

Research Article

Vertex-degree function index on tournaments

Sergio Bermudo¹, Roberto $Cruz^{2,\dagger}$ and Juan Rada^{2,*}

¹Department of Economics, Quantitative Methods and Economic History Pablo de Olavide University, Carretera de Utrera Km. 1, 41013-Sevilla, Spain *sbernav@upo.es

²Instituto de Matemáticas, Universidad de Antioquia, Medellín, Colombia [†]roberto.cruz@udea.edu.co *pablo.rada@udea.edu.co

> Received: 4 August 2023; Accepted: 14 December 2023 Published Online: 18 December 2023

Abstract: Let G be a simple graph with vertex set V = V(G) and edge set E = E(G). For a real function f defined on nonnegative real numbers, the vertex-degree function index $H_f(G)$ is defined as

$$H_f(G) = \sum_{u \in V(G)} f(d_u).$$

In this paper we introduce the vertex-degree function index $H_f(D)$ of a digraph D. After giving some examples and basic properties of $H_f(D)$, we find the extremal values of H_f among all tournaments with a fixed number of vertices, when f is a continuous and convex (or concave) real function on $[0, +\infty)$.

Keywords: Tournaments, Vertex-degree function index, Vertex-degree-based topological index.

AMS Subject classification: 05C09, 05C20, 05C35

1. Introduction

Let G be a simple graph with vertex set V = V(G) and edge set E = E(G). Denote by d_u the degree of a vertex u in G. For a real function f defined on nonnegative real numbers, the vertex-degree function index $H_f(G)$ was introduced in [6] as

$$H_f(G) = \sum_{u \in V(G)} f(d_u).$$

* Corresponding Author

^{© 2023} Azarbaijan Shahid Madani University

Important examples of vertex-degree function indices are the zeroth-order general Randić index ${}^{0}R_{\alpha}(G)$, corresponding to the function $f(x) = x^{\alpha}$ [5]. In particular, when $\alpha = 2$ we obtain the first Zagreb index of a graph [1]

$$\mathcal{M}_1(G) = \sum_{u \in V(G)} (d_u)^2 = \sum_{uv \in E(G)} (d_u + d_v),$$

and when $\alpha = 3$, the Forgotten index [1]

$$\mathcal{F}(G) = \sum_{u \in V(G)} (d_u)^3 = \sum_{uv \in E(G)} ((d_u)^2 + (d_v)^2).$$

For recent results on the general concept of vertex-degree function index of graphs we refer to [4, 9-11].

In this paper we introduce the vertex-degree function index $H_f(D)$ of a digraph D. Let us recall some basic terminology of digraphs. Assume that D is a digraph with vertex set V(D) and arc set A(D). If there is an arc from the vertex u to the vertex vwe denote it by uv. For a vertex u of D, N_u^+ (resp. N_u^-) is the set of vertices v of Dsuch that uv (resp. vu) is an arc of D. The outdegree (resp. indegree) of u is denoted by d_u^+ (resp. d_u^-) and it is defined as the cardinality of the set N_u^+ (resp. N_u^-). A digraph D is called an oriented graph if whenever $uv \in A(D)$ then $vu \notin A(D)$. An oriented graph D can be obtained from a graph G by assigning a direction to each edge of G; D is called an orientation of G.

After giving in Section 2 the definition, examples and basic properties of a vertexdegree function index $H_f(D)$ of a digraph D, we consider in Section 3 the extremal value problem of H_f among all orientations of a complete graph. Recall that a tournament T on n vertices is an orientation of the complete graph K_n . The nondecreasing sequence (s_1, s_2, \ldots, s_n) of outdegrees of the vertices of T is called the score vector of T. We will show that when f is a continuous and convex (or concave) real function on the interval $[0, +\infty)$, then among all tournaments on n vertices, one extremal value of H_f is attained in the transitive tournament U with score vector $(0, 1, 2, \ldots, n-1)$, and the other extremal value is attained in a regular tournament R with score vector $(\frac{n-1}{2}, \frac{n-1}{2}, \ldots, \frac{n-1}{2})$ when n is odd, or in a semiregular tournament S with score vector $(\frac{n}{2} - 1, \ldots, \frac{n}{2} - 1, \frac{n}{2}, \ldots, \frac{n}{2})$, when n is even (see Figure 1).

