sv − x) ∪ {y}. We say H is an i-graph, or is i-graph realizable, if there exists

some graph G such that I (G) ∼= H. Moreover, we refer to G as the seed graph of

the i-graph H. Going forward, we mildly abuse notation to denote both the i-set X

of G and its corresponding vertex in H as X, so that X ⊆ V (G) and X ∈ V (H).

Imagine that there is a token on each vertex of an i-set S of G. Then S is adjacent,

in I (G), to an i(G)-set S′ if and only if a single token can be slid along an edge of

G to transform S into S′. Notice that the token jump model of reconfiguration for

independent domination is identical to the token-slide model. The reason for this is

as follows. Suppose a token “jumps” to reconfigure an i-set S1 into an i-set S2 by

“jumping” from v ∈ S1 to w ∈ S2. Since S2 is independent, w is not adjacent to any

vertex in S2. But S2 −{w} = S1 −{v}, hence w is also not adjacent to any vertex in

S1−{v}. Since S1 is dominating, w is adjacent to v. Therefore, the “jump” action is

the same as the “slide” action. A token is said to be frozen (in any reconfiguration

model) if there are no available vertices to which it can slide/jump.

In acknowledgment of the slide-action in i-graphs, given i-sets X = {x1, x2, . . . , xk}
and Y = {y1, x2, . . . , xk} of G with x1y1 ∈ E(G), we denote the adjacency of X and Y

in I (G) as X
x1y1∼ Y , where we imagine transforming the i-set X into Y by sliding the

token at x1 along an edge to y1. When discussing several graphs, we use the notation

X
x1y1∼G Y to specify that the relationship is on G. More generally, we use x ∼ y to

denote the adjacency of vertices x and y (and x 6∼ y to denote non-adjacency); this

is used in the context of both the seed graph and the target graph.

Although every graph is the γ-graph of some graph, there is no such tidy theorem

for i-graphs; as we show in Section 3, not every graph is an i-graph, and determining

which classes of graphs are (or are not) i-graphs has proven to be an interesting

challenge.

2. Observations

To begin, we propose several observations about the structure of i-sets within given

i-graphs which we then use to construct a series of useful lemmas.

Observation 1. Let G be a graph and H = I (G). A vertex X ∈ V (H) has degH(X) ≥ 1
if and only if for some v ∈ X ⊆ V (G), there exists u ∈ epn(v,X) such that u dominates
pn(v,X).

From a token-sliding perspective, Observation 1 shows that a token on an i-set vertex

v is frozen if and only if epn(v) = ∅ or G[epn(v,X)] has no dominating vertex.

For some path X1, X2, . . . , Xk in H, only one vertex of the i-set is changed at each

step, and so X1 and Xk differ on at most k vertices. This yields the following obser-

vation.
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Observation 2. Let G be a graph and H = I (G). Then for any i-sets X and Y of G,
the distance dH(X,Y ) ≥ |X − Y |.

Lemma 1. Let G be a graph with H = I (G). Suppose XY and Y Z are edges in H with

X
xy1∼ Y and Y

y2z∼ Z, with X 6= Z. Then XZ is an edge of H if and only if y1 = y2.

Proof. Let X = {x, v2, v3, . . . , vk} and Y = {y1, v2, v3, . . . , vk} so that X
xy1∼ Y . To

begin, suppose y1 = y2. Then Y
y1z∼ Z and Z = {z, v2, v3, . . . , vk}, hence |X−Z| = 1.

Since X is dominating, z is adjacent to a vertex in {x, v2, v3, . . . , vk}; moreover, since

Z is independent, z is not adjacent to any of {v2, v3, . . . , vk}. Thus z is adjacent to x

in G and X
xz∼ Z, so that XZ ∈ E(H).

Conversely, suppose y1 6= y2. Then, without loss of generality, say y2 = v2 and so

X = {x, y2, v3, . . . , vk}, Y = {y1, y2, v3, . . . , vk}, and Z = {y1, z, v3, . . . , vk}. Notice

that x 6= z since x ∼ y1 and z 6∼ y1. Thus |X − Z| = 2, and it follows that

XZ /∈ E(H).

Combining Observation 2 and Lemma 1 yields the following observation for vertices

of i-graphs at distance two.

Observation 3. Let G be a graph and H = I (G). Then for any i-sets X and Y of G,
if dH(X,Y ) = 2, then |X − Y | = 2.

Lemma 2. Let G be a graph and H = I (G). Suppose H contains an induced K1,m with
vertex set {X,Y1, Y2, . . . , Ym} and degH(X) = m. Let i 6= j. Then in G,

(i) X − Yi 6= X − Yj,

(ii) |Yi ∩ Yj | = i(G)− 2, and

(iii) m ≤ i(G).

Proof. Suppose X
xiyi∼ Yi and X

xjyj∼ Yj . Then (X − Yi) = {xi} and (X − Yj) =

{xj}. From Lemma 1, since Yi 6∼ Yj , we have that xi 6= xj , which establishes

Statement (i). Moreover, Yi∩Yj = X−{xi, xj}, and so as these are i-sets, Statement

(ii) also follows. Finally, for Statement (iii), again applying Lemma 1, we see that

|
⋂

1≤i≤m Yi| = |X| −m = i(G)−m ≥ 0.

Induced C4’s in a target graph H play an important role in determining the i-graph

realizability of H and determine a specific relationship among i-sets of a potential

seed graph G, as we show next.

