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Abstract: In this paper, we introduce a modified version of the simple-intersection

graph for semisimple rings, applied to a ring R with unity. The findings from this
modified version are subsequently utilized to solve several coloring optimization prob-

lems. We demonstrate how the clique number of the simple-intersection graph can be
used to determine the maximum number of possibilities that can be selected from a

set of n colors without replacement or order, subject to the constraint that any pair

shares only one common color. We also show how the domination number can be used
to determine the minimum number of possibilities that can be selected, such that any

other possibility shares one color with at least one of the selected possibilities, is n− 1.
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1. Introduction

One of the active research fields of algebraic graph theory which draws the attention

of researchers is the association of a graph with an algebraic structure, see for example

[3, 8, 10, 14, 16, 17, 19]. The significance of this topic have led many authors to study

the interplay between the graph theoretic properties (such as diameter, girth, cliques,

connectedness, dominating sets, etc) and the algebraic properties of the underlined

algebraic structure. A large literature has been devoted to the study of algebraic

structures and their associated graphs, as shown for example in [1, 2, 4, 5, 11–13, 15,

20].

In [18], the authors introduced a new type of intersection graphs for rings defined as

follows:

∗ Corresponding author



2 Approach to Solving Coloring Optimization Problems

Definition 1. Let R be a ring with unity 1 6= 0. The simple-intersection graph of R,
denoted by GS(R), is defined to be a simple graph whose vertices are the nonzero ideals
of R, and two vertices I and J are adjacent, and we write I ↔ J , if and only if I ∩ J is a
nonzero simple ideal.

For example, consider the ring Z4. The nonzero ideals of Z4 are Z4 and 2Z4
∼= Z2.

Obviously, GS(Z4) is Z4 ↔ 2Z4. Clearly, the simple-intersection graph is not a

subgraph of the intersection graph of ideals of R [7] because R ∈ V (GS(R)) but

R /∈ V (G(R)). However, the subgraph of GS(R) consisting of all nonzero proper

ideals of R is a subgraph of G(R). The authors studied several properties of this

graph such as connectedness, Euler circuits, regularity, girth, cliques, the “bipartite”

property, dominating sets. Moreover, they related these concepts with various al-

gebraic properties of the ring R. In this paper, we study a modified type of the

simple-intersection graph for a special class of rings which is the class of semisimple

rings. The results obtained in [16] about the simple-intersection graphs are still valid

for the modified simple-intersection graph of semisimple rings. The semisimple rings

provide a finite number of vertices and edges for this modified simple-intersection

graph, which we denote by the same notation GS(R). We shall develop many results

about the simple-intersection graph of semisimple rings. Moreover, we compute pre-

cisely the diameter, clique number, domination number, and the girth. Furthermore,

the results obtained about GS(R) of a semisimple ring R can be interpreted into

coloring optimization problems and their solutions. For instance, let us consider all

possible selections (rectangles) from four colors without repetition and without order

as shown below:

The maximum number of rectangles selected from the above sets such that any two

rectangles have one color in common is 4 (i.e. the number of colors). Also, the mini-

mum number of rectangles selected from the above set such that any other rectangle

shares only one color with at least one of the selected rectangles is 3 (The number of

colors minus one).

We shall use graph properties of GS(R) prove and generalize these coloring op-

timization problems and other problems to any n different colors, where n ∈ N.

More precisely, using the clique number of the modified simple-intersection graph of

a semisimple ring, we show that if we have n different colors and we make all pos-

sible selections without replacement from these colors at once (i.e., we can select 1,

2, ..., or n colors at once from the n different colors), then the maximum number of

possibilities we can take such that any pair of them have only one color in common

is n. In addition, we use the domination number to prove that the minimum number

of possibilities that can be taken such that any other possibility shares one color with

at least one of the selected possibilities is n− 1.
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2. Background

This section is devoted for a review of basic concepts of rings and graphs. All results

presented here can be found in [6] or [9]. In this paper, all rings are assumed to be

nonzero rings with unity 1 6= 0 and are not necessarily commutative. Also, the ideals

are considered to be left ideals. We first start with some preliminaries from Ring

Theory.

Definition 2. An ideal I of a ring R is said to be simple (or minimal) if I and {0} are
the only ideals included in I.

Definition 3. The direct sum of simple ideals of a ring R is called a semisimple ideal.
We call each simple ideal in the decomposition of a semisimple ideal a component.

Obviously, a simple ideal is semisimple with one component. On the other hand,

every ideal of a semisimple ideal is semisimple.

Definition 4. The socle of R, denoted by Soc(R), is defined to be the sum of all nonzero
simple ideals of R. If R = Soc(R), we call R a semisimple ring.

Definition 5. A proper ideal I of a ring R is said to be maximal if I is not contained in
another proper ideal of R.

Definition 6. A ring R is said to be Artinian if it satisfies the descending chain condition
on ideals.

Theorem 1. A ring R is Artinian if and only if Every nonzero ideal contains a nonzero
simple ideal.

It is easy to see that the semisimple rings are examples of Artinian rings.

Next, we turn to preliminaries from graph theory concerning undirected graphs. In

what follows, G denotes an undirected graph. The number of vertices of G is called

the order the graph G. The set of vertices of G is denoted by V er[G]. If two vertices

u and v are adjacent, we express that symbolically by u↔ v.

Definition 7. Let v be a vertex in G. The neighborhood N(v) of v is the set of all
vertices adjacent to v, i.e., the set of all vertices each of which is linked to v by an edge.

