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Abstract: The injective chromatic number χi(G) of a graph G is the smallest number of colors
required to color the vertices of G such that any two vertices with a common neighbor are assigned
distinct colors. The Mycielskian or Mycielski graph µ(G) of a graph G, introduced by Jan Mycielski
in 1955 has the property that, these graphs have large chromatic number with small clique num-
ber. The generalized Mycielskian µm(G),m > 0 (also known as cones over graphs) are the natural
generalizations of the Mycielski graphs. In this paper, sharp bounds are obtained for the injective
chromatic number of generalized Mycielskian of any graph G. Further, the injective chromatic num-
ber of generalized Mycielskian of some special classes of graphs such as paths, cycles, complete
graphs, and complete bipartite graphs are obtained.
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1. Introduction

All graphs considered in this paper are simple, finite, and undirected. The vertex set and edge
set are indicated as V(G) and E(G). Also the maximum degree, clique number of a graph,
and neighborhood set of a vertex u ∈ V(G) are denoted by respectively ∆(G), ω(G) and N(u).
For further graph-theoretic notations and terminologies refer [7] and [21].

The concept of the injective coloring of a graph is introduced by Hahn et al. [6] in 2002
and hence injective chromatic number. An injective coloring of a graph is a coloring of the
vertices, that assigns different colors to pair of vertices that have a common neighbor. The
least number of colors required for attaining an injective coloring for a graph G is called the
injective chromatic number, χi(G) of a graph G. In [6], the authors suggested the bounds in
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2 Injective coloring of generalized Mycielskian of graphs

the case of injective chromatic number in general and computed χi(Qn), where Qn represents
the hypercubes. The authors routed, χi(Qn) to the context of error correcting codes also.
Further, it is also known that finding the injective k-coloring for a given graph is NP-complete.
Later, for a chordal graph G, Hell et al. [8], determined χi(G) with few conditions. The
authors also designed a polynomial time algorithm that will compute the injective coloring
for a given chordal graph. Nevertheless, the authors extended their study about the injective
coloring of split graphs also. In 2021 the injective coloring of chordal graphs is also well
studied in [17]. Further, in 2013, A. Kishore and Sunitha [10] introduced the concept of
injective chromatic sum and injective chromatic polynomial and discussed that in detail in
[11]. Later in 2015, for join, union, direct product, Cartesian product, graph composition,
and disjunction of graphs, Song and Yue [18] computed sharp bounds (or the exact values)
for the injective chromatic number.
Kim et al. [9], in 2009 showed that, for a graph G, χi(G) ≥ 1

2χ(G2), where G2 is the square
of G and χ(G) represents the chromatic number of G. Later the injective coloring of planar
graphs were well studied in [1–4, 14].

In 1955, Jan Mycielski [15], defined the Mycielskian or Mycielski graph µ(G) of a graph
G. If a graph G is triangle free, by the construction, its Mycielskian is also, and it is a larger
graph than G itself. The graph µ(G) of a graph G with vertex set {u1, u2, . . . , un} is a graph
obtained from G by adding n + 1 new vertices {v1, v2, . . . , vn,w}, joining w to each vertex
vi(1 ≤ i ≤ n) and joining vi to each neighbor of ui in G. The circular chromatic number,
star chromatic number, fractional chromatic number of Mycielski graphs are well studied in
[5, 12, 13, 20].
The generalized Mycielskian (also known as cones over graphs) are the natural generalization
of the Mycielski graphs [19] which preserves some nice properties of a good interconnection
network. Let G be a graph with vertex set V0 = {v0

1, v
0
2, . . . , v

0
n} and edge set E0. Given

an integer m ≥ 1 the m-Mycielskian of G, denoted by µm(G), is the graph with vertex set
V0 ∪ V1 ∪ V2 ∪ · · · ∪ Vm ∪ {w}, where V i = {vi

j | v0
j ∈ V0} is the ith distinct copy of V0 for

i = 1, 2, . . . ,m, and edge set E0 ∪

(
m−1⋃
i=0
{vi

jv
i+1
j′ | v

0
jv

0
j′ ∈ E0}

)
∪ {vm

j w | vm
j ∈ Vm}. It is clear that

the so-called Mycielskian of a graph G is simply µ1(G). Also note that the m-Mycielskian
graph µm(G) of G contains G itself as a subgraph.
The Mycielskian of a graph retains a small clique number, while its chromatic number grows,
as shown in [21]. In this paper we prove that this is also true for the injective chromatic num-
ber of generalized Mycielskians in the case of paths (Theorem 1), cycles (Theorem 3), com-
plete bipartite graphs (Theorem 4) and stars (Corollary 2). We also determine the injective
chromatic number of the generalized Mycielskian of complete graphs (Theorem 2).

2. Injective chromatic number of generalized Mycielskian of certain
graphs

In this section we compute the injective chromatic number of paths, complete graphs, cycles,
complete bipartite graphs and stars. Except for the second family all these graphs have small
clique number and large injective chromatic number. Additionally, we derive precise upper
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Figure 1. µ3(P3). Figure 2. Planar embedding of µ3(P3).

and lower bounds for the injective chromatic number of generalized Mycielskian graphs. In
Proposition 1 we quote some results from [6] that will be used throughout the paper.

Proposition 1. [6] Let Pn(Cn) be a path (cycle) of length n and G be a connected graph with
maximum degree ∆(G). Then

i. χi(Pn) =

1 for n = 1, 2
2 otherwise

ii. χi(Cn) =

2 for n ≡ 0 mod 4
3 otherwise

iii. χi(G) ≥ ∆(G)

iv. Let G be an arbitrary graph of order at least four. Then, χi(G) = |V(G)| if and only if either G is
a complete graph, or G has diameter 2 and every edge of G is contained in a triangle.

v. Let H be a subgraph of a graph G, then χi(H) ≤ χi(G).

Now let G be a graph with n vertices. By definition of generalized Mycielskian graphs,
∆(µm(G)) = max{2∆(G), n}. Thus we have the following:

Corollary 1. For each integer m ≥ 1 and a graph G with |V(G)| = n, the m−Mycielskian of G
satisfies χi(µm(G)) ≥ max{2∆, n}.

The Corollary 1 gives a sharp bound for χi(µm(G)), for any graph G. In the next theorem the
injective chromatic number of generalized Mycielskian of a path Pn for any n is obtained.
Here χi(µm(Pn)) is obtained as n or n + 1, but the clique number is just two. Figure 1 displays
the graph µ3(P3), while its planar embedding is illustrated in Figure 2. The injective coloring
of µm(P3) is then presented in its planar embedding.

