Short Note

A note on the re-defined third Zagreb index of trees

Nasrin Dehgardi

Department of Mathematics and Computer Science, Sirjan University of Technology Sirjan, I.R. Iran n.dehgardi@sirjantech.ac.ir

> Received: 24 July 2023; Accepted: 19 December 2023 Published Online: 29 December 2023

Abstract: For a graph Γ , the re-defined third Zagreb index is defined as

$$ReZG_3(\Gamma) = \sum_{ab \in E(\Gamma)} \deg_{\Gamma}(a) \deg_{\Gamma}(b) \Big(\deg_{\Gamma}(a) + \deg_{\Gamma}(b) \Big),$$

where $\deg_{\Gamma}(a)$ is the degree of vertex a. We prove for any tree T with n vertices and maximum degree Δ , $ReZG_3(T) \geq 16n + \Delta^3 + 2\Delta^2 - 13\Delta - 26$ when $\Delta < n - 1$ and $ReZG_3(T) = n\Delta^2 + n\Delta - \Delta^2 - \Delta$ when $\Delta = n - 1$. Also we determine the corresponding extremal trees.

Keywords: Zagreb indices, re-defined third Zagreb index, trees

AMS Subject classification: 05C07

1. Introduction

Consider a simple graph Γ , such that $V(\Gamma)$ and $E(\Gamma)$ are the vertex and edge sets of Γ respectively. Let $n = |V(\Gamma)|$ is the order of Γ . For $a \in V(\Gamma)$ the open neighborhood of a is the set $N_{\Gamma}(a) = \{b \mid ab \in E(\Gamma)\}$. deg_{Γ} $(a) = |N_{\Gamma}(a)|$ is the degree of a in Γ and $\Delta(\Gamma) = \Delta$ is the maximum degree of Γ . The distance between two vertices of Γ is the length of any shortest path in Γ connecting them.

Zagreb indices [12, 14] are the oldest members of degree-based topological indices which are defined as:

$$M_1(\Gamma) = \sum_{a \in V(\Gamma)} \deg_{\Gamma}(a)^2, \quad M_2(\Gamma) = \sum_{ab \in E(\Gamma)} \deg_{\Gamma}(a) \deg_{\Gamma}(b).$$

Other information on these indices can be seen in [1, 2, 5, 11].

Recently, some variants of Zagreb indices introduced, such as multiplicative Zagreb indices, Zagreb coindices, augmented Zagreb index, re-defined Zagreb indices, Lanzhou © 2023 Azarbaijan Shahid Madani University index, leap Zagreb indices, entire Zagreb indices, irregularity, etc. For more information about these variants see [3, 4, 6–10, 13, 15–21] and the references therein. Here, we consider re-defined third Zagreb index. The re-defined third Zagreb index defined in [17] as:

$$ReZG_3(\Gamma) = \sum_{ab \in E(\Gamma)} \deg_{\Gamma}(a) \deg_{\Gamma}(b) \Big(\deg_{\Gamma}(a) + \deg_{\Gamma}(b) \Big).$$

We give a lower bound on the re-defined third Zagreb index of a tree in terms of its order and maximum degree. Finally we determine the extremal trees achieve this bound.

2. Trees

A *tree* is a connected acyclic graph. A *leaf* is a vertex of degree one. A rooted tree is a tree with a special vertex chosen as the *root* of the tree.

A *spider* is a tree with one vertex of degree at least three. The vertex with degree at least three in a spider is called the *center*. A *leg* of a spider is a path from the center to a leaf. A star is a spider with all legs of length one, and also a path is a spider with one or two leg.

We let $\mathcal{T}(n, \Delta)$ be the trees of order n and maximum degree Δ .

Lemma 1. Let $T \in \mathcal{T}(n, \Delta)$ be rooted at a such that $\deg_T(a) = \Delta$. If T contains the vertex $b \neq a$ with $\deg_T(b) \geq 3$, then there is $T_1 \in \mathcal{T}(n, \Delta)$ with $ReZG_3(T_1) < ReZG_3(T)$.

Proof. Assume that b be a vertex with maximum distance from a and $\deg_T(b) = \rho$. Suppose that $N_T(b) = \{b_1, b_2, \ldots, b_\rho\}$, where b_ρ lies on the path from b to a. By our assumption, for $1 \le i \le \rho - 1$, $\deg_T(b_i) = 1$ or $\deg_T(b_i) = 2$. Consider the following cases.