If G is a simple undirected graph, then v /∈ N(v). If N(v) = ∅, then v is an isolated

vertex.
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Definition 8. The degree of a vertex v of G is the number of edges incident to v,i.e.,
going out of v. The degree of v is denoted by degG(v) (or deg(v) if there is no confusion
with the underlined graph).

When G is a simple graph, then deg(v) = |N(v)|, where |N(v)| means the cardinality

of N(v). Hence, v is isolated if and only if deg(v) = 0.

Definition 9. A graph whose vertices have equal degrees is called a regular graph.

Definition 10. Let v and u be two vertices of G. The length of a path between v and u
is the number of edges forming the path. The distance d(u, v) between v and u is the length
of a shortest path between them. The diameter of G, denoted by diam(G), is defined to be
the supremum of the set {d(u, v) : u, v ∈ V er[G]}.

Definition 11. A graph G is path connected if there is a path between any two vertices
of G.

Definition 12. A graph is said to be complete if it is a simple graph and every pair of
vertices are adjacent. The complete graph on n vertices is denoted by Kn.

Definition 13. A subgraph of G which is a complete graph is called a clique of G. The
order of a largest clique (i.e., a clique with the largest number of vertices) is called the clique
number of G and it is denoted by ω(G).

Definition 14. By the girth of G, we mean the length of a shortest cycle in G. The girth
of G is denoted by g(G). If G has no cycles, then we write g(G) =∞.

Definition 15. An Euler path ofG is a path consisting of all edges ofG without repetition.
If an Euler path is closed, then it is called an Euler cycle.

Theorem 2. A graph has an Euler cycle if and only if every vertex has an even degree.
However, a graph has an Euler path if and only if at most two vertices have an odd degree.

Definition 16. A dominating set D of G is a nonempty subset of V er[G] such that
each vertex of G is either in D or adjacent to a vertex in D. The infimum of the set
{|D| : D is a dominating set of G} is called the domination number of G and is denoted by
γ(G).

Definition 17. A simple graph G is called bipartite if we can partition V er[G] into two
disjoint nonempty subsets (each subset is called a part) such that the vertices belonging to
the same subset are not adjacent to each other. A complete bipartite graph is a bipartite
graph where each vertex in one part is adjacent to each vertex in the other part. A complete
bipartite graph is denoted by Km,n or Kn,m, where m is the cardinality of one part and n
is the cardinality of the other part.
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More preliminaries will be added in the next sections as needed.

3. The Simple-Intersection Graph of A Ring

This section is concerned with the simple-intersection graph GS(R) of a ring R rep-

resented in [18].

Definition 18. [18] Let R be a ring with unity 1 6= 0. The simple-intersection graph of
R, denoted by GS(R), is defined to be a simple graph whose vertices are the nonzero ideals
of R, and two vertices I and J are adjacent, and we write I ↔ J , if and only if I ∩ J is a
nonzero simple ideal.

Remark 1. [18] In GS(R), I ↔ R if and only if I is a nonzero simple ideal of R. So the
subgraph consisting of R with all nonzero simple ideals of R is a star graph with center R,
and hence deg(R) equals the number of nonzero simple ideals of R. Thus, if R is semisimple
with n components, then deg(R) = n. On the other hand, if I is a nonzero simple ideal of
R and J is an ideal of R, then I ↔ J if and only if I ( J . Moreover, Every pair of different
nonzero simple ideals is not adjacent, or equivalently, the subgraph of GS(R) consisting of
nonzero simple ideals is a null graph.

Definition 19. A dominating set X is non-shrinkable in GS(R), if removing a vertex
from X makes the new set a non-dominating set in GS(R.

Corollary 1. [18] If R is semisimple, then

γ(GS(R)) = inf{|Y | : Y is a non-shrinkable dominating set consisting of the isolated

vertices and semisimple ideals of R such that R ∈ Y or Y contains at least

a nonzero simple ideal}.

If R is not semisimple, then

γ(GS(R)) = inf{|Y | : Y is a non-shrinkable dominating set consisting of the isolated

vertices, semisimple ideals of R, and at least one nonzero simple ideal}.

Example 1. [18] Let R = I ⊕ J be a semisimple ring. Then Y = {R} is a non-shrinkable
dominating set of GS(R) : I ↔ R↔ J with the least cardinality. Thus, γ(GS(R)) = 1.

Example 2. [18] Let R = I ⊕ J ⊕ K be semisimple ring. Then Y = {I ⊕ J,K} is a
non-shrinkable dominating set of GS(R) with the least cardinality. Thus, γ(GS(R)) = 2.

Example 3. [18] Consider the ring R = Z2 ⊕ Z2 ⊕ Z⊕ Z. Then Y = {0⊕ 0⊕ 0⊕ Z, 0⊕
0⊕ Z⊕ 0,Z2 ⊕ 0⊕ 0⊕ 0, 0⊕ Z2 ⊕ 0⊕ 0} is a non-shrinkable dominating set of GS(R) with
the least cardinality. Thus, γ(GS(R)) = 4.
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Definition 20. [18] Let I be a nonzero simple ideal of R. We say that the nonzero ideals
J and K are adjacent through I if J ∩K = I.

Proposition 1. [18] Every clique of GS(R) contains at most one nonzero simple ideal.

It follows from Proposition 1 that there are two types of cliques in GS(R). The first

type of cliques contains no simple ideals, while the second type of cliques contains

exactly one nonzero simple ideal. The next example exhibits these types of cliques.