Theorem 1. For n > 1, the injective chromatic number of m-Mycielskian of a path Pn on n vertices

is, χi(µm(Pn)) =

n + 1 for n = 2, 3, 4
n otherwise.
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Proof. Let the vertices of Pn be V0 = {v0
i | 1 ≤ i ≤ n} and the vertices of µm(Pn) be

m⋃
j=0

V j ∪ {w}, where V j = {v j
i | 1 ≤ i ≤ n}.

Case 1. n = 2.
By the construction of m-Mycielskian, it is clear that µm(P2) = C2m+3, an odd cycle of length
2m + 3. Then by Proposition 1(ii), the result follows.

Case 2. n = 3.
Since ∆(µm(P3)) = 4, and by Proposition 1(iii), χi(µm(P3)) ≥ 4. Now providing an injective
coloring using 4 colors shows that χi(µm(P3)) = 4. The coloring is shown in Figure 3 and
Figure 4.

Figure 3. Injective 4-coloring of µm(P3) when m is odd

Repeating the same coloring as that of the subgraph in the rectangle for the similar subgraphs
with six vertices appearing in Figure 3 and the last vertex is colored with the color Green
provides an injective coloring of µm(P3) for m− odd.

Figure 4. Injective 4-coloring of µm(P3) when m is even

Similarly, repeating the same coloring as that of the subgraph in the rectangle for the similar
subgraphs with six vertices appearing in Figure 4 and the last vertex is colored with the color
Yellow provides an injective coloring of µm(P3) for m− even.

Case 3. n = 4.

Coloring of the vertices in Vm: The vertex w is a common neighbor for the vertices in
Vm. Thus the vertices in Vm are colored with four distinct colors. Let j be the color of vm

j ,
1 ≤ j ≤ m.

Coloring the vertices in Vm−2k for m−2k , 0, 1: Since vm
1 −vm−1

2 −vm−2
1 and vm

1 −vm−1
2 −vm−2

3
are paths of length 2 and the vertex vm

1 is of Color 1 then Color 1 cannot be assigned to the
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vertices vm−2
1 and vm−2

3 . Now the remaining vertices in Vm−2 are vm−2
2 and vm−2

4 . Also vm−1
3

is a common neighbor for these vertices. Therefore the vertices vm−2
2 and vm−2

4 are assigned
distinct colors. Thus Color 1 is assigned to exactly one vertex in Vm−2, let it be vm−2

2 .
Now vm

2 − vm−1
3 − vm−2

2 and vm
2 − vm−1

3 − vm−2
4 are paths of length 2 and the vertex vm

2 is of Color
2. Thus Color 2 cannot be given to the vertices vm−2

2 and vm−2
4 . Now the remaining vertices

in Vm−2 are vm−2
1 and vm−2

3 . Also vm−1
2 is a common neighbor for these vertices. Therefore the

vertices vm−2
1 and vm−2

3 are assigned distinct colors. Thus Color 2 is assigned to exactly one
vertex in Vm−2, let it be vm−2

3 . With the similar arguments, Color 3 and Color 4 are assigned
to exactly one vertex of Vm−2. Let Color 3 and Color 4 be assigned to the vertices vm−2

4 and
vm−2

1 respectively. Thus the vertices in Vm−2 are assigned distinct colors. That is the vertices
vm−2

1 , vm−2
2 , vm−2

3 and vm−2
4 are colored with Color 4,1,2 and 3.

As Vm−2 are colored with distinct colors and the vertices in Vm−4 have common neighbors
with the vertices in Vm−2, with similar arguments by considering the vertices in Vm−2 and
Vm−4, the vertices in Vm−4 are assigned distinct colors. Continuing like this, the vertices in
Vm−2k for some k are colored with distinct colors as the vertices in Vm−2(k−1) are colored with
distinct colors.

Coloring the vertices in Vm−1 and the vertex w: Two vertices vm−1
1 and vm−1

3 in Vm−1 have
common neighbor vm

2 . Therefore at least two colors are needed to color the vertices in Vm−1.
Also all the vertices in Vm−1 have a common neighbor in Vm with vertex w. Thus no colors
of the vertices in Vm−1 can be given to the vertex w.

• Possibility 1: Coloring the vertices in Vm−1 with two different colors.
The vertices vm−1

1 and vm−1
3 have common neighbor vm

2 and the vertices vm−1
2 and vm−1

4
have common neighbor vm

3 . Now the coloring of vertices be:

– The vertices vm−1
1 and vm−1

2 are of Color 1 and vm−1
3 and vm−1

4 are of Color 2. Or
– The vertices vm−1

1 and vm−1
4 are of Color 1 and vm−1

2 and vm−1
3 are of Color 2.

In this case vertex w need to be colored with color 3.
• Possibility 2: Coloring the vertices in Vm−1 with three different colors.

– The vertices vm−1
1 , vm−1

2 , vm−1
3 , and vm−1

4 are colored with Color 1,1,2 and 3 respec-
tively. Or

– The vertices vm−1
1 , vm−1

2 , vm−1
3 , and vm−1

4 are colored with Color 2,1,1 and 3 respec-
tively.

Any other 3 coloring is similar to this by reversing the order of coloring. In this case
the vertex w need to be colored with color 4.
• Possibility 3: Coloring the vertices in Vm−1 with four different colors.

In this case vertex w need to be colored with color 5.

Thus when we use Possibility 3, five distinct colors are already needed for an injective color-
ing of µm(P4). Therefore we do not continue the coloring for Possibility 3, and try with the
other two possibilities to use less colors.

