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Abstract: The zero forcing number of a graph is the minimum cardinality among all
the zero forcing sets of a graph G. The aim of this article is to compute the zero forcing

number of complementary prism graphs. Some bounds on the zero forcing number of

complementary prism graphs are presented. The remainder of this article discusses the
following result. Let G and G be connected graphs. Then Z(GḠ) ≤ n− 1 if and only

if there exists two vertices vi, vj ∈ V (G) and i 6= j such that, either N(vi) ⊆ N(vj) or

N [vi] ⊆ N [vj ] in G.
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1. Introduction

All the graphs considered here are simple, finite, and undirected graphs, where G =

(V (G), E(G)) represents a graph. If x, y ∈ V (G) and xy ∈ E(G), then x and y are

said to be adjacent to each other and x is the neighbour of y (vice-versa). The order

(number of vertices) of the graph G is denoted by |V (G)| and the size (number of

edges) of the graph is denoted by |E(G)| respectively. All other definition that is not

defined here is referred from [13]. Zero forcing is a type of dynamic coloring process,

where given a set of initially black colored vertices, a black vertex with a single white

neighbour (or uncolored vertex) changes the color of that white neighbour to become

black. The color change rule states that a black colored vertex can force a white
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2 On the zero forcing number of complementary prism graphs

neighbour black if and only if, it is the only white neighbour of that black colored

vertex. A zero forcing set is a set of initially black colored vertices, which causes the

entire graph to eventually become black after iteratively applying the color change

rule. The zero forcing number of a graph G, is the minimum cardinality of the zero

forcing set in the graph G, and the zero forcing number is denoted by Z(G).

The concept of zero forcing was first introduced in [14] where zero forcing number

is used to bound maximum nullity or minimum rank of a graph G. Independently

it was introduced in [2] and in [1] used to study the quantum controlability of the

system. Since its introduction zero forcing number has been a topic of interest and

many research have been carried out in this regard [4, 7, 8, 10–12]. Zero forcing

number of graph and its complement is studied in [6], it is used to study the logic

circuit as well in [3].

Complementary prism graph was first introduced in [9]. Complementary prism

graph denoted by GḠ, is a graph obtained by taking a copy of G, its complement

Ḡ and edges connecting each vertex of G to its unique copy in Ḡ. Throughout this

paper we denote the vertex set of the graph G in GḠ part as v1, v2, . . . , vn and the

vertex set of Ḡ in GḠ part as v̄1, v̄2, . . . , v̄n. The degree of each vertex of G in GḠ

will be 1+ the degree of the vertex in G. Similarly the degree of each vertex of Ḡ in

GḠ will be 1+ the degree of the vertex in Ḡ.

Some bounds on the zero forcing number of complementary prism graphs are pre-

sented. The remainder of this article discusses the following result. Let G and G

be connected graphs. Then Z(GḠ) ≤ n − 1 if and only if there exists two vertices

vi, vj ∈ V (G) and i 6= j such that, either N(vi) ⊆ N(vj) or N [vi] ⊆ N [vj ] in G.

2. Some bounds of Z(GḠ)

Complementary prism graph has either G or Ḡ connected and hence complementary

prism itself is connected. For any simple graph G the diameter of GḠ is at most 3.

For any graph G the vertex set, V (G) = {v1, v2, . . . , vn} then its complement Ḡ will

have vertex set, V (Ḡ) = {v̄1, v̄2, . . . v̄n}. Throughout this paper the vertices v1 and

v̄1, v2 and v̄2, . . . , vn and v̄n are respectively referred to as corresponding vertices in

the graph GḠ.

Theorem 1. For any simple graph G, n+1
4

< Z(GG) ≤ n, where n is the order of the
graph G.

Proof. We have the following result from [4]

Z(G) >
m

n
, (1)

where m is the number of edges |E(G)| and n is the number of vertices |V (G)|. In
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complementary prism graph the total number of edges is given by the formula [5]

E(GG) =
n(n + 1)

2
. (2)

Total number of vertices in GG is 2n then according to (1) we have

Z(GG) >
n(n+1)

2

2n
=

n + 1

4
.