Proposition 1. Let G be a graph and H = I (G). Suppose H has an induced C4

with vertices X,A,B, Y , where XY,AB /∈ E(H). Then, without loss of generality, the set
composition of X,A,B, Y in G, and the edge labelling of the induced C4 in H, are as in
Figure 1.
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Figure 1. Reconfiguration structure of an induced C4 subgraph from Proposition 1.

Proof. Suppose that the i-set X of G has X = {x1, x2, v3, . . . , vk}. Then by Lemma

1, without loss of generality, the edge from X to A can be labelled as X
x1y1∼ A for

some y1 ∈ V (G) − X, so that A = {y1, x2, v3, . . . , vk}, while the edge from X to B

can be labelled X
x2y2∼ B for some y2 and B = {x1, y2, v3, . . . , vk}.

Consider the edge AY ∈ E(H) labelled A
ay∗

∼ Y . From Lemma 1, since XY /∈ E(G),

a 6= y1. If, say, a = v3, then Y = {y1, x2, y∗, . . . , vk}. However, neither y1 nor x2 is

in B, so |Y − B| ≥ 2, contradicting Observation 2. Thus, a 6= vi for any 3 ≤ i ≤ k.

This leaves a = x2, and Y = {y1, y∗, v3, . . . , vk}. Since |Y − B| = 1, y∗ = y2 and

Y = {y1, y2, v3, . . . , vk} as required.

3. Realizability of i-Graphs

Having now established a series of observations and lemmas about the structures of

i-graphs and the composition of their associate i-sets, we demonstrate that not all

graphs are i-graphs by presenting three counterexamples: the diamond graph D, K2,3

and κ, as pictured in Figure 2.

Figure 2. Three graphs not realizable as i-graphs.

Proposition 2. The diamond graph D = K4 − e is not i-graph realizable.
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Proof. Suppose to the contrary there is some graph G with I (G) = D. Let V (D) =

{X,A,B, Y } where AB /∈ E(D). Say X
xy∼ Y . Then by Lemma 1, without loss of

generality, the edges incident with A can be labelled as X
xa∼ A and A

ay∼ Y . Likewise,

X
xb∼ B and B

by∼ Y (see Figure 2). However, since B
bx∼ X and X

xa∼ A, Lemma 1

implies that AB ∈ E(D), a contradiction.

Proposition 3. The graph K2,3 is not i-graph realizable.

Proof. Suppose K2,3 = I (G) for some graph G. Let {{X,Y }, {A,B,C}} be the

bipartition of K2,3. Apply the exact labelling from Proposition 1 and Figure 1 to the i-

sets and edges of X,A,B, and Y . We attempt to extend the labelling to C. By Lemma

1, since C is adjacent to X, but not A or B, without loss of generality, X
v3c∼ C and

C = {x1, x2, c, v4, . . . , vk}. As A is an i-set, y1v3 /∈ E(G). Since v3c ∈ E(G), c 6= y1.

Similarly, c 6= y2. Now |C−Y | = 3 and d(C, Y ) = 1, contradicting Observation 2.

Proposition 4. The graph κ is not i-graph realizable.

Proof. Suppose κ = I (G) for some graph G and let V (κ) = {X,A,B,C1, C2, Y }
as in Figure 2, and to the subgraph induced by X,A,B, Y , apply the labelling of

Proposition 1 and Figure 1. Through additional applications of Proposition 1, we can,

as in the proof of Proposition 3, assume without loss of generality that X
x3y3∼ C1.

However, d(C1, Y ) = 2 but |Y −C1| = 3, contradicting Observation 2. It follows that

no such G exists and κ is not an i-graph.

The observant reader will have undoubtedly noticed the common structure between

the graphs in the previous three propositions – they are all members of the class of

theta graphs (see [4]), graphs that are the union of three internally disjoint nontrivial

paths with the same two distinct end vertices. The graph Θ 〈j, k, `〉 with j ≤ k ≤ `,

is the theta graph with paths of lengths j, k, and `. In this notation, our three non

i-graph realizable examples are D ∼= Θ 〈1, 2, 2〉, K2,3
∼= Θ 〈2, 2, 2〉, and κ ∼= Θ 〈2, 2, 3〉.

Further rumination on the similarity in structure suggests that additional subdivisions

of the central path in κ could yield more theta graphs that are not i-graphs. However,

the proof technique used for κ no longer applies when, for example, a path between

the degree 3 vertices has length greater than 4. In [6], we explore an alternative

method for determining the i-graph realizability of theta graphs.

4. Some Classes of i-Graphs

Having studied several graphs that are not i-graphs, we now examine the problem

of i-graph realizability from the positive direction. To begin, it is easy to see that

complete graphs are i-graphs; moreover, as with γ-graphs, complete graphs are their

own i-graphs, i.e., I (Kn) ∼= Kn.
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Proposition 5. Complete graphs are i-graph realizable.

Hypercubes Qn (the Cartesian product of K2 taken with itself n times) are also

straightforward to construct as i-graphs, with I (nK2) ∼= Qn. Each K2 pair can

be viewed as a 0 − 1 switch, with the vertex of the i-set in each component sliding

between the two states.

Proposition 6. Hypercubes are i-graph realizable.

Hypercubes are a special case of the following result regarding Cartesian products of

i-graphs.

