On the ordering of the Randić index of unicyclic and bicyclic graphs

Venkatesan Maitreyi ${ }^{1}$, Suresh Elumalai ${ }^{1, *}$ and Selvaraj Balachandran ${ }^{2}$
${ }^{1}$ Department of Mathematics, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpet 603 203, India mv3171@srmist.edu.in
*sureshkako@gmail.com
${ }^{2}$ Department of Mathematics, School of Arts, Sciences and Humanities, SASTRA Deemed University, Thanjavur, India bala_maths@rediffmail.com

Received: 20 May 2023; Accepted: 19 December 2023
Published Online: 29 December 2023

Abstract

Let d_{x} be the degree of the vertex x in a graph G. The Randić index of G is defined by $R(G)=\sum_{x y \in E(G)}\left(d_{x} d_{y}\right)^{-\frac{1}{2}}$. Recently, Hasni et al. [Unicyclic graphs with maximum Randić indices, Communication in Combinatorics and Optimization, 1 (2023), 161-172] obtained the ninth to thirteenth maximum Randić indices among the unicyclic graphs with n vertices. In this paper, we correct the ordering of Randić index of unicyclic graphs. In addition, we present the ordering of maximum Randić index among bicyclic graphs of order n.

Keywords: Unicyclic graphs, Bicyclic graphs, Randić index
AMS Subject classification: 05C50, 05C92

1. Introduction

In mathematical chemistry, molecular descriptors are significant, in particular when analyzing the relationships between quantitative structure-activity and quantitative structure-property. The so-called topological indices [7] are given special consideration among them. The Randić index often called the connectivity index, is a widely studied degree-based topological index [11, 18, 19]. Milan Randić [18] initially developed it in 1976, and it is given as

[^0]$$
R(G)=\sum_{x y \in E(G)} \frac{1}{\sqrt{d_{x} d_{y}}}
$$

The Randić index is the most often used index in chemistry and pharmacology, among the hundreds of currently used graph-based chemical structure descriptors [20, 21]. Information about these applications can be found in the books [7, 12, 14].
The graph invariant $R(G)$ features a number of interesting and challenging mathematical characteristics, which took nearly two decades to discover by mathematicians $[3,4]$. As a result, there was a significantly large amount of mathematical research in this field, and numerous research articles were published. For more information, refer $[1,2,6,9,16,17]$.
For a simple connected graph $G=(V(G), E(G))$ with n vertices and $n+c$ edges where $c=-1,0,1$ is called a tree, unicyclic and bicyclic respectively. In [5, 8], the trees with the maximal Randić indices, and in [4, 8, 23], the trees with minimal Randić indices are identified. In $[8,13]$, the maximum Randić indices of unicyclic graphs have been found. The lower bound for the unicyclic and bicyclic graphs have been obtained in $[10,22]$ respectively. In this article, we first present the correct ordering of Randić index of unicyclic graphs. We then provide the seventh to sixteenth maximum Randić index for bicyclic graphs.

2. Preliminaries

The vertex with degree one is called as a pendent vertex and the incident edge corresponding to it, is called as a pendent edge. Let Δ denote the maximum degree in a graph. A r-vertex path $P:=u_{1} u_{2} \ldots u_{r}$ in G with $d_{u_{1}} \geq 3, d_{u_{i}}=2$ for $i=2, \ldots, r-1$ and $d_{u_{r}}=1$ is said to be a pendent path at u_{1}. An edge of G with vertex degree r and s will be called an (r, s)-edge and $\mathcal{E}_{r, s}$ denotes the number of (r, s)-edges in G. Let $\mathcal{U}_{n}, \mathcal{B}_{n}$ denotes the collection of all connected unicyclic and bicyclic graphs of order n, respectively.
In [5], Caprossi et al. presented an alternate definition for $R(G)$ as follows,

$$
\begin{equation*}
R(G)=\frac{n}{2}-\frac{1}{2} f(G) \tag{1}
\end{equation*}
$$

where

$$
f(G)=\sum_{x y \in E(G)}\left(\frac{1}{\sqrt{d_{x}}}-\frac{1}{\sqrt{d_{y}}}\right)^{2}
$$

$R(G)$ is decreasing on $f(G)$ for a fixed n. This fact will be used to identify the extremal graphs with the largest Randić indices.
Among all the unicyclic graphs, Caprossi et al. [5] identified the maximum and second maximum Randić indices (see table 1). Du and Zhou [8] obtained third, fourth and the fifth maximum Randić indices (see table 2). Li et al. [15] further extended the works and provided sixth, seventh and the eighth maximum Randić indices (see table
3). Very recently, Hasni et al. [13], classified the ninth to thirteenth maximum Randić index. (See table 4)