Coloring the vertices in Vm−3: Coloring the vertices in Vm−3 corresponding to each of the
above possibilities:
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• Possibility 1: vm−3
1 −vm−2

2 −vm−1
1 , vm−3

2 −vm−2
1 −vm−1

2 , vm−3
3 −vm−2

2 −vm−1
1 and vm−3

4 −vm−2
3 −

vm−1
2 are paths of length 2 and the vertices vm−1

1 and vm−1
2 are of Color 1. Thus no vertices

in Vm−3 can be colored with Color 1. Similarly, vm−3
1 − vm−2

2 − vm−1
3 , vm−3

2 − vm−2
3 − vm−1

4 ,
vm−3

3 − vm−2
2 − vm−1

3 and vm−3
4 − vm−2

3 − vm−1
4 are paths of length 2 and the vertices vm−1

3
and vm−1

4 are of Color 2. Thus no vertices in Vm−3 can be colored with Color 2. Thus
the color that is used twice in Vm−1 cannot be used for the vertices in Vm−3. This is true
for both colorings given in Possibility 1. Now the remaining colors are used to color
the vertices in Vm−3, as follows:

– The vertices vm−3
1 , vm−3

2 , vm−13
3 , and vm−13

4 are colored with Color 3,3,4 and 4 re-
spectively. Or

– The vertices vm−3
1 , vm−3

2 , vm−3
3 , and vm−3

4 are colored with Color 3,4,4 and 3 respec-
tively.

• Possibility 2: The color used twice in Vm−1 cannot be given to any vertex in Vm−3 and
a color used once can be given to exactly one vertex in Vm−3. Thus Color 2 and Color 3
are used once and Color 4 is used twice to color the vertices in Vm−3. Let the coloring
be:

– The vertices vm−3
1 , vm−3

2 , vm−13
3 , and vm−13

4 are colored with Color 4,4,3 and 2 re-
spectively. Or

– The vertices vm−3
1 , vm−3

2 , vm−13
3 , and vm−13

4 are colored with Color 3,4,4 and 2 re-
spectively.

Colors of the vertices in Vm−3 depends on the coloring of the vertices in Vm−1. Sim-
ilarly colors of the vertices in Vm−l for an odd l depends on the colors of the ver-
tices in Vm−(l−2) and Vm−(l+2). As the coloring is chosen for the vertices in the order
Vm,Vm−2,Vm−4, · · · ,Vm−1,Vm−3, · · · , clearly the coloring of the vertices in Vm−l depends on
the colors of the vertices in Vm−(l−2).
Coloring the vertices in Vm−l, where l is odd, m − l , 0, 1 and l , 1, 3: Continue the
coloring in the similar way as done for Vm−1 and Vm−3.

Coloring the vertices in V0 and V1 together:
Case i. m is even.
Then 0 = m − 2k for some k, the vertices in V0 are colored with four different colors. The
vertices in V2 also colored with four different colors. Say, the vertices v2

1, v2
2, v2

3 and v2
4 are

colored with Color 4, 1, 2 and 3 respectively. Then the vertices v0
1, v0

2, v0
3 and v0

4 are colored
with Color 1, 2, 3 and 4 respectively (if m ≡ 0 mod 4). (Similarly the vertices v2

1, v2
2, v2

3
and v2

4 are colored with Color 1, 2, 3 and 4 respectively and the vertices v0
1, v0

2, v0
3 and v0

4
are colored with Color 4, 1, 2 and 3 respectively (if m ≡ 2 mod 4)). Now there are two
possibilities for the coloring the vertices in V3.

• The vertices in V3 are colored with two different colors.
Let the vertices v3

1, v
3
2, v

3
3 and v3

4 are colored with Color 1,1,2 and 2 respectively or
v3

1, v
3
2, v

3
3 and v3

4 are colored with Color 1,2,2 and 1 respectively (if m ≡ 0 mod 4). The
colors that are used in V3 cannot be assigned to the vertices in V1, since each color
is used twice in V3. Also, in both cases for the vertices v1

1 and v1
3, v1

1 − v0
2 − v0

3 and
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v1
3− v0

2− v0
3 be paths of length 2 and the vertex v0

3 is of Color 3. Thus the vertices v1
1 and

v1
3 cannot be assigned Color 3. Now the vertex v0

2 is a common neighbor for the vertices
v1

1 and v1
3. Therefore the vertices v1

1 and v1
3 are colored with distinct colors. Thus one of

the vertex is assigned Color 4 and other with Color 5. Thus the coloring of the vertices
in V1 is as follows. The vertices v1

1, v
1
2, v

1
3 and v1

4 are colored with Color 4,3,5 and 5
respectively. (Similarly, if the vertices v3

1, v
3
2, v

3
3 and v3

4 are colored with Color 3,3,4 and
4 respectively or Color 3,4,4 and 3 respectively (if m ≡ 2 mod 4), then the vertices
v1

1, v
1
2, v

1
3 and v1

4 are colored with Color 1,2,5 and 5 respectively)
• The vertices in V3 are colored with three different colors.

The vertices v3
1, v3

2, v3
3 and v3

4 are colored with Color 1,1,2 and 3 respectively (if m ≡ 0
mod 4). Consider the vertex v1

2. Since v1
2 − v2

1 − v3
2, v1

2 − v0
1 − v0

2, v1
2 − v2

3 − v3
4 and

v1
2 − v0

3 − v0
4 are paths of length 2. Also the vertices v3

2, v0
2, v3

4 and v0
4 are of Color

1,2,3 and 4 respectively. Thus the vertex v1
2 is assigned Color 5. Also v1

4 − v2
1 − v3

2,
v1

4 − v0
1 − v0

2, v1
4 − v2

3 − v3
4, v1

4 − v0
3 − v0

4 and v1
4 − v0

3 − v1
2 are paths of length 2 and the

vertices v3
2, v0

2, v3
4, v

0
4 and v1

2 are of Color 1,2,3,4 and 5 respectively shows that the
vertex v1

4 is colored with Color 6. Hence the vertices v1
1, v

1
2, v

1
3 and v1

4 are colored with
Color 4,5,5 and 6 respectively. (Similarly, if the vertices v3

1, v
3
2, v

3
3 and v3

4 are colored
with Color 4,4,3 and 2 respectively (if m ≡ 2 mod 4), then the vertices v1

1, v
1
2, v

1
3 and

v1
4 are colored with Color 1,5,5 and 6 respectively). Therefore this possibility needs six

distinct colors for an injective coloring.

Case ii. m is odd.
Then 1 = m − 2k for some k, the vertices in V1 are colored with four different colors. The
vertices in V3 also colored with four different colors. The coloring is as follows. The vertices
v1

1, v1
2, v1

3 and v1
4 are colored with Color 1, 2, 3 and 4 respectively. Also the vertices v3

1, v3
2, v3

3
and v3

4 are colored with Color 4, 1, 2 and 3 respectively. Now there are two possibilities for
the coloring of V2.