Proposition 7. If I (G1) ∼= H1 and I (G2) ∼= H2, then I (G1 ∪G2) ∼= H1 �H2

Proof. Let {X1, X2, . . . , Xk} be the i-sets of G1 and let {Y1, Y2, . . . , Y`} be the i-sets

of G2. Then, the i-sets of G1 ∪G2 are of the form Xi ∪ Yj . Clearly Xi ∪ Yj ∼G1∪G2

X∗i∗ ∪ Y ∗j∗ if and only if Xi ∼G X∗i and Yj = Y ∗j , or Yj ∼G2
Y ∗j and Xi = X∗i . This

gives a natural isomorphism to H1 �H2, where Xi ∪ Yj is the vertex (Xi, Yj).

We digress briefly from our discussion of i-graph classes to demonstrate that any

i-graph can be realized as the i-graph of a connected seed graph. While there may

be several constructions to show this, depending on the structure of the original seed

graph, the construction we present here is simple to describe and works for any given

seed graph G, including the case where G has isolated vertices.

Proposition 8. Any i-graph is realizable as the i-graph of a connected seed graph.

Proof. Let H be an i-graph; say H ∼= I (G) for some graph G. Let k be an integer

such that k > i(G) and construct the graph G′ from G as follows. Join a new vertex u

to each vertex of G. Join another new vertex v to u and to k additional new vertices

w1, w2, . . . , wk.

The graph G′ thus obtained is connected. Any i-set of G together with v is an

independent dominating set ofG′, and we conclude that i(G′) ≤ i(G)+1. Let Z be any

independent set of G′ that contains u. Then v /∈ Z, implying that {w1, w2, . . . , wk} ⊆
Z. It follows that |Z| ≥ k + 1 > i(G) + 1, so u does not belong to any i-set of G′.

No subset of V (G) dominates v, hence i(G′) > i(G), giving i(G′) = i(G) + 1. It is

now clear that X is an i-set of G if and only if X ∪ {v} is an i-set of G′. A token

placed on v is frozen, thus any i-sets X and X ′ of G are adjacent in I (G) if and only

if X ∪ {v} and X ′ ∪ {v} are adjacent in I (G′). Therefore, I (G) ∼= I (G′) ∼= H, as

required.

Moving to cycles, the constructions become markedly more difficult.
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Proposition 9. Cycles are i-graph realizable.

Proof. The constructions for each cycle Ck for k ≥ 3 are as described below.

(i) I (C3) ∼= C3

From Proposition 5.

(ii) I (2K2) ∼= C4

From Proposition 6.

(iii) I (C5) ∼= C5

Recall that i(C5) = 2. A labelled C5 and the resulting i-graph with I (C5) ∼= C5

are given in Figure 3 below.

Figure 3. C5 and I (C5) ∼= C5.

(iv) I (K2 �K3) ∼= C6

Label the vertices of K2 �K3 as in Figure 4 below. The set {xi, yj} is an i-set

of K2 �K3 if and only if i 6= j, so that |V (I (K2 �K3))| = 6, and adjacencies

are as in Figure 4.

Figure 4. K2 � K3 and I (K2 � K3) ∼= C6.

(v) For any k ≥ 7, construct the graph H with V (H) = {v0, v1, . . . , vk−1}, and

vivj ∈ E(H) if and only if j 6≡ i−2, i−1, i, i+1, i+2 (mod k). Then I (H) ∼= Ck.

For convenience, we assume that all subscripts are given modulo k. Thus in H,

for all 0 ≤ i ≤ k − 1, we have the following:

(I) N [vi]\N [vi+1] = {vi, vi+3}
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(II) N [vi+1]\N [vi] = {vi−2, vi+1}.

Since H is vertex-transitive, suppose that vi is in some i-set S. Then

vi−2, vi−1, vi+1, and vi+2 are not dominated by vi. To dominate vi+1, either

vi+1 or vi−2 is in S, because all other vertices in N [vi+1] are also adjacent to vi,

as in (II). Begin by assuming that vi+1 ∈ S. Now since {vi, vi+1} dominates all

of H except vi+2 and vi−1, and N(vi+2, vi−1) ⊆ N(vi, vi+1), either vi+2 or vi−1
is in S. Thus S = {vi, vi+1, vi+2} or S = {vi−1, vi, vi+1}.
Suppose now instead that vi−2 ∈ S. Now, only vi−1 is not dominated by

{vi, vi−2}; moreover, since N(vi−1) ⊆ N({vi−2, vi}), we have that vi−1 ∈ S, and

so S = {vi−2, vi−1, vi}. Combining the above two cases yields that i(H) = 3 and

that all i-sets of H have the form Si = {vi, vi+1, vi+2}, for each 0 ≤ i ≤ k − 1.

Moreover, as there are k unique such sets, it follows that |V (I (H))| = k.

We now consider the adjacencies of I (H). From our set definitions, Si
vi−1vi+2∼

Si+1, and Si
vi+1vi−2∼ Si−1. To see that Si is not adjacent to any other i-set in H,

notice that the token at vi is frozen; N(vi)) ⊆ (N(vi−1) ∪N(vi+1)). Moreover,

by (II), the token at vi+1 can only slide to vi−2, and likewise, the token at vi−1
can only slide to vi+2. Thus Si ∼ Si+1 ∼ · · · ∼ Si−1 ∼ Si, and so I (H) ∼= Ck

as required.

This completes the i-graph constructions for all cycles.

The constructions presented in Proposition 9 are not unique. Brewster, Mynhardt

and Teshima show in [5] that for k ≥ 5 and k ≡ 2 (mod 3), I (Ck) ∼= Ck, and in [6]

they use graph complements to construct graphs with i-graphs that are cycles.