The upper bound can be obtained by considering all n vertices of G or G in the

forcing set, we can force the entire graph black by forcing its corresponding vertices

black.

Lemma 1. Let G be a graph of order n. If ∆(G) or ∆(G) = n− 1, then Z(GG) ≤ n− 1.
Where ∆(G) denotes maximum degree of the graph.

Proof. Without loss of generality let us assume that ∆(G) = n− 1, then there exist

an isolated vertex in G, say v. Also assume that, v is the vertex corresponding to v

in GG. Now let us consider all n− 1 vertices other than v among v1, v2, . . . , v, . . . , vn
as the elements of the zero forcing set S. All these n − 1 vertices can force their

corresponding white neighbours in GG black, since there exist exactly one white

neighbour in the open neighbourhood of these black vertices. Again if we consider

the vertex v, then we can see that any black vertex in GG has no white neighbour

or v as its only white neighbour. Hence any one of these vertices can force v black.

Finally v can force its corresponding neighbour v black. Thereby forcing the entire

graph GG black. Hence Z(GG) ≤ n− 1.

Lemma 2. Let G be a graph of order n. If ∆(G) or ∆(G) = n− 2, then Z(GG) ≤ n− 1.

Proof. Without loss of generality let u be the vertex in G whose degree is ∆ = n−2

and let u be the vertex corresponding to u in GG. Since the degree of u is n − 2,

there is one vertex v in G that is not adjacent to the vertex u and v be the vertex

corresponding to the vertex v in GG. Clearly in the complement G the vertex u is

adjacent only to the vertex v. Let S be the set of all initially black colored vertices

required to force the entire graph GG black.

Case 1. Assume that the vertex v is also adjacent to all the neighbors of the vertex

u except u. Then by taking these n − 2 vertices (N(u) \ u) and vertex v as the

initially colored black vertex in S, we can force the entire graph GG black. We can

observe that now the vertex v can force its corresponding vertex v black, then the

vertex v can force the vertex u black further the vertex u can force the vertex u

black. Again in GG graph the vertices of the subgraph G is black. Now these black

vertices can force the entire graph GG black. Therefore, we obtain a derived coloring
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by using | S |= n− 1 black vertices. Hence in this case Z(GG) ≤ n− 1.

Case 2. Assume that the vertex v is not adjacent to any of the neighbors of the

vertex u. Then G is disconnected implying that G contains a vertex v whose degree

is n− 1, and by Lemma 1 we get the required result.

Case 3. Assume that the vertex v is adjacent to some 1 ≤ k < n − 2 neigh-

bours of vertex u except u. Then by taking u and N(u) \ u in S, u can force u

black. Which further can force v. Since v is adjacent to k neighbours of u except

u in GG, N(u) \ {N(v), u} can force their corresponding neighbours black (in other

words N(v)\u black). Now we observe that N(v) has exactly one white neighbour v.

Hence v can force v black. In GG all the vertices of N(u) are black so these vertices

have at-most one white neighbour or no white neighbours in GG.Therefore all the

black vertices of N(u) in GG can force the remaining white vertices in GG black.

2.1. Zero forcing number of the complementary prism graph of few basic
graph classes

In this section we start with the complete graph class Kn and its complimentary

prism KnKn

Theorem 2. Let G be a complete graph Kn of order n ≥ 2. Then the zero forcing number
Z(KnKn) = n− 1.

Proof. From Lemma 2.2 it is clear that Z(KnKn) ≤ n − 1. It is enough to prove

that Z(KnKn) ≥ n− 1. Clearly, in the graph KnKn there are two different degrees,

a set of vertices having degree 1 and a set of vertices having degree n. Let all the

vertices of degree 1 be vi 1 ≤ i ≤ n and let all the vertices of degree n be vi 1 ≤ i ≤ n.