Table 1. Unicyclic graphs with first and second maximum Randić index (see Theorem 1,4 in [5])

$$
\begin{array}{ccccccccll}
\hline \text { Notation } & \text { vertices } & \mathcal{E}_{1,2} & \mathcal{E}_{1,3} & \mathcal{E}_{2,3} & \mathcal{E}_{2,4} & \mathcal{E}_{3,3} & \mathcal{E}_{2,2} & R(G) \\
\hline U_{1} & n \geq 3 & 0 & 0 & 0 & 0 & 0 & n & \frac{n}{2} \\
U_{2} & n \geq 5 & 1 & 0 & 3 & 0 & 0 & n-4 & \frac{n-4}{2}+\frac{3}{\sqrt{6}}+\frac{1}{\sqrt{2}} \\
\hline
\end{array}
$$

Table 2. Unicyclic graphs with third to fifth maximum Randić index (see Proposition 2.2 in [8])

$$
\begin{array}{ccccccccl}
\hline \text { Notation } & \text { vertices } & \mathcal{E}_{1,2} & \mathcal{E}_{1,3} & \mathcal{E}_{2,3} & \mathcal{E}_{2,4} & \mathcal{E}_{3,3} & \mathcal{E}_{2,2} & R(G) \\
\hline U_{3} & n \geq 5 & 0 & 1 & 2 & 0 & 0 & n-3 & \frac{n-3}{2}+\frac{2}{\sqrt{6}}+\frac{1}{\sqrt{3}} \\
U_{4} & n \geq 7 & 2 & 0 & 4 & 0 & 1 & n-7 & \frac{n-7}{2}+\frac{4}{\sqrt{6}}+\sqrt{2}+\frac{1}{3} \\
U_{5} & n \geq 8 & 2 & 0 & 6 & 0 & 0 & n-8 & \frac{n-8}{2}+\sqrt{6}+\sqrt{2} \\
\hline
\end{array}
$$

Table 3. Unicyclic graphs with sixth to eighth maximum Randić index (see Theorem 2.2 in [15])

Notation	vertices	$\mathcal{E}_{1,2}$	$\mathcal{E}_{1,3}$	$\mathcal{E}_{2,3}$	$\mathcal{E}_{2,4}$	$\mathcal{E}_{3,3}$	$\mathcal{E}_{2,2}$	$R(G)$
U_{6}	$n \geq 9$	3	0	3	0	3	$n-9$	$\frac{n-7}{2}+\frac{3}{\sqrt{2}}+\frac{3}{\sqrt{6}}$
U_{7}	$n \geq 9$	1	1	3	0	1	$n-6$	$\frac{n-4}{2}+\frac{1}{\sqrt{2}}+\frac{3}{\sqrt{6}}+\frac{1}{\sqrt{3}}-\frac{2}{3}$
U_{8}	$n \geq 10$	3	0	5	0	2	$n-10$	$\frac{n-8}{2}+\frac{3}{\sqrt{2}}+\frac{5}{\sqrt{6}}-\frac{1}{3}$

3. Main Results

In Theorem 1 of [13] i.e., In Table 4, the following value has been proved as the ninth maximum Randić index.

$$
R(G)=\frac{n-7}{2}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{5}{\sqrt{6}} \approx \frac{n}{2}-0.174301497
$$

First, we note that the ninth maximum Randić index stated above is not true. Let G be a n-vertex unicyclic graph ($n \geq 10$), with exactly two pendent paths of length atleast two attached to the same vertex of the cycle $C_{k}(k<n)$, then

$$
R(G)=\frac{n-6}{2}+\frac{2}{\sqrt{2}}+\frac{4}{\sqrt{8}} \approx \frac{n}{2}-0.171572875
$$

Table 4. Unicyclic graphs with ninth to thirteenth maximum Randić index (see Theorem 1 in [13])

Notation Vertices	$\mathcal{E}_{1,2}$	$\mathcal{E}_{1,3}$	$\mathcal{E}_{2,3}$	$\mathcal{E}_{2,4}$	$\mathcal{E}_{3,3}$	$\mathcal{E}_{2,2}$	$R(G)$	
U_{9}	$n \geq 10$	1	1	5	0	0	$n-7$	$\frac{n-7}{2}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{5}{\sqrt{6}}$
U_{10}	$n \geq 11$	3	0	7	0	1	$n-11$	$\frac{n-11}{2}+\frac{3}{\sqrt{2}}+\frac{7}{\sqrt{6}}+\frac{1}{3}$
U_{11}	$n \geq 11$	2	1	2	0	3	$n-8$	$\frac{n-6}{2}+\frac{2}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{2}{\sqrt{6}}$
U_{12}	$n \geq 11$	0	2	2	0	1	$n-5$	$\frac{n-5}{2}+\frac{2}{\sqrt{3}}+\frac{2}{\sqrt{6}}+\frac{1}{3}$
U_{13}	$n \geq 12$	3	0	9	0	0	$n-12$	$\frac{n-12}{2}+\frac{3}{\sqrt{2}}+\frac{9}{\sqrt{6}}$

It is simple to verify that, (as indicated in Table 3 and Table 4) $\frac{n}{2}-0.171572875$ lies between the eighth and the ninth maximum of Randić index: $\frac{n-8}{2}+\frac{3}{\sqrt{2}}+\frac{5}{\sqrt{6}}-\frac{1}{3}>\frac{n-6}{2}+\frac{2}{\sqrt{2}}+\frac{4}{\sqrt{8}}>\frac{n-7}{2}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{5}{\sqrt{6}}$.
We now give the correct version of the ordering in Table 5 .