We now present three lemmas with the eventual goal of demonstrating that all forests

are i-graphs. When considering the i-graph of some graph H, if a vertex v of some

i-set S of H has no external private neighbours, then the token at v is frozen. In

the first of the three lemmas, Lemma 3, we construct a new seed graph for a given

target graph, where each vertex of the seed graph’s i-set has a non-empty private

neighbourhood.

Lemma 3. For any graph H, there exists a graph G such that I (G) ∼= I (H) and for
any i-set S of G, all v ∈ S have epn(v, S) 6= ∅.

Proof. Suppose S is an i-set of H having some v ∈ S with epn(v, S) = ∅. Construct

the graph G1 from H by joining new vertices a and b to each vertex of N [v].

To begin, we show that the i-sets of G1 are exactly the i-sets of H. Let R be some i-

set of H and say that v is dominated by u ∈ R. Then u ∈ N [v], so u also dominates a

and b in G1; therefore, R is independent and dominating in G1, and so i(G1) ≤ i(H).

Conversely, suppose that Q is an i-set of G1. If neither a nor b is in Q, then Q is an

independent dominating set of H, and so i(H) ≤ i(G1). Hence, suppose instead that

a ∈ Q. Notice that since Q is independent and a is adjacent to each vertex in N(v),

NH [v] ∩Q = ∅. Some vertex in Q dominates b; however, since NH(a) = NH(b) and
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Q is independent, it follows that b is self-dominating and so b ∈ Q. However, since

NG1 [{a, b}] = NG1 [v], the set Q′ = (Q − {a, b}) ∪ {v} is an independent dominating

set of G1 such that |Q′| < |Q|, a contradiction. Thus, i(G1) = i(H) and the i-

sets of H and G1 are identical. In particular, S is an i-set of G1, and moreover,

epnG1
(v, S) = {a, b}.

By repeating the above process for each i-set of Gj , j ≥ 1, that contains a vertex v

with epn(v, S) = ∅, we eventually obtain a graph G = Gk such that for each i-set

of S of G and each vertex v ∈ S, epnG(v, S) 6= ∅. Since the i-sets of H and G are

identical and H is a subgraph of G, I (G) = I (H) as required.

Next on our way to constructing forests, we demonstrate that given an i-graph, the

graph obtained by adding any number of isolated vertices is also an i-graph.

Lemma 4. If H is the i-graph of some graph G, then there exists some graph G∗ such
that I (G∗) = H ∪ {v}.

Proof. First assume that i(G) ≥ 2. Let V (G) = {v1, v2, . . . , vn} and let W be an

independent set of size i(G) = k disjoint from V (G), say W = {w1, w2, . . . , wk}.
Construct a new graph G∗ by taking the join of G with the vertices of W , so that

G∗ = G ∨W .

Notice that W is independent and dominating in G∗. Moreover, if an i-set S of G∗

contains any vertex wi of W , since W is independent and each vertex of W is adjacent

to all of {v1, v2, . . . , vn}, it follows that S contains all of W , and so, S = W . That is,

if an i-set of G∗ contains any vertex of W , it contains all of W . Thus, i(G) = i(G∗).

Furthermore, any i-set of G is also an i-set of G∗, and so the i-sets of G∗ comprise of

W and the i-sets of G. That is, V (I (G∗)) = V (I (G)) ∪ {W} = V (H) ∪ {W}.
If S is an i-set of G, then S ∩W = ∅. Thus, W is not adjacent to any other i-set in

I (G∗). Relabelling the vertex representing the i-set W in G∗ as v in I (G∗) yields

I (G∗) = H ∪ {v} as required.

If i(G) = 1, then G has a dominating vertex; begin with G ∪K1, which has I (G) =

I (G ∪K1) and i(G ∪K1) = 2, and then proceed as above.

As a final lemma before demonstrating the i-graph realizability of forests, we show

that a pendant vertex can be added to any i-graph to create a new i-graph.

Lemma 5. If H is the i-graph of some graph G, and Hu is the graph H with some
pendant vertex u added, then there exists some graph Gu such that I (Gu) = Hu.

Proof. By Lemma 3 we may assume that for any i-set S of G, epn(v, S) 6= ∅ for all

v ∈ S. To construct Gu, begin with a copy of G. If w is the neighbour of u in Hu, then

consider the i-set W = {v1, v2, . . . , vk} in G corresponding to w. To each vi ∈ W ,

attach a new vertex xi for all 1 ≤ i ≤ k. Then join each xi to a new vertex y, and

then to y, add a final pendant vertex z. Thus V (Gu) = V (G) ∪ {x1, x2, . . . , xk, y, z}
as in Figure 5.
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Figure 5. The construction of Gu from G in Lemma 5.

It is easy to see that if S is an i-set of G, then Sy = S ∪ {y} is an independent

dominating set of Gu. The set Wz = W ∪ {z} is also an independent dominating set

of Gu. Thus, i(Gu) ≤ i(G) + 1. It remains only to show that these are i-sets and the

only i-sets of Gu.

We claim that no xi in X = {x1, x2, . . . , xk} is in any i-set of Gu. To show this,

suppose to the contrary that S∗ is an i-set with S∗ ∩X = {x1, x2, . . . , x`} for some

1 ≤ ` ≤ k. Then, y /∈ S∗; that is, {y, z} ∩ S∗ = {z}. To dominate the remaining

{x`+1, x`+2, . . . , xk}, we have that S∗ = {x1, x2, . . . , x`} ∪ {v`+1, v`+2, . . . , vk} ∪ {z}.
Recall from our initial assumption on G that there exists some v∗1 ∈ epnG(v1,W ).