On the contrary, let us assume that n− 2 initial black vertices are sufficient to force

the entire graph black. Let H be the zero forcing set consisting of n− 2 initial black

vertices. Suppose we choose n− k, where 2 ≤ k ≤ n from the set V as the vertices in

H, then these vertices can force their corresponding neighbours of KnKn (that is in

set V ) black. Now remaining k − 2 black vertices in H are chosen from V . Clearly,

after the first forcing process, there are n − k + k − 2 = n − 2 black vertices in V .

Since, all the vertices in V form an induced complete graph, any black vertices in the

set V have at least 2 white neighbours. Therefore the forcing process halts. Hence

n− 2 vertices are not sufficient to force the entire graph KnKn black.

Again we consider the basic graph class Cn and its complimentary prism graph CnCn

and obtain its zero forcing number.

Theorem 3. Let G be a cycle graph Cn where n is the order of the cycle Cn. Then
Z(CnCn) = n for n > 4.
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Proof. We know that Z(GG) ≤ n from Theorem 1. To prove equality we need to

prove Z(GG) ≥ n. On contrary let us assume that n− 1 black vertices are enough to

force the entire graph black. In CnCn we have n vertices of degree 3 and n vertices

of degree n − 2. Since n > 4, n − 2 ≥ 3. Let S be the set containing vertices which

are initially colored black.

Case 1. When n = 5 the graph C5C5 is the Petersen graph. It is found that zero

forcing number of Petersen graph is 5 [14]. That is Z(C5C5) = 5 .

Case 2. Suppose that n ≥ 6 and |S| = n− 1.

Subcase 2.1. Assume that all vertices in S have degree 3. Clearly these n− 1 black

vertices force n− 3 corresponding white vertices black. This process then halts since

any black vertices will have either no white vertex or at least 2 white vertices in its

open neighbourhood, a contradiction.

Subcase 2.2. When all the vertices in S have degree n−2. Then these n−1 vertices

can force only 2 vertices of Cn part of CnCn.(As the remaining one white vertex

of degree n − 2 is adjacent to all other n − 3 black vertices.) The process stops as

any black vertices will have either no white neighbours or two white neighbours, a

contradiction.

Subcase 2.3. When the vertices in S have both the degrees, 3 and n− 2.

Subcase 2.3.1. Let u1 be the first vertex in S, consider when d(u1) = 3. In order for

u1 to force, we need two of its three white neighbours in S. Say u2, un (or u1,make no

difference in forcing pattern), then u1 will force u1 black. Clearly u2, un will have 2

white neighbours and u1 has n−3 white neighbours. By taking n−4 neighbours of u1

in S, u1 can force its only white neighbour black. After which any black vertices will

have either no white neighbour or at least 2 white neighbour. Therefore |S| = n− 1

and these n − 1 vertices will not form a zero forcing set, a contradiction. Therefore,

n ≤ Z(CnCn).

Instead if we take one of the white neighbours of u2 or un in S, say u3 or un−1

respectively (similarly taking u2 or un−1 respectively will make no difference in the

forcing pattern), that is either S = {u1, u2, un, u3} or S = {u1, u2, un, un−1}. Now

|S| = 4, at this stage u2 or un can force u2 or un respectively. Now u2 or un has n−3

white neighbour. Hence it is not possible to consider this, as n− 4 of its neighbours

must be in S making |S| = n , a contradiction. We have to consider the neighbour of

u3 or un−1, but this forcing pattern is similar to that of Case 1.

Subcase 2.3.2. Let u1 be the first vertex in S, consider when d(u1) = n−2 in S then

n−3 neighbours of u1 must be in S so that it can force the remaining white neighbour.