Example 4. [18] Let R = I ⊕ J ⊕K be a semisimple ring. Then, the subgraph I ⊕ J ↔
J⊕K ↔ I⊕K ↔ I⊕J is a clique whose vertices are not simple ideals. However, the subgraph
I ⊕ J ↔ I ↔ I ⊕ K ↔ I ⊕ J is a clique with one simple nonzero ideal as Proposition 1
emphasizes.

In the next result, we are going to study each type of cliques in order to discover the

clique number of GS(R). The next theorem states that a clique containing a unique

nonzero simple ideal I is a subgraph of GS(R, I) whose vertices are adjacent through

I.

Theorem 3. [18] Let Λ be a clique containing one nonzero simple ideal I. Then Λ
consists, beside the vertex I, vertices in N(I) that are adjacent to each other through I.

Corollary 2. [18] Let Λ be a clique containing one nonzero simple ideal I. Then
|V er[Λ]| > 2 if and only if R /∈ V er[Λ] and V er[Λ] has at least two proper non-simple ideals
(that are adjacent through I).

Definition 21. [18] Let I be a nonzero simple ideal of R. Then, the largest clique of
GS(R) containing I is called the maximal clique induced by I.

Let I be a nonzero simple ideal of R. Then the clique I ↔ R is always a maximal

clique induced by I, which we call the trivial maximal clique induced by I. It is not

difficult to see from Corollary 2 that if |N(I)| = 1, then the trivial maximal clique

induced by I is the only maximal clique induced by I. However, if |N(I)| > 1, then

there is another maximal clique induced by I which consists, in addition to I, of

all proper non-simple ideals in N(I) that are adjacent to each other through I. We

denote this non-trivial maximal clique by Λ(I). Notice that |V er[Λ(I)]| ≥ 2.

Example 5. [18] In GS(Z4), the maximal cliques induced by the ideal 2Z4 are only the
trivial maximal clique 2Z4 ↔ Z4.

Example 6. [18] In Example 4, Λ(I) is I ↔ I ⊕ J ↔ I ⊕K ↔ I. Therefore |Λ(I)| = 3.
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In the next result, we study the second type of cliques which does not contain nonzero

simple ideals. The following definition will be handy.

Definition 22. [18] Let S be a nonempty set of nonzero simple ideals. By a clique
of GS(R) induced by S, we mean a clique of GS(R) such that any two of its vertices are
adjacent through a member of S, and every member of S is the intersection of two vertices
of this clique.

Example 7. [18] In Example 4, the subgraph Λ : I⊕K ↔ I⊕J ↔ J ⊕K ↔ I⊕K is the
unique clique induced by S = {I, J,K}. However, the subgraphs Λ1 : I ↔ R, Λ2 : I⊕K ↔ I,
Λ3 : I ↔ I ⊕ K ↔ I ⊕ J ↔ I are some cliques induced by S = {I}. On the other hand,
there is no clique in GS(R) induced by S = {I, J}.

As displayed in the previous example, the set of all cliques induced by a nonempty set

S of nonzero simple ideals may be empty, singleton, or contain more than one clique.

Remark 2. [18] If S contains at least two nonzero simple ideals, then all vertices of a
clique induced by S are non-simple ideals. We leave it to the reader to check out that the
last statement is true.

Next, we show that if a nonempty set S of nonzero simple ideals induces cliques, then

there is a maximum clique induced by S, i.e., a clique induced by S that is not a

subgraph of another clique induced by S.

Theorem 4. [18] Let S be a nonempty set of nonzero simple ideals of R which induces
cliques in GS(R). Then there is a maximal clique induced by S.

Notation 5. [18] A maximal clique of GS(R) induced by a nonempty set S of nonzero
simple ideals of R is denoted by Λ(S).

If S = {I}, where I is a nonzero simple ideal of R, then either Λ(S) is the trivial

maximal clique R ↔ I or Λ(S) = Λ(I). In general, a maximal clique of GS(R)

induced by S is not necessarily unique, as we shall see in the next example.

Example 8. [18] In Example 4, there is a unique maximal clique induced by S = {I, J,K}
given by Λ(S) : I ⊕K ↔ I ⊕J ↔ J ⊕K ↔ I ⊕K. Also, Λ1 : I ↔ R, and Λ3 : I ↔ I ⊕K ↔
I ⊕ J ↔ I are two maximal cliques induced by S = {I}. Notice that Λ2 : I ⊕K ↔ I is not
a maximal clique induced by S = {I} in GS(R) since it is a subgraph of Λ3.

Theorem 6. [18] If Λ is a clique of GS(R), then there is a unique nonempty set S of
nonzero simple ideals of R inducing Λ.

Remark 3. [18] In GS(R), the following statements are true:
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1. ω(GS(R)) equals the supremum of the set

{|V er[Λ(S)]| : S is a non empty set of nonzero simple ideals of R}.

2. ω(GS(R)) ≥ 2.

3. If the order of GS(R) is finite, then 2 ≤ ω(GS(R)) ≤ |V er[GS(R)]|.

Example 9. [18] We have

1. ω(GS(Z4)) = 2.

2. Let R be a semisimple ring with 2 components. A direct analysis leads to that
ω(GS(R)) = 2.

3. Let R be a semisimple ring with 3 components. A direct analysis leads to that
ω(GS(R)) = 3.

4. Consider R = Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2, a semisimple ring with 4 components. Let I =
Z2⊕ 0⊕ 0⊕ 0. Then V er[Λ(I)] = {I,Z2⊕Z2⊕ 0⊕ 0,Z2⊕ 0⊕Z2⊕ 0,Z2⊕ 0⊕ 0⊕Z2}.
Thus, 4 ≤ ω(GS(R)) ≤ 15, where 15 is the order of GS(R) which is equal to the
number of nonzero ideals of R. As a matter of fact, taking all possible cliques of R,
it can be shown that the maximal clique with the largest number of vertices has an
order of 4. That is ω(GS(R)) = 4.