2. Vertex-degree function index of digraphs

In this section we introduce the concept of vertex-degree function index of digraphs.

Definition 1. Let f be a real function defined in the interval $[0, \infty)$. The vertex-degree function index of the digraph D, denoted as $H_f(D)$, is defined as

$$H_f(D) = \frac{1}{2} \sum_{u \in V(D)} \left[f(d_u^+) + f(d_u^-) \right].$$

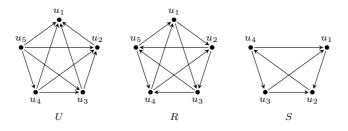


Figure 1. Transitive tournament U (n = 5), regular tournament R (n = 5) and semiregular tournament S (n = 4).

Example 1. Consider the digraph shown in Figure 2. Then for any function f as in Definition 1,

$$\begin{split} H_f(D) &= \frac{1}{2} \sum_{i=1}^5 \left[f(d_{v_i}^+) + f(d_{v_i}^-) \right] \\ &= \frac{1}{2} ([f(0) + f(3)] + [f(1) + f(1)] + [f(1) + f(1)] + [f(1) + f(2)] + [f(3) + f(1)]) \\ &= \frac{1}{2} [f(0) + 6f(1) + f(2) + 2f(3)]. \end{split}$$

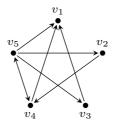


Figure 2. Digraph used in Example 1

Next we will see that Definition 1 extends the concept of vertex-degree function index to digraphs. If G is a graph, then G can be identified with the symmetric digraph \hat{G} , which has the same vertex set as the graph G, and each edge uv of G is replaced by a pair of symmetric arcs uv and vu in \hat{G} .

Proposition 1. Let G be a graph. Then $H_f(\widehat{G}) = H_f(G)$.

Proof. Let $u \in V(G) = V(\widehat{G})$, and denote by d_u the degree of u in G. Then $d_u^+ = d_u^- = d_u$ and so

$$H_f(\widehat{G}) = \frac{1}{2} \sum_{u \in V(D)} \left[f(d_u^+) + f(d_u^-) \right] = \frac{1}{2} \sum_{u \in V(G)} \left[f(d_u) + f(d_u) \right] = H_f(G).$$

A vertex-degree-based (VDB for short) topological index of a digraph D (see [7, 8]) is defined as

$$\varphi(D) = \frac{1}{2} \sum_{uv \in A(D)} \varphi_{d_u^+, d_v^-},$$

where $\varphi_{x,y}$ is a bivariate symmetric function, each variable defined over nonnegative real numbers. In our next result we show that the vertex-degree function index is a special type of VDB topological index.

Proposition 2. Let f be a real function defined in the interval $[0, \infty)$ such that f(0) = 0, and let D be a digraph. Then

$$H_f(D) = \frac{1}{2} \sum_{uv \in A(D)} \varphi_{d_u^+, d_v^-},$$

where $\varphi_{x,y}$ is the symmetric bivariate function $\varphi_{x,y} = \frac{f(x)}{x} + \frac{f(y)}{y}$, defined in $[1, +\infty) \times [1, +\infty)$.

Proof. Note that in the sum

$$\frac{1}{2} \sum_{uv \in A(D)} \left(\frac{f(d_u^+)}{d_u^+} + \frac{f(d_v^-)}{d_v^-} \right),$$

the summand $\frac{f(d_u^+)}{d_u^+}$ appears d_u^+ times for any vertex u such that $d_u^+ > 0$, and the summand $\frac{f(d_v^-)}{d_v^-}$ appears d_v^- times for any vertex v such that $d_v^- > 0$. Since f(0) = 0, it follows that

$$\begin{split} \frac{1}{2} \sum_{uv \in A(D)} \left(\frac{f(d_u^+)}{d_u^+} + \frac{f(d_v^-)}{d_v^-} \right) &= \frac{1}{2} \sum_{\{u \in V(D): d_u^+ > 0\}} d_u^+ \left(\frac{f(d_u^+)}{d_u^+} \right) + \frac{1}{2} \sum_{\{v \in V(D): d_v^- > 0\}} d_v^- \left(\frac{f(d_v^-)}{d_v^-} \right) \\ &= \frac{1}{2} \sum_{u \in V(G)} (f(d_u^+) + f(d_u^-)) = H_f(D). \end{split}$$

