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Abstract: Let G be a simple graph with vertex set V = V (G) and edge set E =

E(G). For a real function f defined on nonnegative real numbers, the vertex-degree

function index Hf (G) is defined as

Hf (G) =
∑

u∈V (G)

f(du).

In this paper we introduce the vertex-degree function index Hf (D) of a digraph D.

After giving some examples and basic properties of Hf (D), we find the extremal values

of Hf among all tournaments with a fixed number of vertices, when f is a continuous
and convex (or concave) real function on [0,+∞).

Keywords: Tournaments, Vertex-degree function index, Vertex-degree-based topolog-

ical index.
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1. Introduction

Let G be a simple graph with vertex set V = V (G) and edge set E = E(G). Denote

by du the degree of a vertex u in G. For a real function f defined on nonnegative real

numbers, the vertex-degree function index Hf (G) was introduced in [6] as

Hf (G) =
∑

u∈V (G)

f(du).

∗ Corresponding Author



2 Vertex-degree function index on tournaments

Important examples of vertex-degree function indices are the zeroth-order general

Randić index 0Rα(G), corresponding to the function f(x) = xα [5]. In particular,

when α = 2 we obtain the first Zagreb index of a graph [1]

M1(G) =
∑

u∈V (G)

(du)2 =
∑

uv∈E(G)

(du + dv),

and when α = 3, the Forgotten index [1]

F(G) =
∑

u∈V (G)

(du)3 =
∑

uv∈E(G)

((du)2 + (dv)
2).

For recent results on the general concept of vertex-degree function index of graphs we

refer to [4, 9–11].

In this paper we introduce the vertex-degree function index Hf (D) of a digraph D.

Let us recall some basic terminology of digraphs. Assume that D is a digraph with

vertex set V (D) and arc set A(D). If there is an arc from the vertex u to the vertex v

we denote it by uv. For a vertex u of D, N+
u (resp. N−u ) is the set of vertices v of D

such that uv (resp. vu) is an arc of D. The outdegree (resp. indegree) of u is denoted

by d+u (resp. d−u ) and it is defined as the cardinality of the set N+
u (resp. N−u ). A

digraph D is called an oriented graph if whenever uv ∈ A(D) then vu /∈ A(D). An

oriented graph D can be obtained from a graph G by assigning a direction to each

edge of G; D is called an orientation of G.

After giving in Section 2 the definition, examples and basic properties of a vertex-

degree function index Hf (D) of a digraph D, we consider in Section 3 the extremal

value problem of Hf among all orientations of a complete graph. Recall that a tourna-

ment T on n vertices is an orientation of the complete graph Kn. The nondecreasing

sequence (s1, s2, . . . , sn) of outdegrees of the vertices of T is called the score vector of

T . We will show that when f is a continuous and convex (or concave) real function on

the interval [0,+∞), then among all tournaments on n vertices, one extremal value

of Hf is attained in the transitive tournament U with score vector (0, 1, 2, . . . , n− 1),

and the other extremal value is attained in a regular tournament R with score vec-

tor (n−12 , n−12 , . . . , n−12 ) when n is odd, or in a semiregular tournament S with score

vector (n2 − 1, . . . , n2 − 1, n2 , . . . ,
n
2 ), when n is even (see Figure 1).

2. Vertex-degree function index of digraphs

In this section we introduce the concept of vertex-degree function index of digraphs.

Definition 1. Let f be a real function defined in the interval [0,∞). The vertex-degree
function index of the digraph D, denoted as Hf (D), is defined as

Hf (D) =
1

2

∑
u∈V (D)

[
f(d+u ) + f(d−u )

]
.
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u1

u5 u2

u4 u3

U

u1

u5 u2

u4 u3

R

u4 u1

u3 u2

S

Figure 1. Transitive tournament U (n = 5), regular tournament R (n = 5) and semiregular tournament
S (n = 4).

Example 1. Consider the digraph shown in Figure 2. Then for any function f as in
Definition 1,

Hf (D) =
1

2

5∑
i=1

[
f(d+vi ) + f(d−vi )

]
=

1

2
([f(0) + f(3)] + [f(1) + f(1)] + [f(1) + f(1)] + [f(1) + f(2)] + [f(3) + f(1)])

=
1

2
[f(0) + 6f(1) + f(2) + 2f(3)].

v1

v5 v2

v4 v3

Figure 2. Digraph used in Example 1

Next we will see that Definition 1 extends the concept of vertex-degree function index

to digraphs. If G is a graph, then G can be identified with the symmetric digraph Ĝ,

which has the same vertex set as the graph G, and each edge uv of G is replaced by

a pair of symmetric arcs uv and vu in Ĝ.