Case 1. *b* is adjacent to at least two leaves.

We may assume that, b_1 and b_2 be leaves. Denote by T_1 the tree achieved by attaching the edge b_1b_2 to $T - \{bb_1\}$. Since $\rho \geq 3$, then

$$\begin{aligned} ReZG_{3}(T) - ReZG_{3}(T_{1}) &= \deg_{T}(b) \deg_{T}(b_{1}) \Big(\deg_{T}(b) + \deg_{T}(b_{1}) \Big) \\ &+ \deg_{T}(b) \deg_{T}(b_{2}) \Big(\deg_{T}(b) + \deg_{T}(b_{2}) \Big) \\ &+ \sum_{i=3}^{\rho} \deg_{T}(b) \deg_{T}(b_{i}) \Big(\deg_{T}(b) + \deg_{T}(b_{i}) \Big) \\ &- \deg_{T_{1}}(b_{1}) \deg_{T_{1}}(b_{2}) \Big(\deg_{T_{1}}(b_{1}) + \deg_{T_{1}}(b_{2}) \Big) \\ &- \deg_{T_{1}}(b) \deg_{T_{1}}(b_{2}) \Big(\deg_{T_{1}}(b) + \deg_{T_{1}}(b_{2}) \Big) \end{aligned}$$

$$\begin{aligned} &-\sum_{i=3}^{\rho} \deg_{T_1}(b) \deg_{T_1}(b_i) \Big(\deg_{T_1}(b) + \deg_{T_1}(b_i) \Big) \\ &= 2\rho(\rho+1) + \sum_{i=3}^{\rho} \rho \deg_T(b_i) \Big(\rho + \deg_T(b_i) \Big) \\ &- 6 - 2(\rho-1)(\rho+1) - (\rho-1) \sum_{i=3}^{\rho} \deg_T(b_i) \Big(\rho + \deg_T(b_i) - 1 \Big) \\ &= 2(\rho+1) - 6 + \sum_{i=3}^{\rho} \deg_T(b_i) \Big(2\rho + \deg_T(b_i) - 1 \Big) \\ &> 2(\rho+1) - 6 > 0. \end{aligned}$$

Case 2. *b* is adjacent to exactly one leaf.

We may assume that, b_1 be a leaf and $bc_1c_2...c_l$ be a path in T with $b_2 = c_1$ and $l \ge 2$. Let T_1 be the tree derived from T by removing the edge bb_1 and adding the edge c_lb_1 . Since $\rho \ge 3$, then

$$\begin{aligned} ReZG_{3}(T) - ReZG_{3}(T_{1}) &= \deg_{T}(b) \deg_{T}(b_{1}) \left(\deg_{T}(b) + \deg_{T}(b_{1}) \right) \\ &+ \deg_{T}(b) \deg_{T}(b_{2}) \left(\deg_{T}(b) + \deg_{T}(b_{2}) \right) \\ &+ \deg_{T}(c_{l}) \deg_{T}(c_{l-1}) \left(\deg_{T}(c_{l}) + \deg_{T}(c_{l-1}) \right) \\ &+ \sum_{i=3}^{\rho} \deg_{T}(b) \deg_{T}(b_{i}) \left(\deg_{T}(b) + \deg_{T}(b_{i}) \right) \\ &- \deg_{T_{1}}(b_{1}) \deg_{T_{1}}(c_{l}) \left(\deg_{T_{1}}(b_{1}) + \deg_{T_{1}}(c_{l}) \right) \\ &- \deg_{T_{1}}(b) \deg_{T_{1}}(b_{2}) \left(\deg_{T_{1}}(b) + \deg_{T_{1}}(b_{2}) \right) \\ &- \deg_{T_{1}}(c_{l}) \deg_{T_{1}}(c_{l-1}) \left(\deg_{T_{1}}(c_{l}) + \deg_{T_{1}}(c_{l-1}) \right) \\ &- \log_{T_{1}}(c_{l}) \deg_{T_{1}}(b_{l}) \left(\deg_{T_{1}}(b) + \deg_{T_{1}}(b_{l}) \right) \\ &- \sum_{i=3}^{\rho} \deg_{T_{1}}(b) \deg_{T_{1}}(b_{i}) \left(\deg_{T_{1}}(b) + \deg_{T_{1}}(b_{i}) \right) \\ &= \rho(\rho + 1) + 2\rho(\rho + 2) + 6 + \sum_{i=3}^{\rho} \rho \deg_{T}(b_{i}) \left(\rho + \deg_{T}(b_{i})\right) \\ &- 6 - 16 - 2(\rho - 1)(\rho + 1) \\ &- (\rho - 1) \sum_{i=3}^{\rho} \deg_{T}(b_{i}) \left(\rho + \deg_{T}(b_{i}) - 1\right) \\ &= \rho^{2} + 5\rho - 14 + \sum_{i=3}^{\rho} \deg_{T}(b_{i}) \left(2\rho + \deg_{T}(b_{i}) - 1\right) \\ &> \rho^{2} + 5\rho - 14 > 0. \end{aligned}$$