Thus, v∗1 /∈ (NHu
[{v`+1, v`+2, . . . , vk}] ∩ V (G)), and so v∗1 is undominated by S∗,

which implies that S∗ is not an i-set.

Thus in every i-set of Gu, y is dominated either by itself or by z. If y is not in a given

i-set S (and so z ∈ S), then to dominate X, W ⊆ S, and so S = W ∪{z}. Conversely,

if y ∈ S (and z /∈ S), then since the vertices of G can only be dominated internally,

S is an i-set of Gu if and only if S − {y} is an i-set of G, which completes the proof

of our claim.

If u∗ and w∗ are the vertices in I (Gu) associated with Wz and Wy = W ∪ {y}
respectively, then clearly I (Gu) − {u∗} ∼= I (G). Furthermore, since Wy is the

only i-set with |Wy − Wz| = 1 and yz ∈ E(Gu), it follows that deg(u∗) = 1 and

u∗w∗ ∈ E(I (Gu)), and we conclude that I (Gu) ∼= Hu.

Finally, we amalgamate the previous lemmas on adding isolated and pendant vertices

to i-graphs to demonstrate that forests are i-graphs.

Theorem 4. All forests are i-graph realizable.

Proof. We show by induction on the number of vertices that if F is a forest with

m components, then F is i-graph realizable. For a base, note that I (K2) = K1.

Construct the graph Km by repeatedly applying Lemma 4. Suppose that all forests

on m components on at most n vertices are i-graph realizable. Let F be some forest

with |V (F )| = n+ 1 and components T1, T2, . . . , Tm. If all vertices of F are isolated,

we are done, so assume there is some leaf v with neighbour w in component T1. Let

F ∗ = F −{v}. By induction there exists some graph G∗ with I (G∗) ∼= F ∗. Applying

Lemma 5 to G∗ at w constructs a graph G with I (G) ∼= F .
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Moreover, by adding Proposition 9 to the previous results, we obtain the following

corollary.

Corollary 1. Unicyclic graphs are i-graph realizable.

Proof. Let H be a unicyclic graph with m components and let C be the unique

cycle of H. By Proposition 9, C is an i-graph; say C ∼= I (G) for some graph G.

Using this as a base, and unicyclic graph(s) instead of forest(s), we follow the proof

of Theorem 4 to obtain the desired result.

With the completion of the constructions of forests and unicyclic graphs as i-graphs,

we have now determined the i-graph realizability of many collections of small graphs.

In particular, we draw the reader’s attention to the following observation.

Observation 5. Every graph on at most four vertices except D is an i-graph.

5. Building i-Graphs

In this section, we examine how new i-graphs can be constructed from known ones.

We begin by presenting three very useful tools for constructing new i-graphs: the Max

Clique Replacement Lemma, the Deletion Lemma, and the Inflation Lemma.

The first among these shows that maximal cliques in i-graphs can be replaced by

arbitrarily larger maximal cliques.

Lemma 6 (Max Clique Replacement Lemma). Let H be an i-graph with a
maximal m-vertex clique, Km. Then, the graph Hw formed by adding a new vertex w∗

adjacent to all of Km is also an i-graph.

Proof. Suppose G is a graph such that I (G) = H and i(G) = k + 1 where k ≥ 1,

and let Km = {V1, V2, . . . , Vm} be a maximal clique in H. From Lemma 1, the

corresponding i-sets V1, V2, . . . , Vm of G differ on exactly one vertex, so for each

1 ≤ i ≤ m, let Vi = {vi, z1, z2, . . . , zk} ⊆ V (G), so that Z = {z1, z2, . . . , zk} =⋂
1≤i≤m Vi. Notice also from Lemma 1, for each 1 ≤ i < j ≤ m, vivj ∈ E(G), and so

Qm = {v1, v2, . . . , vm} is a (not necessarily maximal) clique of size m in G.

In addition to Qm and Z defined above, we further weakly partition (i.e. some of the

sets of the partition may be empty) the vertices of G as

X = N(Qm)\N(Z), the vertices dominated by Qm but not Z.

Y = N(Qm) ∩N(Z), the vertices dominated by both Qm and Z.

A = N(Z)\N(Qm), the vertices dominated by Z but not Qm.
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This partition (as well as the construction of Gw defined below) is illustrated in Figure

6. Before proceeding with the construction, we state the following series of claims

regarding the set X:

Claim 1: Each x ∈ X is dominated by every vertex of Qm.

Otherwise, if some x ∈ X is not adjacent to some vj ∈ Qm, then x is undomi-

nated in the the i-set Vj = {vj} ∪ Z.

Claim 2: |X| 6= 1.

If X = 1, say X = {x}, then X∗ = {x} ∪ Z is independent, dominating, and

has |X∗| = i(G); that is, X∗ is an i-set of G. However, since x is adjacent to all

of Qm in G, X∗
xvj∼ Vj for each 1 ≤ j ≤ m, contradicting the maximality of the

clique Km in H.

Claim 3: No x ∈ X dominates all of X.

If x ∈ X dominates X, then {x} ∪ Z is an i-set of G. Following a similar

argument of Claim 2, this contradicts the maximality of Km in H.

Claim 4: For any v ∈ (X ∪ Y ∪A), {v} ∪ Z is not an i-set.

Combining Claims 2 and 3, if v ∈ X, then there exists some xi ∈ X such that

v 6∼ xi, and thus {v} ∪Z does not dominate xi. If v ∈ (Y ∪A), then v ∈ N(Z),

and so {v} ∪ Z is not independent.