• The vertices in V2 are colored with two different colors.
Let the coloring of vertices in V2 be v2

1, v
2
2, v

2
3 and v2

4 be colored with Color 1,1,2 and 2
respectively or v2

1, v
2
2, v

2
3 and v2

4 be colored with Color 1,2,2 and 1 respectively (if m ≡ 3
mod 4). The colors that are used in V2 cannot be assigned to the vertices in V0, since
each color is used twice in V2. Thus Color 1 and Color 2 cannot be assigned to the
vertices in V0. In both cases for the vertices v0

2 and v0
4, v0

2 − v0
3 − v1

4 and v0
4 − v0

3 − v1
4 are

paths of length 2 and the vertex v1
4 is of Color 3. Thus the vertices v0

2 and v0
4 cannot be

assigned Color 3. Also the vertex v0
3 is a common neighbor for the vertices v0

2 and v0
4.

Thus one of the vertex is assigned Color 4 and other with Color 5. Thus the vertices
v0

1, v
0
2, v

0
3 and v0

4 be colored with Color 3,4,5 and 5 respectively. (Similarly, if the ver-
tices v2

1, v
2
2, v

2
3 and v2

4 are colored with Color 3,3,4 and 4 respectively (if m ≡ 1 mod 4),
then the vertices v0

1, v
0
2, v

0
3 and v0

4 are colored with Color 2,1,5 and 5 respectively).
• The vertices in V2 are colored with three different colors.

The vertices v2
1, v2

2, v2
3 and v2

4 are colored with Color 1,1,2 and 3 respectively (if m ≡ 3
mod 4). With the similar arguments, it is clear that one of the vertex in V0 is colored
with Color 5. Thus the vertices v0

1, v
0
2, v

0
3 and v0

4 are colored with Color 3,2,5 and 4
respectively. (Similarly, if the vertices v2

1, v2
2, v2

3 and v2
4 are colored with Color 4,4,3
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and 2 respectively (if m ≡ 1 mod 4), then the vertices v0
1, v

0
2, v

0
3 and v0

4 are colored with
Color 2,1,5 and 3 respectively.)

In any case, five different colors are necessary for an injective coloring of µm(P4). A five
coloring of µm(P4) for m = 3, 4, 5, 6 is illustrated in Figure 5.

Case 4. n > 4.
For the vertices vm

i , 1 ≤ i ≤ n, the vertex w is a common adjacent vertex. Then a total of n
different colors are required for coloring the vertices vm

i , 1 ≤ i ≤ n. Therefore χi(µm(Pn)) ≥ n.
Now providing an injective coloring with n colors shows that χi(µm(Pn)) = n. The coloring
is as follows.

• For m ≡ 0 mod 4 or m = 2

– for j = m, allot the vertices v j
k with Color k, 1 ≤ k ≤ n.

– for j = m − 1, allot the vertices v j
k with Color k for 1 ≤ k ≤ n − 1 and allot the

vertex v j
n with Color 1.

• For m ≡ 1 mod 4 and m , 1

– for j = m, allot the vertex v j
1 with Color n and allot the vertices v j

k with the Color
k − 1 for 2 ≤ k ≤ n and .

– for j = m − 1, color the vertices v j
k with Color k for 1 ≤ k ≤ n − 1 and allot the

vertex v j
n with the Color 1.

• For m ≡ 2 mod 4 and m , 2

– for j = m, allot the vertex v j
1 with Color n and allot the vertices v j

k with the Color
k − 1 for 2 ≤ k ≤ n and .

– for j = m − 1, allot the vertex v j
1 with Color n − 1, color the vertices v j

k with the
Color k − 1 for 1 ≤ k ≤ n − 1 and allot the vertex v j

n with the Color 1.

• For m ≡ 3 mod 4 or m = 1

– for j = m, allot the vertices v j
k with the Color k, 1 ≤ k ≤ n.

– for j = m − 1, allot the vertex v j
1 with the Color n − 1, allot the vertex v j

k with the
Color k − 1 for 2 ≤ k ≤ n − 1 and allot the vertex v j

n with the Color 1.

Next, color the remaining vertices as follows.

• For j ≡ 0, 3 mod 4 and j , m,m−1, color the vertices v j
i with the Color i for 1 ≤ i ≤ n.

Except for m = 2 color the vertices v0
1 with Color n and v0

i with the Color i − 1 for
1 ≤ i ≤ n.
• For j ≡ 1, 2 mod 4 and j , m,m − 1, color the vertices v j

1 with the Color n and v j
i with

the Color i − 1 for 1 ≤ i ≤ n.
• Color the vertex w with Color n.

�

The following theorem, determines χi(µm(Kn)), for all n > 2.
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Figure 5. Injective 5-coloring of µ3(P4), µ4(P4), µ5(P4) and µ6(P4)

Theorem 2. For n > 2, the injective chromatic number of m−Mycielskian of Kn on n vertices is,
χi(µm(Kn)) = 2n.

Proof. Let V0 = {v0
i , 1 ≤ i ≤ n} be the vertices of Kn and let

m⋃
j=0

V j ∪ {w} be the vertices

of µm(Kn), where V j = {v j
i , 1 ≤ i ≤ n}. Consider the subgraph H induced by the vertices in

V0 ∪ V1, H is a graph with diameter 2 and every edge of H is contained in a triangle. Then
by Proposition 1(iv), χi(H) = |V(H)| = 2n. Thus χi(µm(Kn)) ≥ χi(H) = 2n. Now providing
an injective coloring using 2n colors shows that χi(µm(Kn)) = 2n. The coloring is as follows.

• For j ≡ 0, 3 mod 4, allot the vertices v j
k with the Color k, for 1 ≤ k ≤ n.

• For j ≡ 1, 2 mod 4, allot the vertices v j
k with the Color n + k, for 1 ≤ k ≤ n.

• The vertex w is allotted the Color n+1 if m ≡ 0, 1 mod 4 and Color 1 if m ≡ 2, 3 mod 4.

�

Theorem 3. For n > 3 the injective chromatic number of m-Mycielskian of a cycle on n vertices is

χi(µm(Cn)) =

n + 1 for n = 4, 5, 6
n for n ≥ 7.