5. Let R = Z2 ⊕ Z2 ⊕ . . . be a semisimple ring with infinitely many components. For
every n ∈ N, let In = 0⊕ 0⊕ . . .⊕ Z2 ⊕ 0⊕ . . ., where Z2 is located in the component
number n. Then V er[Λ(I1)] = {I1, I1 ⊕ I2, I1 ⊕ I3, . . .}. Thus, ω(GS(R)) =∞.

For the rest of this paper, we consider a modified type of the simple- intersection

graph of a ring R. The vertices in this special graph are the nonzero two-sided ideals

of R, and two vertices are adjacent if they intersect at a nonzero simple two-sided

ideal of R. We keep the same notation GS(R) for this special simple-intersection

graph of a ring.

Theorem 7. [9] If R is a semisimple ring, then the two-sided ideals of R are precisely
the direct sums of components of R. Besides, the nonzero simple two-sided ideals of R are
precisely the components of R.

It follows from the previous theorem that the special simple-intersection graph of a

semisimple ring with finite number of components possesses a finite number of veritces

and edges.

Theorem 8. Let R = I1 ⊕ . . .⊕ In be a semisimple ring. Then

1. deg(R) = n.

2. deg(Ik) = 2n−1 − 1, where k = 1, . . . , n.
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3. deg(J) = m · 2n−m, where J is an ideal of R with m components and 2 ≤ m ≤ n.

Proof. 1. See Remark 1.

2. Fix k = 1, . . . , n. Since every ideal of R is a direct sum of components of R,

and Ik is adjacent to every ideal with at least 2 components containing it, then

deg(Ik) = |N(Ik)| = C(n− 1, 1) +C(n− 1, 2) + · · ·+C(n− 1, n− 1) = 2n−1− 1.

Notice that for every m = 1, . . . , n − 1, C(n − 1,m) represents the number of

ideals with m+ 1 components, one of them is Ik and the rest are different from

Ik.

3. Fix m = 0, 1, . . . , n. Let J be an ideal of R with m components. Fix a compo-

nent of J , and let us count the ideals I of R that are adjacent to J through this

component. Since I contains this component and its other components are dif-

ferent from the m components of J , we obtain that, for each t = 0, 1, . . . , n−m,

there are C(n −m, t) ideals I with t + 1 components, one of them is the fixed

component of J , while the remaining t components of I are not among the

components of J . So, the number of ideals adjacent to J through the fixed

component equals C(n−m, 0) +C(n−m, 1) + . . .+C(n−m,n−m) = 2n−m.

Repeating the procedure for each component of J , yields deg(J) = m · 2n−m.

Remark 4. The degree of any component of a semisimple ring is odd, while the degree
of any proper ideal of a semisimple ring with at least two components is even. Therefore if
R is a semisimple ring with at least two components then GS(R) is not a regular graph. If
R is not semisimple, then GS(R) may be regular like GS(Z4).

Theorem 9. Let R be a semisimple ring with n components. Then

1. If n ≥ 3, then GS(R) has neither Euler circuits nor Euler paths.

2. If n = 2, then GS(R) has only one Euler path of length 2 which connects R and its
two components (up to the start vertex).

Proof. The proof follows directly from combining Theorem 2 and Remark 4.

4. Dominating sets and domination number

In this section, for a semisimple ring R with finite number of components, we discuss

the dominating sets of GS(R) and compute the domination number of GS(R). We

then apply the domination number to solve the coloring optimization problem: “If

we have n different colors and we make all possible selections without replacement

from these colors, what is the minimum number of possibilities we can take such that

any other possibility has one color in common with at least one of these selected

possibilities?”.
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Lemma 1. Let R be a ring with unity 1 6= 0. Assume that Soc(R) consists of at least
two components. Let B be a dominating set of GS(R) consisting of R, the isolated vertices,
and nonzero semisimple ideals. Then there exists a dominating set B̌ such that B̌ consists
of nonzero simple ideals, the isolated vertices, and nonzero semisimple ideals different from
R; and |B̌| ≤ |B|.

Proof. We consider three cases. In the first case, assume each nonzero simple ideal

of R is contained in a semisimple ideal in B different from R. Replace R in B with any

nonzero simple ideal, call it I. Denote the new set by B̌. The set B̌ is a dominating

set of GS(R). To demonstrate the last statement, let V be a vertex outside B̌. If

V = R, then V ↔ I. If V 6= R is nonzero simple, by the assumption of the first case,

V ↔ U , where U is a vertex containing V . If V 6= R is a semisimple ideal that is

not simple. Then V 6↔ R. Again, by the assumption of the first case, V ↔ U for

some U ∈ B − {R} ⊂ B̌. It’s obvious that |B̌| ≤ |B|. In the second case, assume

the existence of only one nonzero simple ideal I of R not contained in any vertex of

B − {R}. Thus I is only adjacent to R. Now, as in the first case, replace R in B

with I and call the new set B̌. A similar argument to that in the first case yields

the domination of the set B̌. Also, notice that |B̌| = |B|. In the third case, assume

there exist more than one nonzero simple ideal, for instance I and J , not contained

in any vertex in B − {R} (Of course, in this portion of the proof, we assume Soc(R)

contains at least 3 components). We show that this case is impossible to happen.