Case 3. None of the vertices adjacent to b are leaves.

Let $bc_1c_2...c_l$ and $bd_1d_2...d_s$, $l, s \ge 2$, be two paths in T with $b_1 = c_1$ and $b_2 = d_1$. Let T_1 be the tree derived from $T - \{bb_1\}$ by attaching the path d_sb_1 . Since $\rho \ge 3$, then

$$\begin{aligned} ReZG_{3}(T) - ReZG_{3}(T_{1}) &= \deg_{T}(b) \deg_{T}(b_{1}) \Big(\deg_{T}(b) + \deg_{T}(b_{1}) \Big) \\ &+ \deg_{T}(b) \deg_{T}(b_{2}) \Big(\deg_{T}(b) + \deg_{T}(b_{2}) \Big) \\ &+ \deg_{T}(d_{s}) \deg_{T}(d_{s-1}) \Big(\deg_{T}(d_{s}) + \deg_{T}(d_{s-1}) \Big) \\ &+ \sum_{i=3}^{\rho} \deg_{T}(b) \deg_{T}(b_{i}) \Big(\deg_{T}(b) + \deg_{T}(b_{i}) \Big) \\ &- \deg_{T_{1}}(b_{1}) \deg_{T_{1}}(d_{s}) \Big(\deg_{T_{1}}(b_{1}) + \deg_{T_{1}}(d_{s}) \Big) \\ &- \deg_{T_{1}}(b) \deg_{T_{1}}(b_{2}) \Big(\deg_{T_{1}}(b) + \deg_{T_{1}}(b_{2}) \Big) \\ &- \deg_{T_{1}}(d_{s}) \deg_{T_{1}}(d_{s-1}) \Big(\deg_{T_{1}}(d_{s}) + \deg_{T_{1}}(d_{s-1}) \Big) \\ &- \sum_{i=3}^{\rho} \deg_{T_{1}}(b) \deg_{T_{1}}(b_{i}) \Big(\deg_{T_{1}}(b) + \deg_{T_{1}}(b_{i}) \Big) \\ &= 4\rho(\rho+2) + 6 + \sum_{i=3}^{\rho} \rho \deg_{T}(b_{i}) \Big(\rho + \deg_{T}(b_{i}) \Big) \\ &- 16 - 16 - 2(\rho - 1)(\rho + 1) \\ &- (\rho - 1) \sum_{i=3}^{\rho} \deg_{T}(b_{i}) \Big(\rho + \deg_{T}(b_{i}) - 1 \Big) \\ &= 2\rho^{2} + 8\rho - 24 + \sum_{i=3}^{\rho} \deg_{T}(b_{i}) \Big(2\rho + \deg_{T}(b_{i}) - 1 \Big) \\ &> 2\rho^{2} + 8\rho - 24 > 0. \end{aligned}$$

	. 1	
	. 1	
	. 1	
	. 1	

Proposition 1. Let $T \in \mathcal{T}(n, \Delta)$ be a spider with $\Delta \geq 3$ such that T has two legs of length more than one. Then there exists a spider $T_1 \in \mathcal{T}(n, \Delta)$ with $ReZG_3(T_1) < ReZG_3(T)$.