Proof. Let the vertices of Cn be V0 = {v0
i , 1 ≤ i ≤ n} and the vertices of µm(Cn) be

m⋃
j=0

V j ∪ {w}, where V j = {v j
i , 1 ≤ i ≤ n}. Before moving to the proof see that the vertices

of Cn can be ordered either as v0
1, v

0
2, v

0
3, v

0
4, · · · , v

0
n−1, v

0
n or v0

2, v
0
3, v

0
4, v

0
5, · · · , v

0
n−1, v

0
n, v

0
1 or

v0
3, v

0
4, v

0
5, · · · , v

0
n, v

0
1, v

0
2 etc, that is the starting point and end point does not matter. (ie., the

vertices of C5 can be ordered as v0
1, v

0
2, v

0
3, v

0
4, v

0
5 or v0

2, v
0
3, v

0
4, v

0
5, v

0
1 or v0

3, v
0
4, v

0
5, v

0
1, v

0
1 etc).

Therefore each vertex in V0 have the same properties. Thus in the graph µm(C5), each vertex
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in Vk have the same properties for k = 0, 1, 2, · · · ,m.

Case 1. n = 4, 5, 6.
Consider the following situations.

Subcase i. n = 4.
The graph µm(P4) is a subgraph of µm(C4) and χi(µm(P4)) = 5 from Theorem 1. Hence from
Proposition 1(v), χi(µm(C4)) ≥ 5. Now providing an injective coloring of µm(C4) with 5
colors shows that χi(µm(C4)) = 5. The coloring is as follows.

I) m is even.

• For i = m − k, k ≡ 0, 1 mod 4 and i , 0, color the vertices vi
1, v

i
2, v

i
3 and vi

4 with Color
1,2,3 and 4 respectively.
• For i = m − k, k ≡ 2, 3 mod 4 and i , 0, color the vertices vi

1, v
i
2, v

i
3 and vi

4 with Color
2,3,4 and 1 respectively.
• Color the vertex w with Color 5.

II) m is odd.

• For i = m − k, k ≡ 0 mod 4 and i , 0, color the vertices vi
1, v

i
2, v

i
3 and vi

4 with Color
1,2,3 and 4 respectively.
• For i = m − k, k ≡ 1 mod 4 and i , 0, color the vertices vi

1, v
i
2, v

i
3 and vi

4 with Color
1,1,2 and 2 respectively.
• For i = m − k, k ≡ 2 mod 4 and i , 0, color the vertices vi

1, v
i
2, v

i
3 and vi

4 with Color
4,1,2 and 3 respectively.
• For i = m − k, k ≡ 3 mod 4 and i , 0, color the vertices vi

1, v
i
2, v

i
3 and vi

4 with Color
3,3,4 and 4 respectively.
• Color the vertices v0

1, v
0
2, v

0
3 and v0

4 with

– Color 5,1,2 and 5 respectively if m ≡ 1 mod 4.
– Color 3,4,5 and 5 respectively if m ≡ 3 mod 4.

• Color the vertex w with Color 5.

Subcase ii. n = 5, 6.
First we will prove this for n = 5.

Coloring the vertices in Vm: The vertices in Vm are colored with 5 distinct colors. Since w
is a common neighbor for the vertices in Vm. Let k be the color of vm

k for 1 ≤ k ≤ 5.

Coloring the vertices in Vm−2k, m − 2k , 0, 1: For the vertices in Vm−2, Color 1 cannot be
given to the vertices vm−2

1 , vm−2
3 and vm−2

4 as vm
1 −vm−1

2 −vm−2
1 , vm

1 −vm−1
2 −vm−2

3 and vm
1 −vm−1

4 −vm−2
3

are paths of length 2 and the vertex vm
1 is of Color 1. Now the remaining vertices are vm−2

2
and vm−2

5 . Since vm−1
1 is a common neighbor for these vertices. Thus only one of the vertex

in Vm−2 can be colored with color 1. Similarly Color 2,3,4 and 5 is assigned to exactly one
of the vertex in Vm−2. Thus the vertices in Vm−2 are assigned distinct five colors. Let the
vertices vm−2

1 , vm−2
2 , vm−2

3 , vm−2
4 and vm−2

5 are colored with Color 5,1,2,3 and 4 respectively. As
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the vertices in Vm−2 are assigned five distinct colors, by the similar arguments it is clear that
the vertices in Vm−4 is assigned distinct colors. Continuing like this, it can seen that the
vertices in Vm−2k is assigned distinct colors.
In general

• The vertices vm−2k
1 , vm−2k

2 , vm−2k
3 , vm−2k

4 and vm−2k
5 are colored with Color 1,2,3,4 and 5

respectively for 2k = 0, 4, 8, 12, · · · and m − 2k , 0, 1.
• The vertices vm−2k

1 , vm−2k
2 , vm−2k

3 , vm−2k
4 and vm−2k

5 are colored with Color 5,1,2,3 and 4
respectively for 2k = 2, 6, 10, 14, · · · and m − 2k , 0, 1.

Coloring the vertices in Vm−1 and the vertex w: If one of the vertex say vm−1
1 in Vm−1 is

assigned Color 1, and vm−1
1 − vm

2 − vm−1
3 , vm−1

1 − vm
5 − vm−1

4 are paths of length 2. Then Color
1 cannot be assigned to the vertices vm−1

3 and vm−1
4 . Now the remaining vertices are vm−1

2
and vm−1

5 . The vertex vm
1 is a common neighbor for these vertices. Thus one of the vertex

vm−1
2 and vm−1

5 is assigned Color 1. Let it be vm−1
2 . (If we choose vm−1

5 , it doesn’t matter,
since vm

5 is in left of vm
1 and vm

2 is in right of vm
1 in the order of the vertices.) Thus Color

1 is assigned to two vertices in Vm−1 (they are nearby vertices in the order of the vertices
vm−1

1 , vm−1
2 , vm−1

3 , vm−1
4 , vm−1

5 ). Also it is not possible to color three vertices of Vm−1 with one
color. Now Color 2 is assigned to the vertices vm−1

3 and vm−1
4 and Color 3 is assigned to the

vertex vm−1
5 . Thus at least three colors are needed to color the vertices in Vm−1. Now the

following possibilities provide coloring of vertices in Vm−1 with three, four and five different
colors.

• Possibility 1: Coloring the vertices in Vm−1 with three different colors.
The vertices vm−1

1 , vm−1
2 , vm−1

3 , vm−1
4 and vm−1

5 are colored with Color 1,1,2,2 and 3 re-
spectively. That is, two pairs of nearby vertices (it doesn’t mean they are adjacent, it
means that they are adjacent in the order) in the order are assigned same color and one
vertex in between the pairs is assigned the third color. Any other coloring with three
colors is similar to this. And color the vertex w with Color 4. Thus the coloring is as
follows.