Now, I ⊕ J /∈ B and I ⊕ J is not adjacent to any vertex in B, which contradicts the

domination of B.

Theorem 10. Assume Soc(R) consists of at least two components. Then

γ(GS(R)) = inf{|Y | : Y is an non-shrinkable dominating set consisting of the isolated

vertices, semisimple ideals of R, and at least a nonzero simple ideal of R}.

Proof. Apply Lemma 1.

Lemma 2. Let R be a semisimple ring with n components where n > 1. Then γ(GS(R)) ≤
n− 1.

Proof. Assume R = I1 ⊕ . . . In is a semisimple ring. If n = 2, then B = {R} is a

non-shrinkable dominating set of GS(R) with the least cardinality. So, γ(GS(R)) = 1.

If n > 2, let B = {I1, I2, . . . , In−2, In−1 ⊕ In}. We have |B| = n − 1. Let V be a

vertex out of B. If V = R or V includes a component Ij where j = 1, . . . , n− 2, then

V ↔ Ij ∈ B. If V 6= R and V does not contain any of the components Ij , where

j = 1, . . . , n − 2, then V = In−1, V = In, or V = In−1 ⊕ In. The third possibility

of V is a vertex in B, while the first and second possibilities of V are adjacent to

In−1 ⊕ In which is a vertex in B. Therefore, we obtain that B is a non-shrinkable

dominating set of GS(R) with cardinality equal to n − 1. Consequently, we obtain

that γ(GS(R)) ≤ n− 1.
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Theorem 11. Let R be a semisimple ring with n components where n > 1. Then
γ(GS(R)) = n− 1.

Proof. The proof is carried by the mathematical induction on n. For n = 2, {R} is

a non-shrinkable dominating set of GS(R) with the least cardinality. So, γ(GS(R)) =

1 = n− 1. Assume γ(GS(R)) = n− 1 for any semisimple ring R with n components.

Let R be a semisimple ring with n+1 components. By Lemma 2, we have γ(GS(R)) ≤
n. Suppose γ(GS(R)) < n. Then there exists a non-shrinkable dominating set B such

that |B| = γ(GS(R)) < n. By Lemma 1, we can assume, without lose of generality,

that B contains a nonzero simple ideal I of R. Let V be a vertex outside B and

I 6⊂ V . Then V 6↔ I. So, there exists a vertex W ∈ B such that V is adjacent

to W through a nonzero simple ideal J 6= I. Now, let Γ be the same set as B

but with the component I is removed from each vertex of B containing it. Then

|Γ| < |B| < n which implies |Γ| ≤ n− 2. Moreover, Γ is a dominating set for GS(R′)

where R′ is the semisimple ring with n components which has the same components

of R except I. Since |Γ| < n−1, we obtain γ(GS(R′)) < n−1 which is a contradiction

to the hypothesis that states ”the domination number of any semisimple ring of n

components is equal to n”. Thus, we obtain that n ≤ γ(GS(R)) or equivalently

γ(GS(R)) = n.

Remark 5. If R is a semisimple ring with n components, then a typical dominating set
of GS(R) with γ(GS(R)) = n− 1 vertices is the set B mentioned in the proof of Lemma 2.

Remark 6. Theorem 11 provides a solution to the following coloring optimization prob-
lem: Given n different colors (where n is an even natural number) and the ability to select
1, 2, . . . , or n colors without replacement and without order (resulting in 2n − 1 possibili-
ties), what is the minimum number of possibilities such that any other possibility that is not
among the ones chosen has one color in common with at least one of the ones chosen? The
answer is n− 1 possibilities. Moreover, this set of possibilities contains n− 2 single colors in
addition to the pair of the two remaining colors.

5. Clique Number

In this section, for a semisimple ring R with finite number of components, we study

the cliques of GS(R) and compute the clique number of GS(R). We also apply the

results of this section to solve many coloring optimization problems.

Theorem 12. Let R = I1 ⊕ . . . ⊕ In be a semisimple ring with n components, and I a
component of R. Then |Λ(I)| = n.

Proof. According to the paragraph after Definition 21, Λ(I) consists of I and the

nonzero ideals of R that are pairwise adjacent through I. Hence, V er[Λ(I)] = {I, I ⊕
It : where It 6= I} has the maximum number of vertices. Obviously, |V er[Λ(I)]| =

n
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Remark 7. Theorem 12 provides a solution to the following coloring problem: Given n
different colors and the ability to select 1, 2, . . . , or n colors without replacement and without
order (resulting in 2n − 1 possibilities). What is the maximum number of possibilities in
which any two pairs share only one common color and only one possibility has one color
only? The answer, as stated by Theorem 12, is n.

Theorem 13. Let R = I1 ⊕ . . . ⊕ In be a semisimple ring, where n ∈ N. If n = 2 or
n = 3, then ω(GS(R)) = n. In general, n ≤ ω(GS(R)) ≤ 2n − 2.

Proof. If n = 2 or n = 3, then ω(GS(R)) = n by direct calculations. Let n ≥ 4. By

part 3 of Remark 3, we have 2 ≤ ω(GS(R)) ≤ 2n − 1, where |V er[GS(R)]| = 2n − 1

is found using the combinatorial method similar to that in Theorem 8. Now, Fix

1 ≤ k ≤ n. By Theorem 12, |Λ(Ik)| = n. Since the zero ideal and R cannot exist in

any clique, we obtain that n ≤ ω(GS(R)) ≤ 2n − 2.