Proposition 1. Let G be a graph. Then Hf (Ĝ) = Hf (G).
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Proof. Let u ∈ V (G) = V (Ĝ), and denote by du the degree of u in G. Then
d+u = d−u = du and so

Hf (Ĝ) =
1

2

∑
u∈V (D)

[
f(d+u ) + f(d−u )

]
=

1

2

∑
u∈V (G)

[f(du) + f(du)] = Hf (G).

A vertex-degree-based (VDB for short) topological index of a digraph D (see [7, 8])

is defined as

ϕ(D) =
1

2

∑
uv∈A(D)

ϕ
d+u ,d

−
v
,

where ϕx,y is a bivariate symmetric function, each variable defined over nonnegative

real numbers. In our next result we show that the vertex-degree function index is a

special type of VDB topological index.

Proposition 2. Let f be a real function defined in the interval [0,∞) such that f(0) = 0,
and let D be a digraph. Then

Hf (D) =
1

2

∑
uv∈A(D)

ϕ
d+u ,d

−
v
,

where ϕx,y is the symmetric bivariate function ϕx,y = f(x)
x

+ f(y)
y

, defined in [1,+∞) ×
[1,+∞).

Proof. Note that in the sum

1

2

∑
uv∈A(D)

(
f(d+u )

d+u
+
f(d−v )

d−v

)
,

the summand
f(d+u )

d+u
appears d+u times for any vertex u such that d+u > 0, and the

summand
f(d−v )

d−v
appears d−v times for any vertex v such that d−v > 0. Since f(0) = 0,

it follows that

1

2

∑
uv∈A(D)

(
f(d+u )

d+u
+
f(d−v )

d−v

)
=

1

2

∑
{u∈V (D):d+u>0}

d+u

(
f(d+u )

d+u

)
+

1

2

∑
{v∈V (D):d−v >0}

d−v

(
f(d−v )

d−v

)

=
1

2

∑
u∈V (G)

(f(d+u ) + f(d−u )) = Hf (D).
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Example 2. Consider the function f(x) = x2 defined in the interval [0,+∞). If D is a
digraph then by Proposition 2,

Hx2 (D) =
1

2

∑
uv∈A(D)

ϕ
d+u ,d

−
v
,

where ϕx,y = x2

x
+ y2

y
= x+ y. In other words,

Hx2 (D) =
1

2

∑
uv∈A(D)

(d+u + d−v ) =M1(D),

the first Zagreb index of D. Similarly, the Forgotten index

F(D) =
1

2

∑
uv∈A(D)

[(d+u )2 + (d−v )2]

is the vertex-degree function index Hx3(D). In general, for α ∈ R, α 6= 0, the generalized
first Zagreb index

Mα(D) =
1

2

∑
uv∈A(D)

[(d+u )α + (d−v )α] = Hf(x)(D),

where f(x) = xα+1 in the interval [0,+∞). Note that in the case α < −1, we define
f(x) = xα+1 for x > 0, and f(0) = 0.

3. Vertex-degree function index of tournaments

Let T be a tournament on n vertices. Recall that the nondecreasing sequence

(s1, s2, . . . , sn) of outdegrees of the vertices of T is called the score vector of T .

Theorem 1. (Landau [3]) A nondecreasing sequence of integers (s1, s2, . . . , sn) is a score
vector of a tournament on n vertices, if and only if,

k∑
i=1

si ≥
k(k − 1)

2
for all 1 ≤ k ≤ n,

with equality for k = n.

Let x = (x1, . . . , xn) and y = (y1, . . . , yn) two n-tuple of real numbers such that

x1 ≥ x2 ≥ · · · ≥ xn and y1 ≥ y2 ≥ · · · ≥ yn. (1)

The n-tuple x is said to majorize y, in symbols we write x � y, if

k∑
i=1

xi ≥
k∑
i=1

yi for all 1 ≤ k ≤ n,
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with equality for k = n.