After this, the process stops as any black vertex either has no white neighbour or at

least two white neighbour, in order to continue we need to consider neighbours of u1

else the forcing pattern will be same as Case 2. u1 has 2 white neighbours so one

of them must be in S to continue the process. Further, this process stops once u1

forces its other white neighbour, but any more addition of the vertices will lead to a

contradiction as |S| = 1 + n− 3 + 1 = n− 1.
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Remark: If n = 3 or 4, then we can easily verify that Z(C3C3) = 2 and Z(C4C4) = 3

as depicted in the Figure 1.

Figure 1. C3C3 and C4C4

A wheel graph is the join of cycle Cn with K1 that is Wn+1 = Cn + K1. Next we

consider the complementary prism of wheel graph Wn+1Wn+1.

Theorem 4. If G = Wn+1 is a wheel graph of order n+ 1, then the zero forcing number
Z(Wn+1Wn+1) = n.

Proof. Consider the set S of black vertices , W be the set containing vertices

{v1, v2, . . . , vn, vn+1} with vn+1 as the Central vertex of Wn+1 and W be the set

containing vertices {v1, v2 . . . vn, vn+1}. From Lemma 1

Z(Wn+1Wn+1) ≤ n. (3)

In Figure 2, the black vertices represents the zero forcing sets of complementary wheel

graph when 3 ≤ n ≤ 4. For n > 4, let us assume that n− 1 initial black vertices are

sufficient to force the entire graph black.

Figure 2. W3+1W3+1 and W4+1W4+1

Case 1. If all the n− 1 initially colored black vertices in S are taken from W .

Then it is obvious that the central vertex vn+1 must be S, else the forcing process

doesn’t progress. This clearly implies that there will be exactly two white vertices in

W when n− 1 vertices are taken from W , meaning only n− 4 vertices can be forced
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black in W as other two black vertices and the central vertex vn+1 in W will have

at least two white neighbour, a contradiction. Hence we need at least n initial black

vertices to force the entire graph black.

Case 2. If all the n− 1 initially colored black vertices in S are taken from W .

Subcase 2.1. If all the n− 1 black vertices in S are taken from {W \ {vn+1}}. Then

there will be 2 white vertex in W (one white vertex from {W \ {vn+1}} and other

is vn+1). This white vertex in {W \ {vn+1}} is adjacent to n − 3 other vertices in

W . Hence only 2 vertices among n − 1 black vertices can force their corresponding

neighbour in Wn+1Wn+1 black, and the process stops, a contradiction.

Subcase 2.2. If vn+1 and n−2 black vertices are taken from {W \{vn+1}} are taken

in S. Then the degree one vertex vn+1 can forces its corresponding white neighbour

vn+1 black in Wn+1Wn+1 black. On the other hand there are exactly 2 white vertices

in {W \ {vn+1}}, so maximum two of these black vertices can force its corresponding

white neighbour respectively black in W \ vn+1. Hence any black vertex in the graph

Wn+1Wn+1 has either no white neighbour or 2 or more white neighbours. Hence the

process halts, a contradiction.

Case 3. If these n− 1 initial black vertices are taken from both W and W .

Subcase 3.1. Suppose that first black vertex in S is taken from W .

i) If the first chosen vertex is vn+1 (pendent vertex), then it will force the n + 1

degree vertex vn+1 black (Central vertex of W ). The remaining structure resembles

the graph of CnCn. According to Theorem 3 Z(CnCn) = n, in other words we need

extra n black vertices, a contradiction.

ii) If the first chosen vertex is from {W \ {vn+1}}, then this vertex say v1 has a total

of n − 2 neighbours in Wn+1Wn+1. So at least n − 3 of them need to be initially

colored black so that v1 can force the remaining one white neighbour. Now any black

vertex in Wn+1Wn+1 will have no or at least 2 white neighbour and there are 3 white

vertices in W . Taking any one of these vertex can force at most one white vertex

black and then the forcing stops. On the other hand the black vertex in W that is v1
has three white neighbours, a contradiction.

Subcase 3.2. Suppose that first black vertex is taken from W .