Table 5. Unicyclic graphs with ninth to fourteenth maximum Randić index

Notation Vertices	$\mathcal{E}_{1,2}$	$\mathcal{E}_{1,3}$	$\mathcal{E}_{2,3}$	$\mathcal{E}_{2,4}$	$\mathcal{E}_{3,3}$	$\mathcal{E}_{2,2}$	$R(G)$	
U_{9}	$n \geq 10$	2	0	0	4	0	$n-6$	$\frac{n-6}{2}+\frac{2}{\sqrt{2}}+\frac{4}{\sqrt{8}}$
U_{10}	$n \geq 10$	1	1	5	0	0	$n-7$	$\frac{n-7}{2}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{5}{\sqrt{6}}$
U_{11}	$n \geq 11$	3	0	7	0	1	$n-11$	$\frac{n-11}{2}+\frac{3}{\sqrt{2}}+\frac{7}{\sqrt{6}}+\frac{1}{3}$
U_{12}	$n \geq 11$	2	1	2	0	3	$n-8$	$\frac{n-6}{2}+\frac{2}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{2}{\sqrt{6}}$
U_{13}	$n \geq 11$	0	2	2	0	1	$n-5$	$\frac{n-5}{2}+\frac{2}{\sqrt{3}}+\frac{2}{\sqrt{6}}+\frac{1}{3}$
U_{14}	$n \geq 12$	3	0	9	0	0	$n-12$	$\frac{n-12}{2}+\frac{3}{\sqrt{2}}+\frac{9}{\sqrt{6}}$

4. Bicyclic Graphs Maximizing Randić indices :

Let \mathcal{B}_{n} be the collection of graphs with n vertices and $n+1$ edges. A graph $G \in \mathcal{B}_{n}$ is called as a bicyclic graph. Bicyclic graphs without pendent vertices are classified as follows (see Figure 1).

$$
\begin{aligned}
& \mathcal{B}^{I}=\mathcal{B}_{n}^{1} \cup \mathcal{B}_{n}^{2}=\left\{\mathcal{E}_{2,3}=4, \mathcal{E}_{3,3}=1, \mathcal{E}_{2,2}=n-4\right\} \\
& \mathcal{B}^{I I}=\mathcal{B}_{n}^{3} \cup \mathcal{B}_{n}^{4}=\left\{\mathcal{E}_{2,3}=6, \mathcal{E}_{2,2}=n-5\right\} \\
& \mathcal{B}^{I I I}=\mathcal{B}_{n}^{5}=\left\{\mathcal{E}_{2,4}=4, \mathcal{E}_{2,2}=n-3\right\}
\end{aligned}
$$

\mathcal{B}_{n}^{1}

\mathcal{B}_{n}^{2}

\mathcal{B}_{n}^{3}

\mathcal{B}_{n}^{4}

\mathcal{B}_{n}^{5}

Figure 1. Classification of Bicyclic graphs

Among the collection \mathcal{B}_{n}, the two class of graphs $\left(\mathcal{B}_{n}^{1} \cup \mathcal{B}_{n}^{2}\right)$ with maximum Randić index was determined by Caprossi et al.[5], the second to fifth maximum Randić indices was determined by Du and Zhou [8] and the sixth maximum Randić index was determined by Li et al. [15] (See Table 6).

Table 6. Bicyclic graphs with first six maximum Randić index (See Theorem 5 in [5], Proposition 2.3 in [8] and Theorem 2.3 in [15])