Example 2. Consider the function $f(x) = x^2$ defined in the interval $[0, +\infty)$. If D is a digraph then by Proposition 2,

$$H_{x^2}(D) = \frac{1}{2} \sum_{uv \in A(D)} \varphi_{d_u^+, d_v^-},$$

where $\varphi_{x,y} = \frac{x^2}{x} + \frac{y^2}{y} = x + y$. In other words,

$$H_{x^2}(D) = \frac{1}{2} \sum_{uv \in A(D)} (d_u^+ + d_v^-) = \mathcal{M}_1(D),$$

the first Zagreb index of D. Similarly, the Forgotten index

$$\mathcal{F}(D) = \frac{1}{2} \sum_{uv \in A(D)} [(d_u^+)^2 + (d_v^-)^2]$$

is the vertex-degree function index $H_{x^3}(D)$. In general, for $\alpha \in \mathbb{R}, \alpha \neq 0$, the generalized first Zagreb index

$$M_{\alpha}(D) = \frac{1}{2} \sum_{uv \in A(D)} [(d_u^+)^{\alpha} + (d_v^-)^{\alpha}] = H_{f(x)}(D),$$

where $f(x) = x^{\alpha+1}$ in the interval $[0, +\infty)$. Note that in the case $\alpha < -1$, we define $f(x) = x^{\alpha+1}$ for x > 0, and f(0) = 0.

3. Vertex-degree function index of tournaments

Let T be a tournament on n vertices. Recall that the nondecreasing sequence (s_1, s_2, \ldots, s_n) of outdegrees of the vertices of T is called the score vector of T.

Theorem 1. (Landau [3]) A nondecreasing sequence of integers (s_1, s_2, \ldots, s_n) is a score vector of a tournament on n vertices, if and only if,

$$\sum_{i=1}^k s_i \geq \frac{k(k-1)}{2} \qquad \text{for all } 1 \leq k \leq n$$

with equality for k = n.

Let $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$ two *n*-tuple of real numbers such that

$$x_1 \ge x_2 \ge \dots \ge x_n$$
 and $y_1 \ge y_2 \ge \dots \ge y_n$. (1)

The *n*-tuple x is said to majorize y, in symbols we write $x \succ y$, if

$$\sum_{i=1}^{k} x_i \ge \sum_{i=1}^{k} y_i \quad \text{for all } 1 \le k \le n,$$

with equality for k = n.

Let $I \subseteq \mathbb{R}$ be an interval. Recall that a function $f: I \to \mathbb{R}$ is convex if

$$f((1-\lambda)a + \lambda b) \le (1-\lambda)f(a) + \lambda f(b), \tag{2}$$

for all $a, b \in I$ and all $\lambda \in [0, 1]$.

Theorem 2. (Hardy, Littlewood, Pólya [2]) Let x and y be two n-tuples of real numbers as in (1), whose entries belong to an interval I. The following statements are equivalent:

- 1. $x \succ y$;
- 2. The inequality

$$\sum_{i=1}^{n} f(x_i) \ge \sum_{i=1}^{n} f(y_i)$$

holds for every continuous convex function $f: I \to \mathbb{R}$.

Now we can study the extremal value problem of H_f over the set of all tournaments with n vertices.

Theorem 3. Let f be a continuous and convex real function on $[0, +\infty)$ and let T be a tournament on n vertices. Then

$$H_f(T) \le \sum_{i=1}^n f(n-i)$$

Equality occurs if T is the transitive tournament with score vector (0, 1, 2, ..., n-1).