Clearly we cannot take the n + 1 degree vertex vn+1 (central vertex). Any other

vertex in W has four neighbour, let v1 be such a vertex. Let v1 be the first black

vertex considered in S, now lets consider three of its neighbour initially black (say

v2, vn, vn+1). v1 will now force its other white neighbour (say v1) black. To continue

the process further we cannot consider the vn+1 (as it has n white neighbours), nor

can we consider v1 as v1 has n − 3 white neighbours. So only possibility is when we

consider other two vertices of W . This is now reduced to case 1, a contradiction.

From the above cases, we can conclude that

Z(Wn+1Wn+1) ≥ n. (4)

Theorem follows from equation (3) and (4).
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Theorem 5. Let G be a complete bipartite graph G = kp,q of order n = p+ q. Then the
zero forcing number Z(Kp,qKp,q) = n− 1.

Proof. Consider the complete bipartite graph Kp,q and let V = {v1, v2, . . . , vq}
be the vertices in the first partite set and let U = {u1, u2, . . . , up} be the vertices

in second partite set. Corresponding to Kp,q its complement Kp,q consists of V =

{v1, v2, . . . , vq} corresponding to the first partite set V and U = {u1, u2, . . . , up}
corresponding to the second partite set u.

Let S be the set of all vertices which are required to be colored initially black in order

to force the entire graph Kp,qKp,q black. Let all the q vertices of V be in S, remaining

p vertices of U and U forms an induced graph KpKp. By Theorem 2, we know that

Z(KpKp) = p − 1. Now by taking these p − 1 vertices in S, KpKp can be forced

black the forcing process then continues to force the remaining q vertices of V black.

Therefore at most |S| number of vertices are required to force the entire graph black.

That is, |S| = q + p − 1 = n − 1 implying that Z(Kp,qKp,q) ≤ n − 1. In order to

choose the initial black vertices of Kp,qKp,q we have 4 options, that is one among q

vertices of V or one among q vertices of V or one among p vertices of U or one among

p vertices of U .

Case 1. If one among the q vertices of V is considered black, clearly, each of these

vertices has degree p+ 1. Therefore p of the neighbours are to be considered initially

black in order for the forcing process to continue. Now any black vertices will have

either no white neighbour or q − 1 white neighbour. At least q − 2 vertices must be

considered black in order for the forcing process to continue. That is a minimum of

1 + p + q − 2 = p + q − 1 = n− 1 black vertices are required to force the graph.

Case 2. If one among the p vertices of U is considered black, with a similar argument

as in Case 1, we can show that at least n− 1 vertices have to be considered initially

black in order for the forcing process to occur.

Case 3. If one among the q vertices of V is considered black, clearly, each of these

vertices has degree q. Therefore at least q − 1 vertices have to be considered initially

black in order for the forcing process to occur. After the forcing process, all the q− 1

vertices of V will have exactly one white neighbour. Therefore they can force the

corresponding neighbours to be black. At this stage, each of the black vertices will

have either no white neighbour or p white neighbours. Hence in order for the forcing

process to continue, p− 1 of the white vertices of U has to be considered black. That

is a minimum of 1 + q − 1 + p− 1 = p + q − 1 = n− 1 black vertices are required to

force the graph.

Case 4. If one among the p vertices of U is considered black, with a similar argument

as in Case 3, we can show that at least n− 1 vertices have to be considered initially

black in order for the forcing process to occur.

From all four cases, it is clear that Z(Kp,qKp,q) ≥ n − 1. Therefore Z(Kp,qKp,q) =

n− 1.
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2.2. More bounds and Inequality

In this section, we study the zero forcing number of a few complementary prisms of

cut edge graph, disconnected graph etc.,

Theorem 6. If G and G are connected and either G or G has a cut edge, then Z(GG) ≤
n− 1.

