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Abstract: For a graph Γ, the re-defined third Zagreb index is defined as

ReZG3(Γ) =
∑

ab∈E(Γ)

degΓ(a) degΓ(b)
(

degΓ(a) + degΓ(b)
)
,

where degΓ(a) is the degree of vertex a. We prove for any tree T with n vertices and

maximum degree ∆, ReZG3(T ) ≥ 16n + ∆3 + 2∆2 − 13∆ − 26 when ∆ < n − 1 and
ReZG3(T ) = n∆2+n∆−∆2−∆ when ∆ = n−1. Also we determine the corresponding

extremal trees.
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1. Introduction

Consider a simple graph Γ, such that V (Γ) and E(Γ) are the vertex and edge sets of

Γ respectively. Let n = |V (Γ)| is the order of Γ. For a ∈ V (Γ) the open neighborhood

of a is the set NΓ(a) = {b | ab ∈ E(Γ)}. degΓ(a) = |NΓ(a)| is the degree of a in Γ

and ∆(Γ) = ∆ is the maximum degree of Γ. The distance between two vertices of Γ

is the length of any shortest path in Γ connecting them.

Zagreb indices [12, 14] are the oldest members of degree-based topological indices

which are defined as:

M1(Γ) =
∑

a∈V (Γ)

degΓ(a)2, M2(Γ) =
∑

ab∈E(Γ)

degΓ(a) degΓ(b).

Other information on these indices can be seen in [1, 2, 5, 11].

Recently, some variants of Zagreb indices introduced, such as multiplicative Zagreb in-

dices, Zagreb coindices, augmented Zagreb index, re-defined Zagreb indices, Lanzhou
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index, leap Zagreb indices, entire Zagreb indices, irregularity, etc. For more informa-

tion about these variants see [3, 4, 6–10, 13, 15–21] and the references therein.

Here, we consider re-defined third Zagreb index. The re-defined third Zagreb index

defined in [17] as:

ReZG3(Γ) =
∑

ab∈E(Γ)

degΓ(a) degΓ(b)
(

degΓ(a) + degΓ(b)
)
.

We give a lower bound on the re-defined third Zagreb index of a tree in terms of

its order and maximum degree. Finally we determine the extremal trees achieve this

bound.

2. Trees

A tree is a connected acyclic graph. A leaf is a vertex of degree one. A rooted tree is

a tree with a special vertex chosen as the root of the tree.

A spider is a tree with one vertex of degree at least three. The vertex with degree at

least three in a spider is called the center. A leg of a spider is a path from the center

to a leaf. A star is a spider with all legs of length one, and also a path is a spider

with one or two leg.

We let T (n,∆) be the trees of order n and maximum degree ∆.

Lemma 1. Let T ∈ T (n,∆) be rooted at a such that degT (a) = ∆. If T contains the
vertex b 6= a with degT (b) ≥ 3, then there is T1 ∈ T (n,∆) with ReZG3(T1) < ReZG3(T ).

Proof. Assume that b be a vertex with maximum distance from a and degT (b) = ρ.

Suppose that NT (b) = {b1, b2, . . . , bρ}, where bρ lies on the path from b to a. By our

assumption, for 1 ≤ i ≤ ρ − 1, degT (bi) = 1 or degT (bi) = 2. Consider the following

cases.

Case 1. b is adjacent to at least two leaves.

We may assume that, b1 and b2 be leaves. Denote by T1 the tree achieved by attaching

the edge b1b2 to T − {bb1}. Since ρ ≥ 3, then

ReZG3(T ) −ReZG3(T1) = degT (b) degT (b1)
(

degT (b) + degT (b1)
)

+ degT (b) degT (b2)
(

degT (b) + degT (b2)
)

+

ρ∑
i=3

degT (b) degT (bi)
(

degT (b) + degT (bi)
)

− degT1
(b1) degT1

(b2)
(

degT1
(b1) + degT1

(b2)
)

− degT1
(b) degT1

(b2)
(

degT1
(b) + degT1

(b2)
)
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−
ρ∑
i=3

degT1
(b) degT1

(bi)
(

degT1
(b) + degT1

(bi)
)

= 2ρ(ρ+ 1) +

ρ∑
i=3

ρ degT (bi)
(
ρ+ degT (bi)

)

− 6 − 2(ρ− 1)(ρ+ 1) − (ρ− 1)

ρ∑
i=3

degT (bi)
(
ρ+ degT (bi) − 1

)

= 2(ρ+ 1) − 6 +

ρ∑
i=3

degT (bi)
(

2ρ+ degT (bi) − 1
)

> 2(ρ+ 1) − 6 > 0.

Case 2. b is adjacent to exactly one leaf.

We may assume that, b1 be a leaf and bc1c2 . . . cl be a path in T with b2 = c1 and

l ≥ 2. Let T1 be the tree derived from T by removing the edge bb1 and adding the

edge clb1. Since ρ ≥ 3, then

ReZG3(T ) −ReZG3(T1) = degT (b) degT (b1)
(

degT (b) + degT (b1)
)

+ degT (b) degT (b2)
(

degT (b) + degT (b2)
)

+ degT (cl) degT (cl−1)
(

degT (cl) + degT (cl−1)
)

+

ρ∑
i=3

degT (b) degT (bi)
(

degT (b) + degT (bi)
)

− degT1
(b1) degT1

(cl)
(

degT1
(b1) + degT1

(cl)
)

− degT1
(b) degT1

(b2)
(

degT1
(b) + degT1

(b2)
)

− degT1
(cl) degT1

(cl−1)
(

degT1
(cl) + degT1

(cl−1)
)

−
ρ∑
i=3

degT1
(b) degT1

(bi)
(

degT1
(b) + degT1

(bi)
)

=ρ(ρ+ 1) + 2ρ(ρ+ 2) + 6 +

ρ∑
i=3

ρ degT (bi)
(
ρ+ degT (bi)

)
− 6 − 16 − 2(ρ− 1)(ρ+ 1)

− (ρ− 1)

ρ∑
i=3

degT (bi)
(
ρ+ degT (bi) − 1

)

=ρ2 + 5ρ− 14 +

ρ∑
i=3

degT (bi)
(

2ρ+ degT (bi) − 1
)

>ρ2 + 5ρ− 14 > 0.