Corollary 3. Let R be a semisimple ring with infinite number of components. Then
ω(GS(R)) =∞.

Proof. Let n goes to ∞ in n ≤ ω(GS(R)) ≤ 2n − 2.

Example 10. We have

1. ω(GS(Z4)) = 2.

2. Consider R = Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2, a semisimple ring with 4 components. Let I =
Z2⊕ 0⊕ 0⊕ 0. Then V er[Λ(I)] = {I,Z2⊕Z2⊕ 0⊕ 0,Z2⊕ 0⊕Z2⊕ 0,Z2⊕ 0⊕ 0⊕Z2}.
Thus, 4 ≤ ω(GS(R)) ≤ 15, where 15 is the order of GS(R) which is equal to the
number of nonzero ideals of R. As a matter of fact, taking all possible cliques of R, it
can be shown that the maximal clique with the largest number of vertices has order
equal to 4. That is ω(GS(R)) = 4.

3. Let R = Z2 ⊕ Z2 ⊕ . . . be a semisimple ring with infinitely many components. For
every n ∈ N, let In = 0⊕ 0⊕ . . .⊕ Z2 ⊕ 0⊕ . . ., where Z2 is located in the component
number n. Then V er[Λ(I1)] = {I1, I1 ⊕ I2, I1 ⊕ I3, . . .}. Thus, ω(GS(R)) =∞.

Our goal is to extend the first part of Theorem 13 (ω(GS(R)) = n) to include any

n ≥ 4.

Notation 14. Let R be a semisimple ring with n components. The subgraph of GS(R)
consisting of all proper ideals of R with exactly k components where 1 ≤ k ≤ n−1 is denoted
by Gk.

Proposition 2. Let R be a semisimple ring with n components, where n ≥ 4. Then

1. if k ≤ dn
2
e, then Gk and Gn−k have the same order and there is a canonical bijection

between the sets of vertices.

2. Gk and Gn−k are isomorphic if k = 1 or k = n− k (i.e., n is even and k = n
2

).
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Proof. 1. |V er[Gk]| = C(n, k) = C(n, n − k) = |V er[Gn−k]|. Define f : Gk −→
Gn−k by f(I) = Ī where I ⊕ Ī = R. Notice that the components of I and the

components of Ī do not match, i.e. placed in different orders relative to the order

of the components of R. It is easy to see that f is a bijection between V er[Gk] and

V er[Gn−k]. But f is not necessarily a graph isomorphism as shown next.

2. Suppose I ↔ J in Gk. Then I and J have one component in common and

the remaining k − 1 components do not match. Thus, the k − 1 components of

I appear in f(J), the k − 1 components of J appear in f(I), and the remaining

(n− k)− (k − 1) = n− 2k + 1 components of f(I) and f(J) are the same. Now, we

distinguish among three cases. In the first case, assume n− 2k+ 1 = 0 (i.e., k = n+1
2

and n is odd, or equivalently k = bn2 c+ 1 = dn2 e) then f(I) is not adjacent to f(J).

In the second case, if n − 2k + 1 = 1 (or n is even and k = n
2 = dn2 e) and hence

f(I) ↔ f(J) which implies Gn
2

is isomorphic to itself (unsurprising case). In the

third case if n − 2k + 1 > 1 (or k > n
2 , or equivalently, k > dn2 e), then f(I) is not

adjacent to f(J). A final observation is the case where k = 1. We have both G1 and

Gn−1 are null spaces and hence isomorphic subgraphs.

It follows from the third case in the proof of Proposition 2 the following corollary.

Corollary 4. Let R be a semisimple ring with n components, where n ≥ 4. Then any
two vertices with k components where k > dn

2
e are not adjacent. Contrapositively, if two

vertices in GS(R) are adjacent, then at most one of them has at most dn
2
e components.

Now, let R be a semisimple ring with n components, where n ≥ 4, and I be an ideal

of R. By Î we mean the ideal consisting of the components of I plus one component

not in I. Let f be the component-alternating function defined in Proposition 2.

Obviously, I and f(I) are not adjacent. We have the proposition.

Proposition 3. Let R be a semisimple ring with n components, and I an ideal of R
containing dn

2
e components. Then

1. If n is even, then I ↔ ˆf(I) and Î ↔ f(I).

2. If n is odd, then I is not adjacent to ˆf(I) and Î is not adjacent to f(I) .

Proof. 1. Î and f(I) have one component in common and therefore they are

adjacent. The rest follows from the fact that f ◦ f = idR where idR is the

identity function on R.

2. Î and f(I) have two components in common, Therefore they are not adjacent.

The rest follows from the fact that f ◦ f = idR.
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Remark 8. Let R be a semisimple ring with n components, where n ≥ 4, and I and an

ideal of R containing at least two components. Then I is not adjacent to each of
ˆ̂
I,

ˆ̂
Î, and

so on.

Theorem 15. Let R be a semisimple ring with n components, where n is odd and

n ≥ 4. Consider the clique I ↔ J where I and J are two nonzero ideals with dn
2
e =

n+ 1

2
components. Then

1. the clique I ↔ J cannot be extended to a larger clique by adding a vertex with at least
3 components.

2. Any maximal clique containing the clique I ↔ J has an order no more than 5.

Proof. 1. Let I and J be two nonzero ideals with dn2 e =
n+ 1

2
components

such that I ↔ J . Then I and J have one component in common and the

rest of the components are different from each other. Since I + J = R, by

pigeonhole principle any vertex with at least 3 components must contain at

least two components in common with I or at least two components in common

with J . So, we can’t extend the clique I ↔ J by adding a vertex of at least 3

components.