Proof. Without loss of generality let G be the graph with cut edge. Let uv be the cut

edge such that u belongs to the first component, v belongs to the second component

and the edge uv forms the bridge between these two components. The total number

of vertices u1, u2, . . . , up−1, u in the first component of graph G is p, and the total

number of vertices v1, v2, . . . , vq−1, v in the second component of the graph G is q

such that p + q = n where n is the order of the graph G. In the complement part of

G u, v are the vertices corresponding to the vertices u, v respectively in G.

Consider the graph GG. Let S be the zero forcing set. Initially we take all the p

vertices u1, u2, . . . , up−1, u of GG in S, then p − 1 vertices among them (i.e except

u) force their corresponding vertices in GG black. In order to force u black we need

to take v in S. Now u has exactly q − 1 white neighbours. By taking q − 2 of its

neighbour (Say v2, v3, . . . , vq−1) black, u can force remaining white neighbour, making

all its neighbour black. Also all the vertices adjacent to v are black and one of the

vertices among u1, u2, . . . , up−1 will force v black. v1, v2, . . . , vq−1 can be now forced

black by their corresponding neighbour in GG. since all the vertices of GG are forced

black, the set of vertices in S = {u1, u2, . . . , up−1, u, v, v2, v3, . . . , vq−1} are enough to

force the entire graph black. Hence Z(GG) ≤ |S| = n− 1

Theorem 7. Let G and G be connected graphs. Then Z(GḠ) ≤ n−1 if and only if there
exists two vertices vi, vj ∈ V (G) and i 6= j such that, either N(vi) ⊆ N(vj) or N [vi] ⊆ N [vj ]
in G.

Proof. Let G be the graph such that vi, vj ∈ V (G). Let V be a set containing vertices

{v1, v2 . . . , vi, . . . vj , . . . vn} and V be the set containing {v1, v2, . . . , vi, . . . vj , . . . , vn}.
Let S be the zero forcing set of GG.

Case 1. N(vi) ⊆ N(vj) and i 6= j.

Take all the n − 1 vertices of V except vi in S. Then all the vertices in V except

N [vi] can force their corresponding vertices in GG black. Now, vj can force vi black,

as N(vi) ⊆ N(vj) implies the vertices which are not adjacent to vi is not a subset of

N(vj) and vi ∈ N(vj). Hence all the neighbouring vertices of vj except the vertex

vi are black, according to the color change rule vj forces vi black. This vertex vi in

turn forces its corresponding neighbour vi black. Since all the vertices in V are black

they can force the remaining white vertices of V black (as they are the corresponding

vertices). Hence entire graph can be forced black with the initially colored black

vertex set S = {v1, v2, . . . , vj , . . . , vn} and |S| = n− 1. Therefore, Z(GG) ≤ n− 1.
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Case 2. N [vi] ⊆ N [vj ] and i 6= j.

Then it is evident that N(vj) ⊆ N(vi). Using the same argument of Case 1 by taking

vi as vj and vj as vi we can show that Z(GG) ≤ n− 1.

Conversely, assume that if Z(GG) ≤ n − 1, then there exist no vi, vj ∈ V (G) or

vi, vj ∈ V (G) such that either N(vi) ⊆ N(vj) ⇒ N [vj ] ⊆ N [vi] or N [vi] ⊆ N [vj ] ⇒
N(vj) ⊆ N(vi). Without loss of generality let us start the process of zero forcing

by taking a vertex in GG say vi black. In order to carry out the forcing process

we need to take all of its neighbours in V black, then vi can force its corresponding

neighbour vi black. Further in order to continue the forcing process we need to either

consider the white neighbours of the black vertices in V or white neighbours of the

black vertices of V in GG.

Case 3. consider the white neighbours of any black vertex which is distinct form vi
in V .

According to our assumption there will be at least two white neighbour for every black

neighbours of vi in V . Hence at each stage any vertex which is black in V will have

at least two white neighbour or no white neighbours in GG until all the n vertices are

taken in S, a contradiction.

Case 4. consider the white neighbours of vi in V .