Proof. Let (s_1, \ldots, s_n) be the score vector of T. Clearly,

$$0 \le s_1 \le s_2 \le \dots \le s_n \le n-1.$$

Define $t_j = s_{n-j+1}$, for all j = 1, ..., n. Then $t_1 \ge t_2 \ge \cdots \ge t_n$ and (t_1, \ldots, t_n) is the nonincreasing sequence score vector of T. We are going to show that

$$(n-1, n-2, \dots, 1, 0) \succ (t_1, \dots, t_n).$$
 (3)

First note that by Theorem 1,

$$\sum_{i=1}^{n} t_i = \sum_{i=1}^{n} s_i = \frac{n(n-1)}{2} = \sum_{i=1}^{n} (n-i).$$

Again, by Theorem 1, for every $1 \le k \le n$,

$$\sum_{i=1}^{n-k} s_i \ge \frac{(n-k)(n-k-1)}{2} \tag{4}$$

and so

$$\sum_{i=1}^{k} t_i = \sum_{i=1}^{k} s_{n-i+1} = \frac{n(n-1)}{2} - \sum_{i=1}^{n-k} s_i \le \frac{n(n-1)}{2} - \frac{(n-k)(n-k-1)}{2} = \sum_{i=1}^{k} (n-i).$$

Hence (3) holds. Also,

$$(n-1, n-2, \dots, 1, 0) \succ (n-1-s_1, n-1-s_2, \dots, n-1-s_n).$$
 (5)

In fact,

$$\sum_{i=1}^{n} (n-1-s_i) = n(n-1) - \frac{n(n-1)}{2} = \frac{n(n-1)}{2} = \sum_{i=1}^{n} (n-i),$$

and for $1 \le k \le n-1$, bearing in mind that

$$\sum_{i=1}^k s_i \ge \frac{k(k-1)}{2}$$

it follows that

$$\sum_{i=1}^{k} (n-1-s_i) = k(n-1) - \sum_{i=1}^{k} s_i \le k(n-1) - \frac{k(k-1)}{2} = \sum_{i=1}^{k} (n-i).$$

Therefore, (5) holds.

Now, since f is a continuous and convex real function on $[0, +\infty)$, and t_i , $n-1-s_i$, and n-i belong to the interval $[0, +\infty)$ for all i = 1, ..., n, we deduce from Theorem 2 that

$$\sum_{i=1}^{n} f(s_i) = \sum_{i=1}^{n} f(t_i) \le \sum_{i=1}^{n} f(n-i),$$

and

$$\sum_{i=1}^{n} f(n-1-s_i) \le \sum_{i=1}^{n} f(n-i).$$

Finally,

$$H_f(T) = \frac{1}{2} \sum_{i=1}^n [f(s_i) + f(n-1-s_i)] = \frac{1}{2} \sum_{i=1}^n f(s_i) + \frac{1}{2} \sum_{i=1}^n f(n-1-s_i)$$

$$\leq \frac{1}{2} \sum_{i=1}^n f(n-i) + \frac{1}{2} \sum_{i=1}^n f(n-i) = \sum_{i=1}^n f(n-i).$$

For the last statement, assume that U is the transitive tournament with score vector $(0, 1, 2, \ldots, n-1)$. Then,

$$H_f(U) = \frac{1}{2}[f(0) + f(n-1) + f(1) + f(n-2) + \dots + f(n-2) + f(1) + f(n-1) + f(0)] = \sum_{i=1}^n f(n-i) + f(n-1) + f(n-$$

Next we will show that the regular or semiregular tournaments attain the minimal value of H_f .

Theorem 4. Let f be a continuous and convex real function on $[0, +\infty)$ and let T be a tournament on n vertices. Then,

- 1. $H_f(T) \ge nf\left(\frac{n-1}{2}\right)$ if *n* is odd. Equality occurs in any regular tournament with score vector $\left(\frac{n-1}{2}, \frac{n-1}{2}, \dots, \frac{n-1}{2}\right)$.
- 2. $H_f(T) \ge \frac{n}{2} [f(\frac{n}{2}-1) + f(\frac{n}{2})]$ if *n* is even. Equality occurs in any semiregular tournament with score vector $(\frac{n}{2}-1,\ldots,\frac{n}{2}-1,\frac{n}{2},\ldots,\frac{n}{2})$.