$$
\begin{array}{llccccccl}
\hline \text { Notation } & \text { Vertices } & \mathcal{E}_{1,2} & \mathcal{E}_{1,3} & \mathcal{E}_{2,3} & \mathcal{E}_{2,4} & \mathcal{E}_{3,3} & \mathcal{E}_{2,2} & R(G) \\
\hline B_{1} \in \mathcal{B}^{I} & n \geq 6 & 0 & 0 & 4 & 0 & 1 & n-4 \frac{n-4}{2}+\frac{4}{\sqrt{6}}+\frac{1}{3} \\
B_{2} \in \mathcal{B}^{I I} & n \geq 7 & 0 & 0 & 6 & 0 & 0 & n-5 \frac{n-5}{2}+\sqrt{6} \\
B_{3} & n \geq 7 & 1 & 0 & 3 & 0 & 3 & n-6 \frac{n-4}{2}+\frac{3}{\sqrt{6}}+\frac{1}{\sqrt{2}} \\
B_{4} & n \geq 9 & 1 & 0 & 5 & 0 & 2 & n-7 \frac{n-7}{2}+\frac{5}{\sqrt{6}}+\frac{1}{\sqrt{2}}+\frac{2}{3} \\
B_{5} \in \mathcal{B}^{I I I} & n \geq 9 & 0 & 0 & 0 & 4 & 0 & n-3 \frac{n-3}{2}+\sqrt{2} \\
B_{6} & n \geq 10 & 1 & 0 & 7 & 0 & 1 & n-8 \frac{n-6}{2}+\frac{1}{\sqrt{2}}+\frac{7}{\sqrt{6}}-\frac{2}{3} \\
\hline
\end{array}
$$

A pendent path of length one and two in G contributes to $f(G)$ at least $\left(1-\frac{1}{\sqrt{3}}\right)^{2}$ and $\left(1-\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)^{2}$, respectively and $\left(1-\frac{1}{\sqrt{3}}\right)^{2}>$ $\left(1-\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)^{2}$. Let us consider the following functions $\phi(x)=\left(1-\frac{1}{\sqrt{x}}\right)^{2}$ and $\psi(x)=\left(1-\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{x}}\right)^{2} . \quad$ Both $\phi(x)$ and $\psi(x)$ are increasing for $x \geq 3$, therefore p pendent paths in G contributes to $f(G)$ at least $p\left[\left(1-\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)^{2}\right]$, and using the identity (1) immediately leads to the following upper bound for $R(G)$ with given p pendent vertices.

Lemma 1. Let G be a simple graph with p pendent vertices, then

$$
\begin{equation*}
R(G) \leq \frac{n}{2}-\frac{p}{2}\left[\left(1-\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)^{2}\right] \tag{2}
\end{equation*}
$$

We now define the following graphs which are used in the main results.

$$
\begin{aligned}
B_{7} & =\left\{G \mid G \in \mathcal{B}_{n} \text { and } \mathcal{E}_{33}=5, \mathcal{E}_{23}=2, \mathcal{E}_{12}=2, \mathcal{E}_{22}=n-8\right\} \\
B_{8} & =\left\{G \mid G \in \mathcal{B}_{n} \text { and } \mathcal{E}_{33}=3, \mathcal{E}_{23}=2, \mathcal{E}_{13}=1, \mathcal{E}_{22}=n-5\right\} \\
B_{9} & =\left\{G \mid G \in \mathcal{B}_{n} \text { and } \mathcal{E}_{23}=9, \mathcal{E}_{12}=1, \mathcal{E}_{22}=n-9\right\} \\
B_{10} & =\left\{G \mid G \in \mathcal{B}_{n} \text { and } \mathcal{E}_{33}=4, \mathcal{E}_{23}=4, \mathcal{E}_{12}=2, \mathcal{E}_{22}=n-9\right\} \\
B_{11} & =\left\{G \mid G \in \mathcal{B}_{n} \text { and } \mathcal{E}_{33}=2, \mathcal{E}_{23}=4, \mathcal{E}_{13}=1, \mathcal{E}_{22}=n-6\right\} \\
B_{12} & =\left\{G \mid G \in \mathcal{B}_{n} \text { and } \mathcal{E}_{34}=1, \mathcal{E}_{24}=3, \mathcal{E}_{23}=2, \mathcal{E}_{12}=1, \mathcal{E}_{22}=n-6\right\} \\
B_{13} & =\left\{G \mid G \in \mathcal{B}_{n} \text { and } \mathcal{E}_{33}=3, \mathcal{E}_{23}=6, \mathcal{E}_{12}=2, \mathcal{E}_{22}=n-10\right\} \\
B_{14} & =\left\{G \mid G \in \mathcal{B}_{n} \text { and } \mathcal{E}_{33}=1, \mathcal{E}_{23}=6, \mathcal{E}_{13}=1, \mathcal{E}_{22}=n-7\right\} \\
B_{15} & =\left\{G \mid G \in \mathcal{B}_{n} \text { and } \mathcal{E}_{33}=5, \mathcal{E}_{23}=1, \mathcal{E}_{13}=1, \mathcal{E}_{12}=1, \mathcal{E}_{22}=n-7\right\} \\
B_{16} & =\left\{G \mid G \in \mathcal{B}_{n} \text { and } \mathcal{E}_{34}=2, \mathcal{E}_{33}=1, \mathcal{E}_{24}=2, \mathcal{E}_{23}=2, \mathcal{E}_{12}=2, \mathcal{E}_{22}=n-8\right\}
\end{aligned}
$$

