[1] K. Adaricheva, C. Bozeman, N.E. Clarke, R. Haas, M.-E. Messinger, K. Seyffarth, and H.C. Smith, Reconfiguration graphs for dominating sets, Research Trends in Graph Theory and Applications (Cham) (D. Ferrero, L. Hogben, S.R. Kingan, and G.L. Matthews, eds.), Springer International Publishing, 2021, pp. 119–135.
[3] A. Bień, Gamma graphs of some special classes of trees, Ann. Math. Sil. 29 (2015), 25–34.
[4] J.A. Bondy, The “graph theory” of the Greek alphabet, Graph theory and applications (Proc. Conf., Western Michigan Univ., Kalamazoo, Mich., 1972; dedicated to the memory of J. W. T. Youngs), Lecture Notes in Math., Vol. 303, Springer,
Berlin, 1972, pp. 43–54.
[5] R.C. Brewster, C.M. Mynhardt, and L.E. Teshima, The i-graphs of paths and cycles, In Preparation (2023).
[6] R.C. Brewster, C.M. Mynhardt, and L.E. Teshima, The realizability of theta graphs as $i$-graphs, In Preparation (2023).
[7] G. Chartrand, L. Lesniak, and P. Zhang, Graphs and Digraphs, 6th ed., Chapman & Hall, London, 2015.
[8] E. Connelly, K.R. Hutson, and S.T. Hedetniemi, A note on $\gamma$-graphs, AKCE Int. J. Graphs Comb. 8 (2011), no. 1, 23–31.
[9] Michelle Edwards, Vertex-critically and bicritically for independent domination and total domination in graphs, Ph.D. thesis, University of Victoria, 2015.
[10] G.H. Fricke, S.M. Hedetniemi, S.T. Hedetniemi, and K.R. Hutson, $\gamma$-graphs of graphs, Discuss. Math. Graph Theory 31 (2011), no. 3, 517–531.
[13] A. Haddadan, T. Ito, A.E. Mouawad, N. Nishimura, H. Ono, A. Suzuki, and Y. Tebbal, The complexity of dominating set reconfiguration, Theoret. Comput. Sci. 651 (2016), 37–49.
https://doi.org/10.1016/j.tcs.2016.08.016
[14] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Domination in Graphs: Advance Topics, Marcel Dekker, New York, 1998.
[15] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York,
1998.
[16] T. Ito, E.D. Demaine, N.J.A. Harvey, C.H. Papadimitriou, M. Sideri, R. Uehara, and Y. Uno, On the complexity of reconfiguration problems, Theoret. Comput. Sci. 412 (2011), no. 12-14, 1054–1065.
https://doi.org/10.1016/j.tcs.2010.12.005
[17] S.A. Lakshmanan and A. Vijayakumar, The gamma graph of a graph, AKCE Int. J. Graphs Comb. 7 (2010), no. 1, 53–59.
[18] C.M. Mynhardt and S. Nasserasr, Reconfiguration of colourings and dominating sets in graphs, 50 years of combinatorics, graph theory, and computing, Discrete Math. Appl. (Boca Raton), CRC Press, Boca Raton, FL, 2020, pp. 171–191.
[19] C.M. Mynhardt and L. E. Teshima, A note on some variations of the $\gamma$-graph, J. Combin. Math. Combin. Comput. 104 (2018), 217–230.
[21] N. Sridharan, S. Amutha, and S.B. Rao, Induced subgraphs of gamma graphs, Discrete Math. Algorithms Appl. 5 (2013), no. 3, Article ID: 1350012.
[22] N. Sridharan and K. Subramanian, Trees and unicyclic graphs are γ-graphs, J. Combin. Math. Combin. Comput. 69 (2009), 231–236.
[23] K. Subramanian and N. Sridharan, $\gamma$-graph of a graph, Bull. Kerala Math. Assoc. 5 (2008), no. 1, 17–34.
[25] L.E. Teshima, The $i$-graph and other variations on the γ-graph, Ph.D. thesis, University of Victoria, 2022, https://dspace.library.uvic.ca/handle/1828/14602