Proof. Let (s_1, \ldots, s_n) be the score vector of T. We know that

$$0 \le s_1 \le s_2 \le \dots \le s_n \le n-1,$$

and so s_i and $n-1-s_i$ belong to the interval $[0, +\infty)$, for all $i = 1, \ldots, n$.

1. Let us assume first that n is odd. Since f is convex then by (2),

$$\frac{1}{2}f(s_i) + \frac{1}{2}f(n-1-s_i) \ge f\left(\frac{1}{2}s_i + \frac{1}{2}(n-1-s_i)\right) = f\left(\frac{n-1}{2}\right),\tag{6}$$

for all i = 1, ..., n. It follows from (6) that

$$H_f(T) = \frac{1}{2} \sum_{i=1}^n \left[f(s_i) + f(n-1-s_i) \right] \ge \sum_{i=1}^n f\left(\frac{n-1}{2}\right) = nf\left(\frac{n-1}{2}\right).$$

Next we see that equality occurs in regular tournaments. Assume that R is a regular tournament with score vector $(\frac{n-1}{2}, \frac{n-1}{2}, \dots, \frac{n-1}{2})$. Clearly,

$$H_f(R) = \frac{1}{2} \left[f\left(\frac{n-1}{2}\right) + f\left(n-1-\frac{n-1}{2}\right) + \dots + f\left(\frac{n-1}{2}\right) + f\left(n-1-\frac{n-1}{2}\right) \right] \\ = \frac{1}{2} 2n f\left(\frac{n-1}{2}\right) = n f\left(\frac{n-1}{2}\right).$$

2. Now assume that n is even. If $s_i \leq \frac{n}{2} - 1$, then $n - 1 - s_i \geq \frac{n}{2} > \frac{n}{2} - 1 \geq s_i$. Let $y = (\frac{n}{2}, \frac{n}{2} - 1)$ and $x = (n - 1 - s_i, s_i)$. Clearly $x \succ y$, so by Theorem 2,

$$f(n-1-s_i) + f(s_i) \ge f\left(\frac{n}{2}\right) + f\left(\frac{n}{2}-1\right)$$

If $s_i \geq \frac{n}{2}$, then $n-1-s_i \leq \frac{n}{2}-1 < \frac{n}{2} \leq s_i$. Let $y = (\frac{n}{2}, \frac{n}{2}-1)$ and $x = (s_i, n-1-s_i)$. Clearly $x \succ y$, so again by Theorem 2,

$$f(s_i) + f(n-1-s_i) \ge f\left(\frac{n}{2}\right) + f\left(\frac{n}{2}-1\right)$$

Then, for all $i = 1, \ldots, n$,

$$H_f(T) = \frac{1}{2} \sum_{i=1}^n [f(s_i) + f(n-1-s_i)] \ge \frac{n}{2} \left[f\left(\frac{n}{2} - 1\right) + f\left(\frac{n}{2}\right) \right]$$

If n is even, the score vector of a semiregular tournament S with n vertices is

$$\left(\underbrace{\frac{n}{2}-1,\ldots,\frac{n}{2}-1}_{\frac{n}{2}},\underbrace{\frac{n}{2},\ldots,\frac{n}{2}}_{\frac{n}{2}}\right).$$

Hence,

$$\begin{aligned} H_f(S) &= \frac{1}{2} \sum_{i=1}^{\frac{n}{2}} \left[f\left(\frac{n}{2} - 1\right) + f\left(\frac{n}{2}\right) \right] + \frac{1}{2} \sum_{i=\frac{n}{2}+1}^{n} \left[f\left(\frac{n}{2}\right) + f\left(\frac{n}{2} - 1\right) \right] \\ &= \frac{n}{2} \left[f\left(\frac{n}{2} - 1\right) + f\left(\frac{n}{2}\right) \right]. \end{aligned}$$