Theorem 1. Among the n-vertex bicyclic graphs \mathcal{B}_{n},
(i) For $n \geq 10$, the graphs in B_{7} have the seventh maximum Randić index, which equals

$$
\frac{n-8}{2}+\frac{2}{\sqrt{6}}+\frac{2}{\sqrt{2}}+\frac{5}{3}
$$

(ii) For $n \geq 10$, the graphs in B_{8} have the eighth maximum Randić index, which equals

$$
\frac{n-3}{2}+\frac{2}{\sqrt{6}}+\frac{1}{\sqrt{3}}
$$

(iii) For $n \geq 10$, the graphs in B_{9} have the ninth maximum Randić index, which equals

$$
\frac{n-9}{2}+\frac{9}{\sqrt{6}}+\frac{1}{\sqrt{2}}
$$

(iv) For $n \geq 10$, the graphs in B_{10} have the tenth maximum Randić index, which equals

$$
\frac{n-9}{2}+\frac{4}{\sqrt{6}}+\frac{2}{\sqrt{2}}+\frac{4}{3}
$$

(v) For $n \geq 10$, the graphs in B_{11} have the eleventh maximum Randić index, which equals

$$
\frac{n-6}{2}+\frac{4}{\sqrt{6}}+\frac{1}{\sqrt{3}}+\frac{2}{3}
$$

(vi) For $n \geq 10$, the graphs in B_{12} have the twelveth maximum Randić index, which equals

$$
\frac{n-6}{2}+\frac{2}{\sqrt{6}}+\frac{3}{2 \sqrt{2}}+\frac{1}{2 \sqrt{3}}+\frac{1}{\sqrt{2}}
$$

(vii) For $n \geq 10$, the graphs in B_{13} have the thirteenth maximum Randić index, which equals

$$
\frac{n-8}{2}+\frac{6}{\sqrt{6}}+\frac{2}{\sqrt{2}}
$$

(viii) For $n \geq 10$, the graphs in B_{14} have the fourteenth maximum Randić index, which equals

$$
\frac{n-7}{2}+\frac{6}{\sqrt{6}}+\frac{1}{\sqrt{3}}+\frac{1}{3}
$$

(ix) For $n \geq 10$, the graphs in B_{15} have the fifteenth maximum Randić index, which equals

$$
\frac{n-7}{2}+\frac{1}{\sqrt{6}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{2}}+\frac{5}{3}
$$

(x) For $n \geq 10$, the graphs in B_{16} have the sixteenth maximum Randić index, which equals

$$
\frac{n-8}{2}+\frac{2}{\sqrt{6}}+\frac{1}{\sqrt{3}}+\frac{3}{\sqrt{2}}+\frac{1}{3}
$$

Proof. Let $G \in \mathcal{B}_{n} \backslash\left\{B_{i}: i=1\right.$ to 6$\}$. To prove the above results, it is enough to prove that any $G \in \mathcal{B}_{n}$ will be less than $\frac{n-8}{2}+\frac{2}{\sqrt{6}}+\frac{1}{\sqrt{3}}+\frac{3}{\sqrt{2}}+\frac{1}{3}$ (which is claimed to be the sixteenth maximum $R(G)$ value) must have i th maximum $R(G)$ value, for $i \geq 17$. From (1), it is clear that R has a value at least

$$
\frac{n}{2}-\frac{1}{2}\left[2\left(\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}\right)^{2}+2\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{4}}\right)^{2}+2\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)^{2}+2\left(1-\frac{1}{\sqrt{2}}\right)^{2}\right]
$$

if and only if $f(G) \leq 2\left(\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}\right)^{2}+2\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{4}}\right)^{2}+2\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)^{2}+2\left(1-\frac{1}{\sqrt{2}}\right)^{2}$.
Throughout the proof, we consider G, G^{\prime} and $G^{\prime \prime} \in \mathcal{B}_{n}$ on n vertices. Let G^{\prime} be the graph obtained from G by attaching a pendent path to any vertex of G and $G^{\prime \prime}$ be the graph obtained from G by attaching two pendent paths in G.
Case 1. Graphs $G^{\prime}, G^{\prime \prime}$ constructed from the class \mathcal{B}^{I}.
If $G \in \mathcal{B}^{I}$, then $R(G)=\frac{n}{2}-2\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)^{2}$ with $f(G)=4\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)^{2}=f\left(B_{1}\right)$.
Subcase 1.1 : If G^{\prime} constructed from $G \in \mathcal{B}^{I}$, then G^{\prime} has the following possibilities depicted in Figure 2. Assuming the length of the pendent path is at least two, then

$$
\begin{aligned}
f\left(G^{\prime}\right) & \geq\left(\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}\right)^{2}+3\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{4}}\right)^{2}+2\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)^{2}+\left(1-\frac{1}{\sqrt{2}}\right)^{2}=f\left(B_{12}\right) \\
& >7\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)^{2}+\left(1-\frac{1}{\sqrt{2}}\right)^{2}=f\left(B_{6}\right) \\
& >5\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)^{2}+\left(1-\frac{1}{\sqrt{2}}\right)^{2}=f\left(B_{4}\right) \\
& >3\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)^{2}+\left(1-\frac{1}{\sqrt{2}}\right)^{2}=f\left(B_{3}\right)
\end{aligned}
$$

Figure 2. Graphs with exactly one pendent path obtained from $G \in \mathcal{B}^{I}$.