According to our assumption, for any two vertices in V , say vi and vj there exist at

least one vertex in N(vi) which doesn’t belong to N(vj) in G. It can be observed that

any two vertices of V also satisfies the above condition since vertex set of V in GG

forms an induced graph G. Now if we consider neighbours of vi to be initially black,

(that is in S). The total number of black vertices in S will be n− 1. Since the graph

cannot be disconnected and G also satisfies the assumption that for any two vertices

in G there exist at least one neighbour which is different from the neighbour of the

other. Hence in order to continue the forcing process we need to consider one more

vertex in the initial forcing set S, in other words we need at least n vertices to force

the entire graph, a contradiction.

From the above Theorem it can be observed that, for any two vertices in graph G.

IfN(vi) ( N(vj) or N [vi] ( N [vj ] in G, then Z(GG) = n.

It is known that either G and G will be connected for any graph classes.

Annexure

Code to find the Complementary prism of a given graph
This Python program outputs the complementary prism graph of a given graph.

import networkx as nx
import matp lo t l ib . pyplot as p l t

de f complementary prism (G) :
n=G. number of nodes ( )
h= range (n , n+n)
G. add nodes from (h)
f o r i in range (n ) :
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G. add edge ( i , i+n)
f o r j in range (n ) :

i f i != j :
i f G. has edge ( i , j )==False :

G. add edge ( i+n , j+n)

complementary prism (G)
# G i s a graph f o r which complementary prism graph i s to be obtained .

Few example of graph and its complementarty prism
Cycle

H = nx . cyc l e g raph (5)

complementary prism (H)
nx . draw networkx (

H,
pos=nx . c i r c u l a r l a y o u t (H) )

p l t . t i t l e (”Complementary prism graph ”)
p l t . show ( )

Wheel

H = nx . wheel graph (5)
complementary prism (H)
p l t . subplot (1 , 3 , 3 )
nx . draw networkx (

H,
pos=nx . c i r c u l a r l a y o u t (H) )

p l t . t i t l e (”Complementary prism graph ”)
p l t . show ( )

3. Conclusion

In section 2 we found some bounds of the complementary prism Z(GG). In section 2.1

we discussed the zero forcing number of the Complementary prism graph of a cycle,

complete graph, wheel graph and bipartite graph. In section 2.2, we found more

bounds based on the graph’s number of vertices |V (G)|. The following problems are

open

Conjecture 1. If G is a connected graph, then Z(GG) ≥ max{δ(G), δ(G)}+ 1.

Problem 1. Determine the zero forcing number of the complementary prism of other

graph classes such as path, generalised Petersen graphs etc.

The python code to obtain the complementary prism graph of a graph is given.

Finding the code to obtain the zero forcing number of complementary prism graph

is an open problem.
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[10] T. Kalinowski, N. Kamčev, and B. Sudakov, The zero forcing number of graphs,

SIAM J. Discrete Math. 33 (2019), no. 1, 95–115

https://doi.org/10.1137/17M1133051.

[11] L. Lu, B. Wu, and Z. Tang, Proof of a conjecture on the zero forcing number of

a graph, Discrete Appl. Math. 213 (2016), 233–237

https://doi.org/10.1016/j.dam.2016.05.009.

[12] Z. Montazeri and N. Soltankhah, Zero forcing number for Cartesian product of

some graphs, Commun. Comb. Optim., In press

https://doi.org/10.22049/cco.2023.28177.1471.

[13] D.B. West, Introduction to graph theory, vol. 2, Prentice hall Upper Saddle River,

2001.

[14] AIM Minimum Rank-Special Graphs Work Group Work, Zero forcing sets and

the minimum rank of graphs, Linear Algebra Appl. 428 (2008), no. 7, 1628–1648

https://doi.org/10.1016/j.laa.2007.10.009.


	Introduction
	Some bounds of Z(G) 
	Annexure
	Conclusion
	References