We construct a new graph Gw from G by joining a new vertex w to each vertex in

V (G)− Z, as in Figure 6. We claim that I (Gw) ∼= Hw.

Figure 6. Construction of Gw from G in Lemma 6.

Let S be some i-set of Gw. If w /∈ S, then S ⊆ V (G) and so S is also independent

dominating in G, implying |S| = i(G) = k + 1. However, if w ∈ S, then since w is

adjacent to all of V (G)−Z and Z is independent, we have that S = {w}∪Z. It follows

that i(Gw) = i(G). Moreover, any i-set of G is also an i-set of Gw, and so W :=

{w} ∪Z is the only new i-set generated in Gw. Thus V (I (Gw)) = V (I (G))∪ {W}.
Consider now the edges of I (Gw). Since w is adjacent to all of Qm in Gw, W

wvj∼ Vj
for each 1 ≤ j ≤ m, and thus Km ∪W is a clique in I (Gw).

Finally, we demonstrate that W is adjacent only to the i-sets of Km. Consider some

i-set S /∈ Km, and suppose to the contrary that W ∼ S. As W is the only i-set
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containing w, we have that w /∈ S, and hence W
wu∼ S for some vertex u. Since

w ∼ u, u /∈ Z. Moreover, since W and S differ at exactly one vertex and Z ⊆
W , it follows that Z ⊆ S; that is, S = {u} ∪ Z. If u ∈ Qm then S ∈ Km, a

contradiction. If u ∈ (X ∪ Y ∪ A), then by Claim 4, S is not an i-set, which is

again a contraction. We conclude that W 6∼ S for any i-set S /∈ Km, and therefore

E(I (Gw)) = E(I (G)) ∪
(⋃

vi∈Qm
wvi

)
. If follows that I (Gw) ∼= Hw.

Our next result, the Deletion Lemma, shows that the class of i-graphs is closed under

vertex deletion. It is unique among our other constructions; unlike most of our re-

sults which demonstrate how to build larger i-graphs from smaller ones, the Deletion

Lemma instead shows that every induced subgraph of an i-graph is also an i-graph.

Lemma 7 (The Deletion Lemma). If H is a nontrivial i-graph, then any induced
subgraph of H is also an i-graph.

Proof. Let G be a graph such that H = I (G) and i(G) = k. To prove this result, we

show that for any X ∈ V (H), there exists some graph GX such that I (GX) = H−X.

To construct GX , take a copy of G and add to it a vertex z so that z is adjacent to

each vertex of G − X (see Figure 7). Observe first that since H is nontrivial, there

exists an i-set S 6= X of G. Then, S is also an independent dominating set of GX ,

and so i(GX) ≤ k. Consider now some i-set SX of GX . Clearly SX 6= X because X

does not dominate z. If z ∈ SX , then as SX is independent, no vertex of G−X is in

SX . Moreover, since X is also independent and its vertices have all of their neighbors

in G−X, this leaves each vertex of X to dominate itself. That is, X ⊆ SX , implying

that SX = X ∪ {z} and |SX | = k + 1. This contradicts that i(GX) ≤ k, and thus we

conclude that z is not in any i-set of GX . It follows that each i-set of GX is composed

only of vertices from G and so i(GX) = k. Thus, SX 6= X is an i-set of GX if and

only if it is an i-set of G. Given that V (I (GX)) = V (I (G))− {X} = V (H)− {X},
we have that I (GX) = H −X as required.

Figure 7. Construction of GX in Lemma 7.

The following corollary is immediate as the contrapositive of Lemma 7.
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Corollary 2. If H is not an i-graph, then any graph containing an induced copy of H is
also not an i-graph.

This powerful corollary, although simple in statement and proof, immediately removes

many families of graphs from i-graph realizability. For example, all wheels, 2-trees,

and maximal planar graphs on at least five vertices contain an induced copy of the

Diamond graph D, which was shown in Proposition 2 to not be an i-graph. Moreover,

given that i-graph realizability is an inherited property, this suggests that there may

be a finite-family forbidden subgraph characterization for i-graph realizability.

We now alter course to examine how one may construct new i-graphs by combining

several known i-graphs. Understandably, an immediate obstruction to combining the

constructions of i-graphs of, say, I (G1) = H1 and I (G2) = H2 is that it is possible

(and indeed, likely) that i(G1) 6= i(G2).

Two solutions to this quandary are presented in the following lemmas. In the first,

Lemma 8, given a graph G, we progressively construct an infinite family of seed

graphs G with the same number of components as G, and such that I (G) = I (Gj)

for each Gj ∈ G. The second, Lemma 9 or the Inflation Lemma, offers a more

direct solution: given an i-graph H, we demonstrate how to “inflate” a seed graph

G to produce a new graph G∗ such that I (G∗) = I (G) and the i-sets of G∗ are

arbitrarily larger than the i-sets of G.

Lemma 8. If G is a graph with I (G) ∼= H, then there exists an infinite family of graphs
G such that I (Gj) ∼= H for each Gj ∈ G. Moreover, the number of components of Gj ∈ G
is the same as G (k(G) = k(Gj)).

Proof. Suppose v ∈ V (G), and let G∗ be the graph obtained by attaching a copy

of the star K1,3 with V (K1,3) = {x, y1, y2, y3} (deg(x) = 3) by joining v to y1. As y2
and y3 are pendant vertices, i(G∗) ≥ i(G)+1. If S is an i-set of G, then S∗ = S∪{x}
is dominating and independent, and so i(G∗) = i(G) + 1. Thus, x is in every i-set of

G∗, and we can conclude that S∗ is an i-set of G∗ if and only if S∗ − {x} is an i-set

of G. It follows that I (G∗) ∼= I (G) as required. Attaching additional copies of K1,3

as above at any vertex of H similarly creates the other graphs of G.