Next, we consider the pendent path of length exactly one in figure 2, then we get

$$
\begin{aligned}
f\left(G^{\prime}\right) & \geq 6\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)^{2}+\left(1-\frac{1}{\sqrt{3}}\right)^{2}=f\left(B_{14}\right) \\
& \geq 4\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)^{2}+\left(1-\frac{1}{\sqrt{3}}\right)^{2}=f\left(B_{11}\right) \\
& \geq 2\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)^{2}+\left(1-\frac{1}{\sqrt{3}}\right)^{2}=f\left(B_{8}\right)
\end{aligned}
$$

Subcase 1.2: If $G^{\prime \prime}$ constructed from $G \in \mathcal{B}^{I}$ by considering two pendent paths P_{1} and P_{2}. The various possibilities of $G^{\prime \prime}$ are depicted in Figure 3. The pendent paths P_{1} and P_{2} are subdivided into three possible combinations, we get the following results. If both P_{1} and P_{2} are of length at least two, then

$$
\begin{aligned}
f\left(G^{\prime \prime}\right) & \geq 2\left(\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}\right)^{2}+2\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{4}}\right)^{2}+2\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)^{2}+2\left(1-\frac{1}{\sqrt{2}}\right)^{2}=f\left(B_{16}\right) \\
& \geq 6\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)^{2}+2\left(1-\frac{1}{\sqrt{2}}\right)^{2}=f\left(B_{13}\right) \\
& \geq 4\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)^{2}+2\left(1-\frac{1}{\sqrt{2}}\right)^{2}=f\left(B_{10}\right) \\
& \geq 2\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)^{2}+2\left(1-\frac{1}{\sqrt{2}}\right)^{2}=f\left(B_{7}\right) .
\end{aligned}
$$

Next, we consider the pendent path P_{1} with length one and P_{2} with length at least two in Figure 2, then we get

$$
f\left(G^{\prime \prime}\right) \geq\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)^{2}+\left(1-\frac{1}{\sqrt{2}}\right)^{2}+\left(1-\frac{1}{\sqrt{3}}\right)^{2}=f\left(B_{15}\right)
$$

If both P_{1} and P_{2} are of length one, then

$$
f\left(G^{\prime \prime}\right) \geq 2\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)^{2}+2\left(1-\frac{1}{\sqrt{3}}\right)^{2}
$$

$$
\therefore \sum_{0-0}^{0-0} 0
$$

$.0 .0-0 . .0-$
$\ddots . .0-0-0$ $\vdots \overbrace{0}^{*} \because \quad 0.00$

䢂
$\stackrel{0}{\dot{\theta}^{+0}}$

Figure 3. Graphs with exactly two pendent paths obtained from $G \in \mathcal{B}^{I}$.

Figure 4. Graphs with exactly one pendent path obtained from $G \in \mathcal{B}^{I I}$.

Case 2: Graphs $G^{\prime}, G^{\prime \prime}$ constructed from the class $\mathcal{B}^{I I}$.
If $G \in \mathcal{B}^{I I}$, then $R(G)=\frac{n}{2}-3\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)^{2}$ with $f(G)=6\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)^{2}=f\left(B_{2}\right)$.
Subcase 2.1: If G^{\prime} constructed from $G \in \mathcal{B}^{I I}$, then G^{\prime} has the following possibilities depicted in Figure 4. Suppose the length of the pendent path is at least two, then

$$
\begin{aligned}
f\left(G^{\prime}\right) & \geq 9\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)^{2}+\left(1-\frac{1}{\sqrt{2}}\right)^{2}=f\left(B_{9}\right) \\
& >7\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)^{2}+\left(1-\frac{1}{\sqrt{2}}\right)^{2}=f\left(B_{6}\right)
\end{aligned}
$$

If the length of pendent path is exactly one in figure 4 , then we get

$$
\begin{aligned}
f\left(G^{\prime}\right) & \geq 6\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)^{2}+\left(1-\frac{1}{\sqrt{3}}\right)^{2}=f\left(B_{14}\right) \\
& \geq 4\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)^{2}+\left(1-\frac{1}{\sqrt{3}}\right)^{2}=f\left(B_{11}\right) .
\end{aligned}
$$