Case 3. None of the vertices adjacent to b are leaves.

Let bc1c2 . . . cl and bd1d2 . . . ds, l, s ≥ 2, be two paths in T with b1 = c1 and b2 = d1.

Let T1 be the tree derived from T − {bb1} by attaching the path dsb1. Since ρ ≥ 3,

then



4 A note on the re-defined third Zagreb index of trees

ReZG3(T ) −ReZG3(T1) = degT (b) degT (b1)
(

degT (b) + degT (b1)
)

+ degT (b) degT (b2)
(

degT (b) + degT (b2)
)

+ degT (ds) degT (ds−1)
(

degT (ds) + degT (ds−1)
)

+

ρ∑
i=3

degT (b) degT (bi)
(

degT (b) + degT (bi)
)

− degT1
(b1) degT1

(ds)
(

degT1
(b1) + degT1

(ds)
)

− degT1
(b) degT1

(b2)
(

degT1
(b) + degT1

(b2)
)

− degT1
(ds) degT1

(ds−1)
(

degT1
(ds) + degT1

(ds−1)
)

−
ρ∑
i=3

degT1
(b) degT1

(bi)
(

degT1
(b) + degT1

(bi)
)

=4ρ(ρ+ 2) + 6 +

ρ∑
i=3

ρ degT (bi)
(
ρ+ degT (bi)

)
− 16 − 16 − 2(ρ− 1)(ρ+ 1)

− (ρ− 1)

ρ∑
i=3

degT (bi)
(
ρ+ degT (bi) − 1

)

=2ρ2 + 8ρ− 24 +

ρ∑
i=3

degT (bi)
(

2ρ+ degT (bi) − 1
)

>2ρ2 + 8ρ− 24 > 0.

Proposition 1. Let T ∈ T (n,∆) be a spider with ∆ ≥ 3 such that T has two legs of length
more than one. Then there exists a spider T1 ∈ T (n,∆) with ReZG3(T1) < ReZG3(T ).

Proof. Assume that a be the center of T and ab1b2 . . . bt, ac1c2 . . . cl be two legs of

length more than one in T . Let T1 be the tree deduced from T −{b1b2} by attaching

the path clb2. By definition we have,

ReZG3(T ) −ReZG3(T1) = degT (a) degT (b1)
(

degT (a) + degT (b1)
)

+ degT (b1) degT (b2)
(

degT (b1) + degT (b2)
)

+ degT (cl) degT (cl−1)
(

degT (cl) + degT (cl−1)
)

− degT1
(a) degT1

(b1)
(

degT1
(a) + degT1

(b1)
)

− degT1
(b2) degT1

(cl)
(

degT1
(b2) + degT1

(cl)
)

− degT1
(cl) degT1

(cl−1)
(

degT1
(cl) + degT1

(cl−1)
)
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=2∆(∆ + 2) + 2 degT (b2)
(

degT (b2) + 2
)

+ 6

− ∆(∆ + 1) − 2 degT (b2)
(

degT (b2) + 2
)
− 16

=∆2 + 3∆ − 10 > 0.

This complete the proof.

Now we prove the main theorems of this paper.

Theorem 1. Let T ∈ T (n,∆). Then ReZG3(T ) ≥ 16n + ∆3 + 2∆2 − 13∆ − 26 when
∆ < n − 1 and ReZG3(T ) = n∆2 + n∆ −∆2 −∆ when ∆ = n − 1. The equality holds if
and only if T is a spider with at most one leg of length more than one.

Proof. Assume that T ∗ ∈ T (n,∆) with ReZG3(T ∗) ≤ ReZG3(T ) for all T ∈
T (n,∆). Rooted T ∗ at a such that degT∗(a) = ∆. First let ∆ = 2. Hence T ∗

is a path and the result is immediate. Now let ∆ ≥ 3. Then by Lemma 1, T ∗ is a

spider with center a and by Proposition 1, T ∗ has at most one leg of length more

than one. If T ∗ is a star, then ReZG3(T ∗) = n∆2 + n∆ −∆2 −∆. Hence let T ∗ is

not a star and T ∗ have only one leg of length more than one. Then

ReZG3(T ∗) = 16n+ ∆3 + 2∆2 − 13∆ − 26,

and the proof is complete.

By defination of re-defined third Zagreb index, we have the next result.

Lemma 2. Let Γ be a graph and e /∈ E(Γ). Then ReZG3(Γ + e) > ReZG3(Γ).

By Theorem 1 and Lemma 2, we obtain the next theorem.

Theorem 2. Let Γ be a graph with n vertices and maximum degree ∆. Then

ReZG3(Γ) ≥


16n+ ∆3 + 2∆2 − 13∆ − 26, if ∆ < n− 1

n∆2 + n∆ − ∆2 − ∆, if ∆ = n− 1.

The equality holds if and only if Γ is a spider with at most one leg of length more than one.
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