Proof. Assume that a be the center of T and $ab_1b_2...b_t$, $ac_1c_2...c_l$ be two legs of length more than one in T. Let T_1 be the tree deduced from $T - \{b_1b_2\}$ by attaching the path c_lb_2 . By definition we have,

$$\begin{aligned} ReZG_{3}(T) - ReZG_{3}(T_{1}) &= \deg_{T}(a) \deg_{T}(b_{1}) \Big(\deg_{T}(a) + \deg_{T}(b_{1}) \Big) \\ &+ \deg_{T}(b_{1}) \deg_{T}(b_{2}) \Big(\deg_{T}(b_{1}) + \deg_{T}(b_{2}) \Big) \\ &+ \deg_{T}(c_{l}) \deg_{T}(c_{l-1}) \Big(\deg_{T}(c_{l}) + \deg_{T}(c_{l-1}) \Big) \\ &- \deg_{T_{1}}(a) \deg_{T_{1}}(b_{1}) \Big(\deg_{T_{1}}(a) + \deg_{T_{1}}(b_{1}) \Big) \\ &- \deg_{T_{1}}(b_{2}) \deg_{T_{1}}(c_{l}) \Big(\deg_{T_{1}}(c_{l}) + \deg_{T_{1}}(c_{l}) \Big) \\ &- \deg_{T_{1}}(c_{l}) \deg_{T_{1}}(c_{l-1}) \Big(\deg_{T_{1}}(c_{l}) + \deg_{T_{1}}(c_{l-1}) \Big) \end{aligned}$$

$$= 2\Delta(\Delta + 2) + 2 \deg_T(b_2) \Big(\deg_T(b_2) + 2 \Big) + 6$$
$$-\Delta(\Delta + 1) - 2 \deg_T(b_2) \Big(\deg_T(b_2) + 2 \Big) - 16$$
$$= \Delta^2 + 3\Delta - 10 > 0.$$

This complete the proof.

Now we prove the main theorems of this paper.

Theorem 1. Let $T \in \mathcal{T}(n, \Delta)$. Then $ReZG_3(T) \ge 16n + \Delta^3 + 2\Delta^2 - 13\Delta - 26$ when $\Delta < n-1$ and $ReZG_3(T) = n\Delta^2 + n\Delta - \Delta^2 - \Delta$ when $\Delta = n-1$. The equality holds if and only if T is a spider with at most one leg of length more than one.

Proof. Assume that $T^* \in \mathcal{T}(n, \Delta)$ with $ReZG_3(T^*) \leq ReZG_3(T)$ for all $T \in \mathcal{T}(n, \Delta)$. Rooted T^* at a such that $\deg_{T^*}(a) = \Delta$. First let $\Delta = 2$. Hence T^* is a path and the result is immediate. Now let $\Delta \geq 3$. Then by Lemma 1, T^* is a spider with center a and by Proposition 1, T^* has at most one leg of length more than one. If T^* is a star, then $ReZG_3(T^*) = n\Delta^2 + n\Delta - \Delta^2 - \Delta$. Hence let T^* is not a star and T^* have only one leg of length more than one. Then

$$ReZG_3(T^*) = 16n + \Delta^3 + 2\Delta^2 - 13\Delta - 26,$$

and the proof is complete.

By defination of re-defined third Zagreb index, we have the next result.

Lemma 2. Let Γ be a graph and $e \notin E(\Gamma)$. Then $ReZG_3(\Gamma + e) > ReZG_3(\Gamma)$.

By Theorem 1 and Lemma 2, we obtain the next theorem.

Theorem 2. Let Γ be a graph with n vertices and maximum degree Δ . Then

$$ReZG_{3}(\Gamma) \geq \begin{cases} 16n + \Delta^{3} + 2\Delta^{2} - 13\Delta - 26, & \text{if } \Delta < n - 1\\ n\Delta^{2} + n\Delta - \Delta^{2} - \Delta, & \text{if } \Delta = n - 1. \end{cases}$$

The equality holds if and only if Γ is a spider with at most one leg of length more than one.

Conflict of interest. The author declares that there is no competing interest related to this paper.