Subcase 2.2: If $G^{\prime \prime}$ obtained from $G \in \mathcal{B}^{I I}$. The various possible graph structures can be constructed from Figure 3 by replacing the edge $x y \in E\left(G^{\prime \prime}\right)\left(\right.$ with $d_{x}=3, d_{y}=3$) by a path of length atleast two and the remaining cases are depicted in figure 5 . If $P_{1} \geq 2$ and $P_{2} \geq 2$, then

$$
\begin{aligned}
f\left(G^{\prime \prime}\right) & \geq 6\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)^{2}+2\left(1-\frac{1}{\sqrt{2}}\right)^{2}=f\left(B_{13}\right) \\
& \geq 4\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)^{2}+2\left(1-\frac{1}{\sqrt{2}}\right)^{2}=f\left(B_{10}\right)
\end{aligned}
$$

If $P_{1}=1$ and $P_{2} \geq 2$, then

$$
f\left(G^{\prime \prime}\right) \geq 3\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)^{2}+\left(1-\frac{1}{\sqrt{3}}\right)^{2}+\left(1-\frac{1}{\sqrt{2}}\right)^{2} .
$$

Figure 5. Graphs with exactly two pendent paths obtained from $G \in \mathcal{B}^{I I}$.

If $P_{1}=P_{2}=1$, then

$$
f\left(G^{\prime \prime}\right) \geq 2\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)^{2}+2\left(1-\frac{1}{\sqrt{3}}\right)^{2} .
$$

Case 3: Graphs $G^{\prime}, G^{\prime \prime}$ constructed from the class $\mathcal{B}^{I I I}$.
If $G \in \mathcal{B}^{I I I}$, then $R(G)=\frac{n}{2}-2\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{4}}\right)^{2}$ with $f(G)=4\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{4}}\right)^{2}=f\left(B_{5}\right)$.
Subcase 3.1: If G^{\prime} constructed from $G \in \mathcal{B}^{I I I}$, then G^{\prime} has the following possibilities

Figure 6. Graphs with exactly one pendent path obtained from $G \in \mathcal{B}^{I I I}$.
depicted in Figure 6. Consider the length of the pendent path is at least two, then

$$
f\left(G^{\prime}\right) \geq 3\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{4}}\right)^{2}+\left(\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}\right)^{2}+2\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)^{2}+\left(1-\frac{1}{\sqrt{2}}\right)^{2}=f\left(B_{12}\right)
$$

If the length of the pendent path is one, then

$$
f\left(G^{\prime}\right) \geq 3\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{4}}\right)^{2}+\left(\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}\right)^{2}+\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)^{2}+\left(1-\frac{1}{\sqrt{3}}\right)^{2} .
$$

Figure 7. Graphs with exactly two pendent paths obtained from $G \in \mathcal{B}^{I I I}$.

Subcase 3.2: If $G^{\prime \prime}$ constructed from $G \in \mathcal{B}^{I I I}$ considering the two pendent paths P_{1} and P_{2}. The various possibilities of graphs are depicted in Figure 7. If $P_{1} \geq 2$ and $P_{2} \geq 2$, then we get

$$
f\left(G^{\prime \prime}\right) \geq 2\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{4}}\right)^{2}+2\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)^{2}+2\left(\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}\right)^{2}+2\left(1-\frac{1}{\sqrt{2}}\right)^{2}=f\left(B_{16}\right)
$$

If $P_{1}=1$ and $P_{2} \geq 2$, then

$$
f\left(G^{\prime \prime}\right) \geq 2\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{4}}\right)^{2}+2\left(\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}\right)^{2}+\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)^{2}+\left(1-\frac{1}{\sqrt{2}}\right)^{2}+\left(1-\frac{1}{\sqrt{3}}\right)^{2}
$$

If $P_{1}=P_{2}=1$, then

$$
f\left(G^{\prime \prime}\right) \geq 2\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{4}}\right)^{2}+2\left(\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}\right)^{2}+2\left(1-\frac{1}{\sqrt{3}}\right)^{2} .
$$

By comparing the values of $f\left(G^{\prime}\right), f\left(G^{\prime \prime}\right)$ in cases 1,2 and 3 , we conclude any bicyclic graph with atmost 2 pendent vertices other than $B_{i}\{i=1,2 \ldots 16\}$ will have

$$
f(G)>2\left(\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}\right)^{2}+2\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{4}}\right)^{2}+2\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)^{2}+2\left(1-\frac{1}{\sqrt{2}}\right)^{2} .
$$

Case 4: If $G^{*} \in \mathcal{B}_{n}$ with at least three pendent paths, then from Lemma 1, we get

$$
f\left(G^{*}\right) \geq k\left[\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)^{2}+\left(1-\frac{1}{\sqrt{2}}\right)^{2}\right]>3\left[\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)^{2}+\left(1-\frac{1}{\sqrt{2}}\right)^{2}\right] .
$$