– The vertices vm−1
1 , vm−1

2 , vm−1
3 , vm−1

4 and vm−1
5 are colored with Color 1,1,2,2 and 3

respectively.

• Possibility 2: Coloring the vertices in Vm−1 with four different colors.
The vertices vm−1

1 , vm−1
2 , vm−1

3 , vm−1
4 and vm−1

5 are colored with Color 1,1,2,3 and 4 re-
spectively. As in Possiblity 1 any other coloring with four colors is similar to this. And
color the vertex w with Color 5.
• Possibility 3: Coloring the vertices in Vm−1 with five different colors.

In this case the vertex w is assigned Color 6.

Thus when we use Possibility 3, six distinct colors are needed for an injective coloring of
µm(C5). Therefore we are not continuing the coloring for Possibility 3.

Coloring the vertices in Vm−3 : Coloring the vertices in Vm−3 corresponding to each possi-
bilities from above:
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• Possibility 1: Coloring the vertices in Vm−1 with three different colors.
The vertices vm−1

1 , vm−1
2 , vm−1

3 , vm−1
4 and vm−1

5 are colored with Color 1,1,2,2 and 3 respec-
tively. Then vm−3

1 −vm−2
2 −vm−1

1 , vm−3
2 −vm−2

1 −vm−1
2 , vm−3

3 −vm−2
2 −vm−1

1 , vm−3
4 −vm−2

3 −vm−1
2

and vm−3
5 − vm−2

1 − vm−1
2 are paths of length 2 and the vertices vm−1

1 and vm−1
2 are of Color

1. Thus the vertices vm−3
1 , vm−3

2 , vm−3
3 , vm−3

4 and vm−3
5 cannot be assigned Color 1, i.e.,

the vertices in Vm−3 cannot be assigned Color 1. Thus the color which is used twice
cannot be used to the vertices in Vm−3. Therefore Color 2 also cannot be assigned to
the vertices in Vm−3. Also, any color used once in Vm−1 can be assigned to exactly one
vertex of Vm−3. Thus the coloring is as follows.

– The vertices vm−3
1 , vm−3

2 , vm−3
3 , vm−3

4 and vm−3
5 are colored with Color 3,4,4,5 and 5

respectively.

This is the only possible coloring when the vertices in Vm−1 are colored with three
colors.
• Possibility 2: Coloring the vertices in Vm−1 with four different colors.

The vertices vm−1
1 , vm−1

2 , vm−1
3 , vm−1

4 and vm−1
5 are colored with Color 1,1,2,3 and 4 re-

spectively. Here also the color which is used twice cannot be used to the vertices in
Vm−3 and any color used once can be assigned to exactly one vertex of Vm−3. Thus the
coloring is as follows.

– The vertices in vm−3
1 , vm−3

2 , vm−3
3 , vm−3

4 and vm−3
5 are colored with Color 5,2,3,4 and

5 respectively.

Coloring the vertices in Vm−l, l is odd, m − l , 0, 1 and l , 1, 3: Continue the coloring in
similarly way as done for Vm−1 and Vm−3. The coloring in general is:

• Possibility 1:

– Color the vertices in vm−l
1 , vm−l

2 , vm−l
3 , vm−l

4 and vm−l
5 are colored with Color 1,1,2,2

and 3 respectively for l = 5, 9, 13, 17, · · · .
– Color the vertices in vm−l

1 , vm−l
2 , vm−l

3 , vm−l
4 and vm−l

5 are colored with Color 3,4,4,5
and 5 respectively for l = 7, 11, 15, 19, · · · .

• Possibility 2:

– Color the vertices in vm−l
1 , vm−l

2 , vm−l
3 , vm−l

4 and vm−l
5 are colored with Color 1,1,2,3

and 4 respectively for l = 5, 9, 13, 17, · · · .
– Color the vertices in vm−l

1 , vm−l
2 , vm−l

3 , vm−l
4 and vm−l

5 are colored with Color 5,2,3,4
and 5 respectively for l = 7, 11, 15, 19, · · · .

Coloring the vertices in V0 and V1 together:

Case i. m is even.
Then 0 = m − 2k for some k, the vertices in V0 are colored with five different colors. The
vertices in V2 also colored with five different colors. The coloring is as follows.

– The vertices v2
1, v

2
2, v

2
3, v

2
4 and v2

5 are colored with Color 1,2,3,4 and 5 respectively. (Sim-
ilar arguments will follow when the v2

1, v
2
2, v

2
3, v

2
4 and v2

5 are colored with Color 5,1,2,3
and 4 respectively).
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– the vertices v0
1, v

0
2, v

0
3, v

0
4 and v0

5 are colored with Color 2,3,4,5 and 1 respectively.

Now there are two possibilities for coloring the vertices in V3.

• The vertices in V3 are colored with three different colors. Let the vertices v3
1, v

3
2, v

3
3, v

3
4

and v3
5 are colored with Color 1,1,2,2 and 3 respectively. Here also the color which is

used twice cannot be used to the vertices in V1 and any color used once can be assigned
to exactly one vertex of V1. That is Color 3 is assigned to exactly one vertex in V0.
Now v0

4 − v0
5 − v1

1, v0
4 − v0

3 − v1
2, v0

4 − v0
3 − v1

4 are path of length 2 and the vertex v0
4 is

of Color 4. Now the remaining vertices are v1
3 and v1

5 and they have common neighbor
v0

4. Thus Color 4 is assigned to one of the vertex. Similarly Color 5 is also assigned to
exactly one vertex. Therefore the remaining two vertices are assigned Color 6. Thus
the coloring is as follows.

– The vertices v1
1, v

1
2, v

1
3, v

1
4 and v1

5 are colored with Color 3,4,5,6 and 6 respectively.

• The vertices in V3 are colored with four different colors. Let v3
1, v

3
2, v

3
3, v

3
4 and v3

5 with
Color 1,1,2,3 and 4 respectively. Here Color 1 cannot be assigned to the vertices in
V1 and Color 2,3,4 and 5 are assigned to exactly one of the vertex in V1 by the similar
arguments of above coloring. Thus the remaining one vertex is assigned Color 6. Thus
the coloring is as follows.

– The vertices v1
1, v

1
2, v

1
3, v

1
4 and v1

5 are colored with Color 6,2,3,4 and 5 respectively.

Case ii. m is odd.
Then 1 = m − 2k for some k, the vertices in V1 are colored with five different colors. The
vertices in V3 also colored with five different colors. The coloring is as follows.