Lemma 9 (Inflation Lemma). If H is the i-graph of some graph G, then for any
k ≥ i(G) there exists a graph G∗ such that i(G∗) = k and I (G∗) ∼= H.

Proof. Begin with a copy of G and add to it ` = k − i(G) isolated vertices, S =

{v1, v2, . . . , v`}. Immediately, X is an i-set of G if and only if X ∪S is an i-set of G∗.

Moreover, if X and Y are i-sets of G such that X∼GY in H, then (X∪S)∼G∗(Y ∪S),

and so I (G∗) ∼= H.

Now, when attempting to combine the constructions of I (G1) = H1 and I (G2) = H2

and i(G1) < i(G2), we need only inflate G1 until its i-sets are the same size as those in
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G2. A powerful construction tool, the Inflation Lemma is used repeatedly in almost

all of the following results of this section.

In the next result we show that, given i-graphs H1 and H2, a new i-graph H can be

formed by identifying any two vertices in H1 and H2. The proof here uses Proposition

7, the Deletion Lemma (Lemma 7), and the Inflation Lemma (Lemma 9); a proof in

which a seed graph of H is given can be found in [25, Proposition 3.30]. This result

provides an alternative proof for Theorem 4.

Proposition 10. Let H1 and H2 be i-graphs. Then the graph Hx=y, formed by identifying
a vertex x of H1 with a vertex y of H2, is also an i-graph.

Proof. Suppose G1 and G2 are graphs such that I (G1) = H1 and I (G2) = H2.

Applying the Inflation Lemma we may assume that i(G1) = i(G2) = k ≥ 2. By

Proposition 7 there is a graph G such that I (G) = H1 � H2. Since Hx=y is an

induced subgraph of H1 �H2, we may apply the Deletion Lemma and delete all other

vertices of H1 �H2 until only Hx=y remains.

We use Proposition 10 to show that two i-graphs may be connected by an edge

between any two vertices to produce a new i-graph. A proof that gives a seed graph

for this new i-graph is given in [25, Proposition 3.26].

Proposition 11. Let H1 and H2 be disjoint i-graphs. Then the graph Hxy, formed by
connecting H1 to H2 by an edge between any x ∈ V (H1) and any y ∈ V (H2), is also an
i-graph.

Proof. Let H3 ' K2 with V (H3) = {u, v}. Applying Proposition 10 twice, we see

that the graph Hxu obtained by identifying x ∈ V H1) with u ∈ V (H3), and the graph

Hxy obtained by identifying v ∈ V (Hxu) with y ∈ V (H2) are i-graphs.

The following corollary provides a way to connect two i-graphs with a clique rather

than a bridge. A constructive proof in which a seed graph for the resulting i-graph is

provided can be found in [25, Corollary 3.27].

Corollary 3. Let H1 and H2 be i-graphs, and let H be the graph formed from them
as in Proposition 11 by creating a bridge xy between them. Then the graph Hm formed by
replacing xy with a Km for m ≥ 2 is also an i-graph.

Proof. Apply the Max Clique Replacement Lemma (Lemma 6) to the edge xy in

Proposition 11.

The next proposition provides a method for combining two i-graphs without connect-

ing them by an edge.

Proposition 12. If H1 and H2 are i-graphs, then H1 ∪H2 is an i-graph.
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Proof. Suppose G1 and G2 are graphs such that I (G1) = H1 and I (G2) = H2.

We assume that i(G1) = i(G2) ≥ 2. Otherwise, apply the Inflation Lemma (Lemma

9) to obtain graphs with i-sets of equal size at least 2. Let G = G1 ∨G2, the join of

G1 and G2. We claim that I (G) = H1 ∪H2.

We proceed similarly to the proof of Proposition 11; namely, if S is an i-set of G1,

of G2, then S is an independent dominating set of G. Likewise, we observe that any

i-set of G is a subset of G1 or G2, and so, S is a i-set of G if and only if it is an i-set

of G1 or G2.

Suppose X
xy∼G1 Y . Then in G, sets X and Y are still i-sets, and likewise, vertices X

and Y are still adjacent, and so X
xy∼G Y . Now suppose instead that X is an i-set of

G1 and Y is an i-set of G2. Within G, X ∩ Y = ∅ and |X| = |Y | ≥ 2, so X and Y

are not adjacent in I (G). Therefore, X∼GY if and only if X∼G1
Y or X∼G2

Y . It

follows that I (G) = I (G1) ∪I (G2) = H1 ∪H2 as required.

Applying these new tools in combination yields some unexpected results. For example,

the following corollary, which makes use of the previous Proposition 12 in partnership

with the Deletion Lemma (a construction for combining i-graphs and a construction

for vertex deletions) gives our first result on i-graph edge deletions.

Corollary 4. Let H be an i-graph with a bridge e, such that the deletion of e separates
H into components H1 and H2. Then

(i) H1 and H2 are i-graphs, and

(ii) the graph H∗ = H − e is an i-graph.

Proof. Part (i) follows immediately from Lemma 7. For (ii), by Part (i), H1 and H2

are i-graphs. Proposition 12 now implies that H1∪H2 = H−e is also an i-graph.

Combining the results of Proposition 10 with Proposition 11 and Corollary 4, yields

the following main result.