It is easy to see that $f\left(G^{*}\right)>f\left(B_{16}\right)$, this concludes that any $G \in \mathcal{B}_{n}$ will have the following order

$$
f(G)>f\left(B_{16}\right)>f\left(B_{15}\right)>f\left(B_{14}\right)>f\left(B_{13}\right)>f\left(B_{12}\right)>f\left(B_{11}\right)>f\left(B_{10}\right)>f\left(B_{9}\right)>f\left(B_{8}\right)>f\left(B_{7}\right) .
$$

References

[1] A.M. Albalahi, A. Ali, Z. Du, A.A. Bhatti, T. Alraqad, N. Iqbal, and A.E. Hamza, On bond incident degree indices of chemical graphs, Mathematics 11 (2023), no. 1, Article ID: 27. https://doi.org/10.3390/math11010027.
[2] A. Ali and D. Dimitrov, On the extremal graphs with respect to bond incident degree indices, Discrete Appl. Math. 238 (2018), 32-40.
https://doi.org/10.1016/j.dam.2017.12.007.
[3] B. Bollobás and P. Erdős, Graphs of extremal weights, Ars Combin. 50 (1998), 225-233.
[4] B. Bollobás, P. Erdös, and A. Sarkar, Extremal graphs for weights, Discrete Math. 200 (1999), no. 1-3, 5-19. https://doi.org/10.1016/S0012-365X(98)00320-3.
[5] G. Caporossi, I. Gutman, P. Hansen, and L. Pavlović, Graphs with maximum connectivity index, Comp. Bio. Chem. 27 (2003), no. 1, 85-90.
https://doi.org/10.1016/S0097-8485(02)00016-5.
[6] T. Dehghan-Zadeh, A.R. Ashrafi, and N. Habibi, Maximum and second maximum of Randić index in the class of tricyclic graphs, MATCH Commun. Math. Comput. Chem. 74 (2015), no. 1, 137-144.
[7] J. Devillers and A.T. Balaban, Topological indices and related descriptors in QSAR and QSPR, Gordon and Breach, Amsterdam, 1999.
[8] Z. Du and B. Zhou, On randić indices of trees, unicyclic graphs, and bicyclic graphs, Int.J. Quantum Chem. 111 (2011), no. 12, 2760-2770. http://doi.org/10.1002/qua.22596.
[9] S. Elumalai and T. Mansour, A short note on tetracyclic graphs with extremal values of Randić index, Asian-Eur. J. Math. 13 (2020), no. 6, Article ID: 2050105. https://doi.org/10.1142/S1793557120501053.
[10] J. Gao and M. Lu, On the Randić index of unicyclic graphs, MATCH Commun Math. Comput. Chem. 53 (2005), no. 2, 377-384.
[11] I. Gutman, Degree-based topological indices, Croat. Chem. Acta 86 (2013), no. 4, 351-361. http://dx.doi.org/10.5562/cca2294.
[12] L.H. Hall and L.B. Kier, Molecular Connectivity in Structure Activity Analysis, Wiley, New York, 1986.
[13] R. Hasni, N.H. Md Husin, and Z. Du, Unicyclic graphs with maximum Randić indices, Commun. Comb. Optim. 8 (2023), no. 1, 161-172. https://doi.org/10.22049/cco.2021.27230.1216.
[14] L. Kier, Molecular Connectivity in Chemistry and Drug Research, Academic Press, New York, 1976.
[15] J. Li, S. Balachandran, S.K. Ayyaswamy, and Y.B. Venkatakrishnan, The Randić indices of trees, unicyclic graphs and bicyclic graphs, Ars Combin. 127 (2016), 409-419.
[16] X. Li and I. Gutman, Mathematical aspects of Randić-type molecular structure descriptors, Univ. Kragujevac, Kragujevac, 2006.
[17] X. Li and Y. Shi, A survey on the Randić index, MATCH Commun. Math. Comput. Chem. 59 (2008), no. 1, 127-156.
[18] M. Randić, Characterization of molecular branching, J. Am. Chem. Soc. 97 (1975), no. 23, 6609-6615.
https://doi.org/10.1021/ja00856a001.
[19] M. Randić, M. Nović, and D. Plavšić, Solved and Unsolved Problems of Structural Chemistry, CRC Press, Boca Raton, 2016.
[20] R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley -

VCH, Weinheim, 2000.
[21] _ Molecular Descriptors for Chemo Informatics, Wiley - VCH, Weinheim, 2009.
[22] J. Wang, Y. Zhu, and G. Liu, On the Randić index of bicyclic graphs, Recent Results in the Theory of Randić Index, in: Mathematical Chemistry Monograph (I. Gutman and B. Furtula, eds.), Univ. Kargujevac, Kargujevac, 2008, pp. 119132.
[23] H. Zhao and X. Li, Trees with small Randić connectivity indices, MATCH Commun Math. Comput. Chem. 51 (2004), 167-178.

[^0]: * Corresponding Author