Let I ⊆ R be an interval. Recall that a function f : I → R is convex if

f((1− λ)a+ λb) ≤ (1− λ)f(a) + λf(b), (2)

for all a, b ∈ I and all λ ∈ [0, 1].

Theorem 2. (Hardy, Littlewood, Pólya [2]) Let x and y be two n-tuples of real numbers
as in (1), whose entries belong to an interval I. The following statements are equivalent:

1. x � y;

2. The inequality
n∑
i=1

f(xi) ≥
n∑
i=1

f(yi)

holds for every continuous convex function f : I → R.

Now we can study the extremal value problem of Hf over the set of all tournaments

with n vertices.

Theorem 3. Let f be a continuous and convex real function on [0,+∞) and let T be a
tournament on n vertices. Then

Hf (T ) ≤
n∑
i=1

f(n− i).

Equality occurs if T is the transitive tournament with score vector (0, 1, 2, . . . , n− 1).

Proof. Let (s1, . . . , sn) be the score vector of T . Clearly,

0 ≤ s1 ≤ s2 ≤ · · · ≤ sn ≤ n− 1.

Define tj = sn−j+1, for all j = 1, . . . , n. Then t1 ≥ t2 ≥ · · · ≥ tn and (t1, . . . , tn) is

the nonincreasing sequence score vector of T . We are going to show that

(n− 1, n− 2, . . . , 1, 0) � (t1, . . . , tn). (3)

First note that by Theorem 1,

n∑
i=1

ti =
n∑
i=1

si =
n(n− 1)

2
=

n∑
i=1

(n− i).

Again, by Theorem 1, for every 1 ≤ k ≤ n,

n−k∑
i=1

si ≥
(n− k)(n− k − 1)

2
(4)
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and so

k∑
i=1

ti =

k∑
i=1

sn−i+1 =
n(n− 1)

2
−
n−k∑
i=1

si ≤
n(n− 1)

2
−

(n− k)(n− k − 1)

2
=

k∑
i=1

(n− i).

Hence (3) holds.

Also,

(n− 1, n− 2, . . . , 1, 0) � (n− 1− s1, n− 1− s2, . . . , n− 1− sn). (5)

In fact,
n∑
i=1

(n− 1− si) = n(n− 1)−
n(n− 1)

2
=
n(n− 1)

2
=

n∑
i=1

(n− i),

and for 1 ≤ k ≤ n− 1, bearing in mind that

k∑
i=1

si ≥
k(k − 1)

2
,

it follows that

k∑
i=1

(n− 1− si) = k(n− 1)−
k∑
i=1

si ≤ k(n− 1)−
k(k − 1)

2
=

k∑
i=1

(n− i).

Therefore, (5) holds.

Now, since f is a continuous and convex real function on [0,+∞), and ti, n− 1− si,
and n− i belong to the interval [0,+∞) for all i = 1, . . . , n, we deduce from Theorem

2 that

n∑
i=1

f(si) =

n∑
i=1

f(ti) ≤
n∑
i=1

f(n− i),

and
n∑
i=1

f(n− 1− si) ≤
n∑
i=1

f(n− i).

Finally,

Hf (T ) =
1

2

n∑
i=1

[f(si) + f(n− 1− si)] =
1

2

n∑
i=1

f(si) +
1

2

n∑
i=1

f(n− 1− si)

≤
1

2

n∑
i=1

f(n− i) +
1

2

n∑
i=1

f(n− i) =

n∑
i=1

f(n− i).

For the last statement, assume that U is the transitive tournament with score vector

(0, 1, 2, . . . , n− 1). Then,

Hf (U) =
1

2
[f(0) + f(n−1) + f(1) + f(n−2) + · · ·+ f(n−2) + f(1) + f(n−1) + f(0)] =

n∑
i=1

f(n− i).
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Next we will show that the regular or semiregular tournaments attain the minimal

value of Hf .

Theorem 4. Let f be a continuous and convex real function on [0,+∞) and let T be a
tournament on n vertices. Then,

1. Hf (T ) ≥ nf

(
n− 1

2

)
if n is odd. Equality occurs in any regular tournament with

score vector (n−1
2
, n−1

2
, . . . , n−1

2
).