2. By part 1, a third vertex V that extends the clique I ↔ J into a clique of

order 3 must has at most 2 components. If V is simple, then V is the common

component between I and J . Thus the new clique I ↔ J ↔ V ↔ I is maximal

and hence has an order of 3. If V = K1⊕K2 where K1 is a component of I and

K2 is a component of J and K1 6= K2. Then the new clique can be extended by

adding vertices with exactly two components. Since any clique cannot contain

more than 3 ideals with exactly two components, we can add at most three

vertices, with exactly two components, to the clique I ↔ J . Thus the resulting

maximum clique has order not exceeding 5.

Remark 9. Theorem 15 provides a solution to the following coloring problem: Given n
different colors (where n is an odd natural number) and the ability to select 1, 2, ..., or n
colors without replacement and without order (resulting in 2n − 1 possibilities), what is the
maximum number of possibilities in which any two pairs share only one common color and

at least two possibilities have
n+ 1

2
colors? The answer, as stated by Theorem 15, is 5.

Theorem 16. Let R be a semisimple ring with n components, where n is even and
n ≥ 4. Then a maximal clique containing I ↔ J where each of I and J consists of dn

2
e = n

2

components has an order no more than dn
2
e+ 1.

Proof. A similar argument to that of the proof of Theorem 15 shows that any

extension of the clique I ↔ J by vertices with two components does not exceed 5
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vertices, if the number of components allows such a procedure. Also, any extension

of the clique I ↔ J containing the common component K between I and J does not

exceed 3 vertices. Let T be the component that does not appear in I+J . If the clique

I ↔ J is extended to a larger clique using a vertex with three components, then this

vertex must contain the component T , or else by the pegionhole principle this vertex

contains at least two components of I or two components of J . Now, the first vertex

V1 with three components to be added to the clique I ↔ J consists, in addition to

T , of a component of I ′ = (I −K) ∪ 0 and a component of J ′ = (J −K) ∪ 0. The

second vertex V2 with three components (one of them is T ) to be added to the clique

consists of a component of I ′′ and a component of J ′′, where I ′′ and J ′′ are obtained

from I ′ and J ′ by deleting the components of V1, respectively. Continuing in this

procedure the clique I ↔ J is extended to a maximal clique of order dn2 e + 1 (by

adding dn2 e− 1 vertices, each of which has three components, to the clique I ↔ J . In

the final case we extend the clique I ↔ J by adding vertices with two components or

with three components We begin with adding a vertex with two components L from

I ′ and N from J ′, and then a vertex with three components consisting of T , L, and a

component taken from (J ′−N)∪0). The last clique of order 4 cannot be extended to

a larger clique with more than 5 components. The reason behind the last statement,

assuming the number of components allows us to continue the extension, is a new

2−component vertex does not have enough components to be adjacent to the existed

4 components. Also, adding two vertices each of which consists of three components

such that one of them is T to the clique with the four vertices does not produce a

clique. Therefore in this way the maximal clique has an order of 5. Recalling that any

extension to the clique I ↔ J can’t contain a vertex with more than 3 components

(otherwise, the new extension will not be a clique) ends our proof.

Remark 10. Theorem 16 provides a solution to the following coloring optimization
problem: Given n different colors (where n is an even natural number) and the ability
to select 1, 2, ..., or n colors without replacement and without order (resulting in 2n − 1
possibilities), what is the maximum number of possibilities such that any pair of them shares

only one common color and at least two possibilities have
n

2
colors? The answer, as stated

by Theorem 16, is dn
2
e+ 1.

Theorem 17. Let R be a semisimple ring with n components, where n is odd and n ≥ 4.
Then a maximal clique containing I ↔ J where I consists of dn

2
e−1 = n−1

2
components and

J consists of dn
2
e = n+1

2
components has an order no more than dn

2
e+ 1.

Proof. The proof is similar to the proof of Theorem 16.

Remark 11. Theorem 17 provides a solution to the following coloring problem: Given
n different colors (where n is an odd natural number) and the ability to select 1, 2, . . . , or
n colors without replacement and without order (resulting in 2n − 1 possibilities), what is
the maximum number of possibilities in which any two pairs share only one common color,
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at least one possibility has
n− 1

2
colors and at least one possibility has

n+ 1

2
colors? The

answer, as stated by Theorem 17, is dn
2
e+ 1.

Remark 12. Let R be a semisimple ring with at least 3 components. A clique I ↔ J ,
where I = I1⊕T and J = T ⊕J1 consisting of two components can be extended to two types
of maximal cliques. The first type is of order 3 and having the form I1⊕T ↔ T⊕J1 ↔ I1⊕J1.
The second type is Λ(I1) which is of order n.

The following remark will be important in the next work.

Remark 13. Let I be a component of a semisimple ring R. Then a clique ΛI , whose
vertices are adjacent through I, is a subclique of Λ(I) obtained by making sums among the
vertices, leaving vertices untouched, or excluding vertices. To illustrate this, consider for
example a semisimple ring R = I ⊕ J ⊕K ⊕L. We have Λ(I) : I, I ⊕ J, I ⊕K, I ⊕L. Now
ΛI : I, I ⊕ J, I ⊕K ⊕ L is obtained from Λ(I) by adding I ⊕K and I ⊕ L and leaving the
other vertices untouched. While ΛI : I, I⊕J, I⊕K is obtained from Λ(I) by excluding the
vertex I ⊕L. Also, ΛI : I ⊕ J, I ⊕K ⊕L is obtained by adding I ⊕K and I ⊕L, excluding
I, and leaving I ⊕ J untouched.