Example 3. Let α be a positive real number. Consider the VDB topological index

$$M_{\alpha}(D) = \frac{1}{2} \sum_{uv \in A(D)} ((d_u^+)^{\alpha} + (d_v^-)^{\alpha}).$$

Among all tournaments with n vertices, M_{α} attains its maximal value in the transitive tournament on n vertices, and its minimal value in a regular tournament (if n is odd) or in a semiregular tournament (if n is even). Indeed, apply Theorems 3 and 4 to the continuous and convex function $f:[0,+\infty) \to \mathbb{R}$ defined by $f(x) = x^{\alpha+1}$.

In particular, among all tournaments with a fixed number of vertices, the extremal value problem of the first Zagreb index \mathcal{M}_1 ($\alpha = 1$) and the Forgotten index $\mathcal{F} = \mathcal{M}_2$ are solved.

Dually, we can easily deduce similar results for continuous and concave real functions $g: [0, +\infty) \to \mathbb{R}$, by reversing the inequalities in Theorems 3 and 4.

Example 4. Let $\alpha \in (-1,0)$. Then $\alpha + 1 \in (0,1)$ and so the function $g(x) = x^{\alpha+1}$ is a continuous and concave function on $[0, +\infty)$ which satisfies g(0) = 0. Then, among all tournaments on n vertices, the vertex degree function index (and VDB topological index)

$$H_g(T) = \frac{1}{2} \sum_{uv \in A(T)} ((d_u^+)^{\alpha} + (d_v^-)^{\alpha})$$

attains its minimal value in the transitive tournament on n vertices, and the maximal value is reached in a regular or a semiregular tournament, depending on the parity of n.

 \square

4. Acknowledgments

This work has been partially supported by Junta de Andalucía, FEDER-UPO Research and Development Call, reference number UPO-1263769 and Plan Propio de la Universidad Pablo de Olavide.

Conflict of interest. The authors declare that they have no conflict of interest.

Data Availability. Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

 I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total φelectron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972), no. 4, 535–538

https://doi.org/10.1016/0009-2614(72)85099-1.

- [2] G.H. Hardy, Some simple inequalities satisfied by convex functions, Messenger Math. 58 (1929), 145–152.
- H.G. Landau, On dominance relations and the structure of animal societies: III The condition for a score structure, Bull. Math. Biophys. 15 (1953), 143–148 https://doi.org/10.1007/BF02476378.
- [4] X. Li and D. Peng, Extremal problems for graphical function-indices and fweighted adjacency matrix, Discrete Math. Lett. 9 (2022), 57–66 https://doi.org/10.47443/dml.2021.s210.
- [5] X. Li and J. Zheng, A unified approach to the extremal trees for different indices, MATCH Commun. Math. Comput. Chem. 54 (2005), no. 1, 195–208.
- [6] N. Linial and E. Rozenman, An extremal problem on degree sequences of graphs, Graphs Combin. 18 (2002), 573–582 https://doi.org/10.1007/s003730200041.
- J. Monsalve and J. Rada, Sharp upper and lower bounds of VDB topological indices of digraphs, Symmetry 13 (2021), no. 10, Article ID: 1903 https://doi.org/10.3390/sym13101903.
- [8] _____, Vertex-degree based topological indices of digraphs, Discrete Appl. Math. 295 (2021), 13–24

https://doi.org/10.1016/j.dam.2021.02.024.

- [9] I. Tomescu, Properties of connected (n,m)-graphs extremal relatively to vertex degree function index for convex functions, MATCH Commun. Math. Comput. Chem. 85 (2021), no. 2, 285–294.
- [10] _____, Extremal vertex-degree function index for trees and unicyclic graphs with given independence number, Discrete Appl. Math. 306 (2022), 83–88 https://doi.org/10.1016/j.dam.2021.09.028.

[11] _____, Graphs with given cyclomatic number extremal relatively to vertex degree function index for convex functions, MATCH Commun. Math. Comput. Chem. 87 (2022), no. 1, 109–114.