2. Hf (T ) ≥ n
2

[f
(
n
2
− 1
)

+ f
(
n
2

)
] if n is even. Equality occurs in any semiregular tour-

nament with score vector (n
2
− 1, . . . , n

2
− 1, n

2
, . . . , n

2
).

Proof. Let (s1, . . . , sn) be the score vector of T . We know that

0 ≤ s1 ≤ s2 ≤ · · · ≤ sn ≤ n− 1,

and so si and n− 1− si belong to the interval [0,+∞), for all i = 1, . . . , n.

1. Let us assume first that n is odd. Since f is convex then by (2),

1

2
f (si) +

1

2
f (n− 1− si) ≥ f

(
1

2
si +

1

2
(n− 1− si)

)
= f

(
n− 1

2

)
, (6)

for all i = 1, . . . , n. It follows from (6) that

Hf (T ) =
1

2

n∑
i=1

[f (si) + f (n− 1− si)] ≥
n∑
i=1

f

(
n− 1

2

)
= nf

(
n− 1

2

)
.

Next we see that equality occurs in regular tournaments. Assume that R is a
regular tournament with score vector (n−12 , n−12 , . . . , n−12 ). Clearly,

Hf (R) =
1

2

[
f

(
n− 1

2

)
+ f

(
n− 1−

n− 1

2

)
+ · · ·+ f

(
n− 1

2

)
+ f

(
n− 1−

n− 1

2

)]
=

1

2
2nf

(
n− 1

2

)
= nf

(
n− 1

2

)
.

2. Now assume that n is even. If si ≤ n
2 − 1, then n − 1 − si ≥ n

2 >
n
2 − 1 ≥ si.

Let y = (n2 ,
n
2 − 1) and x = (n− 1− si, si). Clearly x � y, so by Theorem 2,

f (n− 1− si) + f (si) ≥ f
(n

2

)
+ f

(n
2
− 1
)
.

If si ≥ n
2 , then n − 1 − si ≤ n

2 − 1 < n
2 ≤ si. Let y = (n2 ,

n
2 − 1) and

x = (si, n− 1− si). Clearly x � y, so again by Theorem 2,

f (si) + f (n− 1− si) ≥ f
(n

2

)
+ f

(n
2
− 1
)
.
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Then, for all i = 1, . . . , n,

Hf (T ) =
1

2

n∑
i=1

[f (si) + f (n− 1− si)] ≥
n

2

[
f
(n

2
− 1
)

+ f
(n

2

)]
.

If n is even, the score vector of a semiregular tournament S with n vertices is

n

2
− 1, . . . ,

n

2
− 1︸ ︷︷ ︸

n
2

,
n

2
, . . . ,

n

2︸ ︷︷ ︸
n
2

 .

Hence,

Hf (S) =
1

2

n
2∑
i=1

[
f
(n

2
− 1
)

+ f
(n

2

)]
+

1

2

n∑
i=n

2
+1

[
f
(n

2

)
+ f

(n
2
− 1
)]

=
n

2

[
f
(n

2
− 1
)

+ f
(n

2

)]
.

Example 3. Let α be a positive real number. Consider the VDB topological index

Mα(D) =
1

2

∑
uv∈A(D)

((d+u )α + (d−v )α).

Among all tournaments with n vertices, Mα attains its maximal value in the transitive
tournament on n vertices, and its minimal value in a regular tournament (if n is odd) or in
a semiregular tournament (if n is even). Indeed, apply Theorems 3 and 4 to the continuous
and convex function f : [0,+∞)→ R defined by f(x) = xα+1.
In particular, among all tournaments with a fixed number of vertices, the extremal value
problem of the first Zagreb index M1 (α = 1) and the Forgotten index F =M2 are solved.

Dually, we can easily deduce similar results for continuous and concave real functions

g : [0,+∞)→ R, by reversing the inequalities in Theorems 3 and 4.

Example 4. Let α ∈ (−1, 0). Then α + 1 ∈ (0, 1) and so the function g(x) = xα+1 is
a continuous and concave function on [0,+∞) which satisfies g(0) = 0. Then, among all
tournaments on n vertices, the vertex degree function index (and VDB topological index)

Hg(T ) =
1

2

∑
uv∈A(T )

((d+u )α + (d−v )α),

attains its minimal value in the transitive tournament on n vertices, and the maximal value
is reached in a regular or a semiregular tournament, depending on the parity of n.
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