– v1
1, v

1
2, v

1
3, v

1
4 and v1

5 are colored with Color 1,2,3,4 and 5 respectively.
– v3

1, v
3
2, v

3
3, v

3
4 and v3

5 are colored with Color 2,3,4,5 and 1 respectively.

Now there are two possibilities for the coloring of V2.

• The vertices in V2 are colored with three different colors. Let v2
1, v

2
2, v

2
3, v

2
4 and v2

5 are
colored with Color 1,1,2,2 and 3 respectively. Here also the color which is used twice
cannot be used to the vertices in V0 and any color used once can be assigned to exactly
one vertex of V0. Now v1

4 − v0
5 − v0

1, v1
4 − v0

3 − v0
2 v1

4 − v0
3 − v0

4 are paths of length 2
and the vertex v1

4 is of Color 4. Then the remaining vertices are v0
3 and v0

5, they have
common neighbor v0

4. Thus Color 4 is assigned to exactly one vertex. Similarly Color
5 is assigned to exactly one vertex. Thus the remaining two vertices are assigned Color
6.

– v0
1, v

0
2, v

0
3, v

0
4 and v0

5 are colored with Color 5,6,6,3 and 4 respectively.

• The vertices in V2 are colored with four different colors. Let v2
1, v

2
2, v

2
3, v

2
4 and v2

5 with
Color 1,1,2,3 and 4 respectively. Here Color 1 cannot be assigned to the vertices in
V0 and Color 2,3,4 and 5 are assigned to exactly one of the vertex in V0 by the similar
arguments of above coloring. Thus the remaining one vertex is assigned Color 6.

– v0
1, v

0
2, v

0
3, v

0
4 and v0

5 are colored with Color 1,2,3,4 and 5 respectively.
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Figure 6. Injective 7-coloring of µ4(C6)

Thus in any case, six different colors are necessary for an injective coloring of µm(C5). Simi-
larly χi(µm(C6)) = 7. In Figure 6, the injective coloring of µ4(C6) is presented.

Case 2. n ≥ 7
The vertex w is adjacent to all the vertices in Vm, therefore χi(µm(Cn)) ≥ |Vm| = n. Now
providing an injective coloring using n colors shows that χi(µm(Cn)) = n. The coloring is as
follows.

Subcase i. n = 7.
In Table 1 the injective coloring of µm(C7) using 7 colors for m = 1, 2, 3, 4, 5, 6, 7 is provided.
Let’s say the colors as 1,2,3,4,5,6 and 7. The ith column represents the injective coloring of
µi(C7) and an (i, j)th cell (say 4365476) represents the colors of the vertices vi

1, v
i
2, v

i
3, v

i
4, v

i
5, v

i
6

and vi
7 ∈ V i as 4,3,6,5,4,7 and 6 respectively.

Table 1 : Injective 7-coloring of µm(C7) for m = 1, 2, 3, 4, 5, 6, 7

m 1 2 3 4 5 6 7
V7 1234567
V6 1234567 4455465
V5 1234567 4455465 4365476
V4 1234567 1122132 2173173 1122132
V3 1234567 1122132 2173173 1122132 1122132
V2 1234567 1122132 4365476 4455465 4455465 4455465
V1 1234567 1122132 2345234 4455665 4455465 4455465 4455465
V0 4365476 4365476 5634567 1122132 1122132 1122132 1122132
w 1 7 7 7 7 7 7

Now for m > 7,

• The vertices vm
k , 1 ≤ k ≤ 7 are allotted with the Color k.
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• If i ≡ 0, 3 mod 4 and i , m − 2, color the vertices vi
j, 1 ≤ j ≤ 7 with Color

1, 1, 2, 2, 1, 3, 2 respectively.
• If i ≡ 1, 2 mod 4 and i , m − 2, color the vertices vi

j, 1 ≤ j ≤ 7 with Color
4, 4, 5, 5, 4, 6, 5 respectively.
• When m = 4q + r, q ≥ 2 and 0 ≤ r ≤ 3, choose k = r + 4, the vertices in Vm−2 of µm(C7)

are allotted with the colors of the vertices of Vk−2 of µk(C7) as in the table.
• Allot the vertex w with Color 7.

Subcase ii.: n = 8.
For µm(C8), the following gives an injective coloring

• The vertices vm
k , 1 ≤ k ≤ 8 are allotted with the Color k.

• For m = 1, the vertices of V0, v0
i , 1 ≤ i ≤ 8 are colored with the Color 7,6,6,1,1,2,2 and

3 respectively.
• For m , 1,

– if i ≡ 0, 3 mod 4 and i , m − 2, color the vertices vi
j, 1 ≤ j ≤ 8 with Color

1, 1, 2, 2, 1, 1, 2, 2 respectively.

– If i ≡ 1, 2 mod 4 and i , m − 2, color the vertices vi
j, 1 ≤ j ≤ 8 with Color

3, 3, 4, 4, 3, 3, 4, 4 respectively.

• For the vertices in Vm−2,

– If m ≡ 0, 3 mod 4 or m = 2, color the vertices in vm−2
i , 1 ≤ i ≤ 8, with the Color

4,7,7,8,8,3,3 and 4 respectively.
– If m ≡ 1, 2 mod 4 and m , 1, 2, color the vertices in vm−2

i , 1 ≤ i ≤ 8, with the
Color 5,6,6,8,8,2,2 and 5 respectively.

• The vertex w is colored with Color n.

Subcase iii. n ≥ 9.
There are n colors. As n ≥ 9 and each vertex class V i, i , m can be colored with at least three
colors, it is possible to allot the vertices of µm(Cn) with these n colors.

• Color the vertices in Vm with n distinct colors.
• The vertices in Vm−(3k+1), k = 0, 1, 2, · · · are colored with three distinct colors say Color

1,2 and 3. It is possible since there is no common vertex between these vertex sets.
• The vertices in Vm−(3k+2), k = 0, 1, 2, · · · are colored with three distinct colors say Color

4,5 and 6.
• The vertices in Vm−(3k), k = 1, 3, 4 · · · are colored with three distinct colors say Color

7,8 and 9.

�

In Theorem 4, χi(µm(Kp,q)) is computed. Here the clique number of µm(Km,n) is two, but the
injective chromatic number is 2p or 2p + 1. To enhance the comprehension of the proof, the
graph of generalized Mycielskian of K3,3 for general m is presented in Figure 7.
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Figure 7. µm(K3,3)

Theorem 4. The injective chromatic number of µm(Kp,q) is χi(µm(Kp,q)) =

2p for p > q
2p + 1 for p = q.