Theorem 6. A graph G is an i-graph if and only if all of its blocks are i-graphs.

As observed in Corollary 2, graphs with an induced D subgraph are not i-realizable. If

we consider the family of connected chordal graphs excluding those with an induced

copy of D, we are left with the family of block graphs (also called clique trees):

graphs where each block is a clique. As cliques are their own i-graph, the following

is immediate.

Proposition 13. Block graphs are i-graph realizable.

Cacti are graphs whose blocks are cycles or edges. Thus, we have the following

immediate corollary.



R.C. Brewster, et al. 407

Corollary 5. Cactus graphs are i-graph realizable.

While the proof of Proposition 10 does provide a method for building block graphs,

it is laborious to do so on a graph with many blocks, as the construction is iterative,

with each block being appended one at a time. However, when we consider that the

blocks of block graphs are complete graphs, and that complete graphs are their own

i-graphs (and thus arguably the easiest i-graphs to construct), it is logical that there

is a simpler construction. We offer one such construction below. An example of this

process is illustrated in Figure 8.

Construction 1. Let H be a block graph with V (H) = {v1, v2, . . . , vn} and let BH =
{B1, B2, . . . , Bm} be the collection of maximal cliques of H. To construct a graph G such
that I (G) = H:

(i) Begin with a copy of each of the maximal cliques of H, labelled A1, A2, . . . , Am in G,
where Ai of G corresponds to Bi of H for each 1 ≤ i ≤ m, and the Ai are pairwise
disjoint. Notice that each cut vertex of H has multiple corresponding vertices in G.

(ii) Let v ∈ V (H) be a cut vertex and Bv be the collection of blocks containing v in H; for
notational ease, say Bv = {B1, B2, . . . , Bk}, and suppose that W = {w1, w2, . . . , wk} ⊆
V (G) are the k vertices corresponding to v, where wi ∈ Ai for all 1 ≤ i ≤ k.

For each distinct pair wi and wj of W , add to G three internally disjoint paths of
length two between wi and wj . Since v is in k blocks of H, 3

(
k
2

)
vertices are added in

this process. These additions are represented as the green vertices in Figure 8.

(iii) Repeat Step (ii) for each cut vertex of H.

Figure 8. The construction of G from H in the proof of Proposition 13.
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To see that the graph G from Construction 1 does indeed have I (G) = H, notice

that i(G) = m, where m is the number of blocks in H; if X is an i-set of G, then

|X ∩ Ai|=1 for each Ai ∈ {A1, A2, . . . , Am}. Moreover, no i-set of G has vertices in

the added green vertices, because, as with the proof of Proposition 10, the inclusion

of any one of these green vertices in an independent dominating set necessitates the

addition of them all.

In Figure 8(b), the five yellow vertices form the i-set corresponding to the yellow

vertex of G in Figure 8(a). Only the token on the purple K5 can move in G; the other

four tokens remain frozen, thereby generating the corresponding purple K5 of H. It

is only when the token on the purple K5 is moved to the vertex xG that the tokens

on the orange K4, and the brown and green K2’s, unfreeze one clique at a time. This

corresponds to the cut vertex i-set XH of H. The freedom of movement now transfers

from the purple K5 to any of the three other cliques, allowing for the generation of

their associated blocks in G as required.

Finally, before we depart from block graphs, as chordal graphs are among the most

well-studied families of graphs, we offer one additional reframing of this block graph

result from the chordal graph perspective.

Corollary 6. A chordal graph is i-graph realizable if and only if it is D-free.

With the addition of Proposition 13 to the results used to build Observation 5, this

leaves only the house graph (see Figure 9(b)) as unsettled with regard to its i-graph

realizability among the 34 non-isomorphic graphs on five vertices. Although not

strictly a result concerning the construction of larger i-graphs from known results, we

include the following short proposition here for the sake of completeness.

Proposition 14. The house graph H is an i-graph.

To demonstrate Proposition 14, we provide an exact seed graph for the i-graph: the

graph G in Figure 9(a) (K3 with a P3 tail) has I (G) = H. The i-sets of G and their

adjacency are overlaid on H in Figure 9(b).

Figure 9. The graph G for Proposition 14 with I (G) = H.
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6. Conclusion

As we observed above, although not every graph is i-graph realizable, every graph

does have an i-graph. The exact structure of the resulting i-graph can vary among

families of graphs from the simplest isolated vertex to surprisingly complex structures.

To illustrate this point, we determine the i-graphs of paths and cycles in [5].

We showed in Section 3 that the theta graphs D ∼= Θ 〈1, 2, 2〉, K2,3
∼= Θ 〈2, 2, 2〉, and

κ ∼= Θ 〈2, 2, 3〉 are not i-graph realizable. In [6] we investigate the class of theta graphs

and determine exactly which ones fail to be i-graph realizable – there are only finitely

many such graphs. We also present a graph that is neither a theta graph nor i-graph

realizable. The following question remains open.

Question 1. Does there exist a finite forbidden subgraph characterization of i-graph
realizable graphs?

Proposition 9 states that every cycle is i-graph realizable. Hence, if we subdivide

any edge of a cycle, the resulting graph is i-graph realizable. On the other hand,

K4 is i-graph realizable, but if we subdivide any edge, the resulting graph H has the

diamond D as induced subgraph. By Corollary 2, H is not i-graph realizable.

Question 2. Suppose H is i-graph realizable and let e ∈ E(H). Under which conditions
is the graph obtained by subdividing e i-graph realizable?
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