Data Availability. Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

- A.A.S. Ahmad Jamri, F. Movahedi, R. Hasni, and M.H. Akhbari, A lower bound for the second Zagreb index of trees with given Roman domination number, Commun. Comb. Optim. 8 (2023), no. 2, 391–396. https://doi.org/10.22049/cco.2022.27553.1288.
- [2] A. Ali, I. Gutman, E. Milovanović, and I. Milovanović, Sum of powers of the degrees of graphs: Extremal results and bounds, MATCH Commun. Math. Comput. Chem. 80 (2018), no. 1, 5–84.
- [3] A. Alwardi, A. Alqesmah, R. Rangarajan, and I.N. Cangul, *Entire Zagreb indices of graphs*, Discrete Math. Algorithms Appl. **10** (2018), no. 3, Article ID:1850037. https://doi.org/10.1142/S1793830918500374.
- [4] M. Azari, N. Dehgardi, and T. Došlić, Lower bounds on the irregularity of trees and unicyclic graphs, Discrete Appl. Math. 324 (2023), 136–144. https://doi.org/10.1016/j.dam.2022.09.022.
- [5] B. Borovićanin, B. Furtula, and I. Gutman, *Bounds for Zagreb indices*, MATCH Commun. Math. Comput. Chem. **78** (2017), 17–100.
- [6] N. Dehgardi and H. Aram, Sharp bounds on the augmented Zagreb index of graph operations, Kragujevac J. Math. 44 (2020), no. 6, 509–522. http://doi.org/10.46793/KgJMat2004.509D.
- [7] N. Dehgardi and T. Došlić, Lower bounds on the general first Zagreb index of graphs with low cyclomatic number, Discrete Appl. Math. 345 (2024), 52–61. https://doi.org/10.1016/j.dam.2023.11.033.
- [8] N. Dehgardi and J.B. Liu, Lanzhou index of trees with fixed maximum degree, MATCH Commun. Math. Comput. Chem. 86 (2021), 3–10.
- [9] I. Gutman, Multiplicative Zagreb indices of trees, Bull. Int. Math. Virt. Instit. 18 (2011), 17–23.
- [10] I. Gutman, B. Furtula, Z.K. Vukićević, and G. Popivoda, On Zagreb indices and coindices, MATCH Commun. Math. Comput. Chem. 74 (2015), 5–16.
- [11] I. Gutman, E. Milovanović, and I. Milovanović, Beyond the Zagreb indices, AKCE Int. J. Graphs Comb. 17 (2020), no. 1, 74–85. https://doi.org/10.1016/j.akcej.2018.05.002.
- [12] I. Gutman, B. Ruščić, N. Trinajstić, and C.F. Wilcox Jr, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975), no. 9, 3399– 3405.

https://doi.org/10.1063/1.430994.

- [13] I. Gutman, Z. Shao, Z. Li, S.S. Wang, and P. We, Leap Zagreb indices of trees and unicyclic graphs, Commun. Comb. Optim. 3 (2018), no. 2, 179–194. https://doi.org/10.22049/cco.2018.26285.1092.
- [14] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total πelectron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972), no. 4, 535–538.

https://doi.org/10.1016/0009-2614(72)85099-1.

- [15] L. Luo, N. Dehgardi, and A. Fahad, Lower bounds on the entire Zagreb indices of trees, Discrete Dyn. Nat. Soc. 2020 (2020), Article ID: 8616725. https://doi.org/10.1155/2020/8616725.
- [16] Y. Ma, S. Cao, Y. Shi, M. Dehmer, and C. Xia, Nordhaus-Gaddum type results for graph irregularities, Appl. Math. Compute. 343 (2019), 268–272 https://doi.org/10.1016/j.amc.2018.09.057.
- [17] A. Usha P.S. Ranjini, V. Lokesha, Relation between phynylene and hexagonal squeez using harmonic index, Int. J. Graph Theory 1 (2013), 116–121.
- [18] P.S. Ranjini, A. Usha, V. Lokesha, and T. Deepika, *Hormonic index, redefined Zagreb indices of dragon graph with complete graph*, Asian J. Math. Comput. Res. 9 (2016), 161–166.
- [19] R. Rasi, S.M. Sheikholeslami, and A. Behmaram, An upper bound on the first Zagreb index and coindex in trees, Iranian J. Math. Chem. 8 (2017), no. 1, 71–82. https://doi.org/10.22052/ijmc.2017.42995.
- [20] D. Vukicevic, Q. Li, J. Sedlar, and T. Došlic, *Lanzhou index*, MATCH Commun. Math. Comput. Chem. 80 (2018), no. 3, 863–876.
- [21] K. Xu and H. Hua, A unified approach to extremal multiplicative Zagreb indices for trees, unicyclic and bicyclic graphs, MATCH Commun. Math. Comput. Chem. 68 (2012), 241–256.