Proof. Let U0 ∪ V0 with U0 = {u0
i : 1 ≤ i ≤ p} and V0 = {v0

i : 1 ≤ i ≤ q} be the vertices

of Kp,q. And
m⋃

j=0
(U j ∪ V j) ∪ {w} be the vertices of µm(Kn), where U j = {u j

i : 1 ≤ i ≤ p},

V j = {v j
i : 1 ≤ i ≤ q}.

Case 1. p > q.
A vertex in V0 is a common adjacent vertex for the vertices in U0 ∪ U1 by the construction.
There are 2p vertices in U0 ∪ U1. Thus χi(µm(Kp,q)) ≥ 2p. Now providing an injective
coloring using 2p colors shows that χi(µm(Kp,q)) = 2p. The coloring is as follows.

• For j ≡ 0, 3 mod 4

– color the vertices u j
i with Color i

– color the vertices v j
i with Color p + i

• For j ≡ 1, 2 mod 4

– color the vertices u j
i with Color p + i

– color the vertices v j
i with Color i

• Color the vertex w with Color 2p.

Case 2. p = q.

Claim. All the vertices in a vertex class V j (or U j) are allotted with distinct p colors.
Proof. The following adjacency’s proves the claim.

• For the vertices in U0, any vertex in V1 is a common adjacent vertex.
• For the vertices in V0, any vertex in U1 is a common adjacent vertex.
• For j = 1, 2, · · · ,m − 1, any vertex either in V j−1 or in V j+1 is a common adjacent

vertex for the vertices in U j.
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• For j = 1, 2, · · · ,m − 1, any vertex either in U j−1 or in U j+1 is a common adjacent
vertex for the vertices in V j.
• For the vertices in Um, vertex w is a common adjacent vertex.
• For the vertices in Vm, vertex w is a common adjacent vertex.

Also, the construction makes it possible to choose a vertex from each vertex class in a certain
order, which results in an odd cycle. Say, w−Um −Vm−1 −Um−2 − · · · −U1 −V0 −U0 −V1 −

· · · − Vm−2 − Um−1 − Vm − w. Three colors are necessary to color an odd cycle, in a similar
way three sets of colors are necessary to color µm(Kp,q). Hence two sets are of size p and one
is of size one. Therefore 2p + 1 colors are necessary for an injective coloring of µm(Kp,q).
The coloring is as follows.
Subcase i: m is odd.
Consider an ordering of the vertex classes as: Vm,Um−1,Vm−2,Um−3,Vm−4,Um−5, · · · ,V1,

U0,V0,U1, · · · ,Um−2,Vm−1,Um.

• For the vertices in Vm, allot the vertices vm
k with Color k.

• For the vertices in Um−1, allot the vertices um−1
k with Color k.

• For the vertices in Vm−2, allot the vertices vm−2
k with Color p + k.

• For the vertices in Um−3, allot the vertices um−2
k with Color p + k.

The next four vertex classes are allotted with the same coloring pattern as listed previously.
Continue the same procedure for the remaining vertex classes from the ordering.

• Allot the vertex w with Color 2p + 1.

Subcase ii. m is even.
Consider an ordering of the vertex classes as: Um,Vm−1,Um−2,Vm−3,Um−4,Vm−5, . . . ,V1,

U0,V0,U1, . . . ,Vm−2,Um−1,Vm.

• For the vertices in Vm−1, allot the vertices vm−1
k with Color p + k.

• For the vertices in Um−2, allot the vertices um−2
k with Color p + k.

• For the vertices in Vm−3, allot the vertices vm−3
k with Color k.

• For the vertices in Um−4, allot the vertices um−4
k with Color k.

In each one, if any of the values m− 1,m− 2,m− 3 or m− 4 is less than zero, without loss of
generality consider the next class of vertices in the ordering of the vertex classes.
The next four vertex classes are allotted with the same coloring pattern as listed previ-
ously. Continue the same procedure for the remaining vertex classes from the ordering
Um,Vm−1,Um−2,Vm−3,Um−4,Vm−5, . . . ,V1, U0,V0,U1, . . . ,Vm−2,Um−1,Vm except for Vm

and Um.

• For the vertices in Um, color the vertices um
k with Color k.

• For the vertices in Vm, color the vertices vm
k with Color p + k.

• Color the vertex w with Color 2p + 1.

The injective coloring of µ2(K3,3) with 7 colors is illustrated in Figure 8. �
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Figure 8. Injective 7-coloring of µ2(K3,3)

Corollary 2. Injective chromatic number of generalized Mycielskian of a star graph S n+1 is
χi(µm(S n+1)) = 2n for n > 1.

3. Applications

The results obtained in this paper also suggest future exploration of injective edge chromatic
number, the decycling number, domination number etc. of the generalized Mycielskian of
a graph. Further, it is also open to compute the injective chromatic number of generalized
Mycielskian of any arbitrary graph. The properties of injective coloring plays a vital role
in different areas of complexity theory, random access machine, error correcting codes etc.
The n-dimensional hypercube, or n-cube, can be formed by taking one vertex for each bi-
nary n-tuple, two vertices being adjacent exactly when the Hamming distance between the
corresponding n-tuples is 1.
In computer networking, hypercube networks are a type of network topology used to connect
multiple processors with memory modules and accurately route data. Hypercube networks
consist of 2n nodes, which form the vertices of squares to create an internetwork connection.
It is basically a multi-dimensional mesh network with two nodes in each dimension. The
injective chromatic number of hypercubes is well studied in [6]. In [16], it is established
that, χk(n) denotes the minimum number of colors necessary to color the n-dimensional
hypercube Qn so that no two vertices at a distance exactly k from each other get the same
color. In other words, this is the smallest number of binary codes with minimum distance
k + 1 that form a partition of the n-dimensional binary Hamming space. Equivalently with
k = 2, no two vertices that are at a distance 2 from each other get the same color and χ2(n) is
the smallest number of binary codes with minimum distance 3(= k + 1) that form a partition
of the n-dimensional binary Hamming space. Note that a coloring is viewed as a partition
of Qn into codes (color classes) and the color classes of an injective coloring attaining χ2(n)
can be viewed as binary codes with minimum distance 3.
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