In what follows, if R is a semisimple ring with n components and S = {I1, . . . , Im}
of components of R, where 1 ≤ m ≤ n, then we denote Λ(S) by Λ(I1, . . . , Im). In

addition, for every t = 1, . . . ,m, ΛIt denotes the subclique of Λ(I1, . . . , Im) whose

vertices are adjacent through It (or equivalently, containing It).

Lemma 3. Let R be a semisimple ring with n components and S = {I1, . . . , Im} a set
of components of R, where 1 ≤ m ≤ n. Then any component of R outside S cannot exist in
two adjacent vertices of Λ(S).

Proof. Let J be a component of R such that J /∈ S. Let V and U be adjacent

vertices of Λ(S) containing J . Then, V and U are adjacent through J . Thus J ∈ S
which is a contradiction.

Lemma 4. Let R be a semisimple ring with n components and S = {I1, . . . , Im} a set of
components of R, where 1 ≤ m ≤ n. If I and J are different components of R lying in S,
then |ΛI ∩ ΛJ | ≤ 1 (i.e. ΛI and ΛJ meet at at most one vertex).

Proof. Assume ΛI ∩ΛJ 6= ∅. Let V and U be two common vertices between ΛI and

ΛJ Then I and J exist in both V and U , which implies U and V cannot be adjacent,

and that contradicts that Λ(S) is a clique.

Let R be a semisimple ring with n components and S = I1, . . . , Im a set of components

of R, where 1 ≤ m ≤ n. Without loss of generality, assume that Λ(S) includes a vertex

T of the form T = I1 ⊕ . . . ⊕ Ik, where 1 ≤ k ≤ m. By Lemma 4, T is the unique

vertex inside ΛI1 ∩ . . . ∩ ΛIk . Suppose |ΛIt | ≥ 2, for every 1 ≤ t ≤ k. Again, without

loss of generality, suppose ΛI1 contains a vertex ∆ = I1 ⊕ J1 ⊕ . . .⊕ Jl different from
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T with the least number (l + 1) of components. Notice that the components of ∆

other than I1 are all different from I1, I2, . . . , and Ik. That is they are selected from

the remaining n − k components of R. We have the following lemma, which we call

the minimum lemma.

Lemma 5. For every 2 ≤ t ≤ k, the order of ΛIt is at most l + 1.

Proof. We keep in mind that all vertices considered during the proof exist in the

clique Λ = Λ(S). Let V1 be a vertex in ΛIt different from T . Since V1 ↔ ∆, then

V1 contains, beside It, exactly one component of ∆ different from I1, say J1. If V2
is another vertex in ΛIt different from T and V1, then V2 contains, in addition to It,

exactly one component of ∆ different from I1, It, and J1, , say J2. A third vertex V3,

if exists in ΛIt , must contain, in addition to It, exactly one component of ∆ which is

different from I1, J1, and J2, say J3, and so on. Any vertex of ΛIt must contain, in

addition to It, one component of ∆ different from I1 that does not exist in another

vertex in ΛIt different from T . Consequently, the maximum number of vertices that

we can add to ΛIt , beside T , is l vertices (any extra vertex added to the l+ 1 vertices

of ΛIt must contain It and one component of ∆ which both exist in one of the vertices

V1, V2, . . . , or Vl. This implies ΛIt is not a clique).

Now, we are ready to show that the clique number of the simple-intersection graph

of a semisimple ring with n components is equal to n. In the following theorem,

we shall stop using the floor and ceiling functions in order to shorten the proof and

skip discussing different cases which are clear by appropriate approximations to the

nearest integer.

Theorem 18. Let R be a semisimple ring with n components (n ≥ 4). Then ω(GS(R)) =
n.

Proof. Let Λ be a maximum clique of GS(R). Then there exists a set S =

{I1, . . . , Im} of components of R, where 1 ≤ m ≤ n such that Λ = Λ(S). Assume

m ≥ 3. We consider three cases.

Case 1. Each vertex of Λ contains at least one component outside S. By Lemma 3,

the maximum number of vertices can Λ possess is n−m which is less than n.

Case 2. There exists a vertex T = I1⊕ . . .⊕Ik, where 1 ≤ k ≤ m, in Λ containing no

components outside S, and T is the only vertex in ΛIt , for some 1 ≤ t ≤ k. Since, T

is adjacent to every another vertex in Λ, we obtain k = m and T is the unique vertex

common among ΛI1 , ΛI2 , ..., and ΛIm . So the other vertices of Λ different from T

contain components outside S. By Lemma 3, the maximal number of vertices that Λ

may contain is n−m+ 1 which does not exceed n.

Case 3. There exists a vertex T = I1 ⊕ . . . ⊕ Ik, where 1 ≤ k ≤ m, in Λ containing

no components outside S, and T is not the only vertex in ΛIt , for every 1 ≤ t ≤ k.

Notice that by Corollary 4 we have k ≤ dn2 e. In ΛI1 , let ∆ = I1 ⊕ J1 ⊕ . . . ⊕ Jl be
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a vertex different from T and contain the least number of components. Since Λ is a

clique, every vertex in ΛIt , where k + 1 ≤ t ≤ m exists in some ΛIt , where 1 ≤ t ≤ k.

Thus, we get that Λ = ΛI1 ∪ . . . ∪ ΛIk . By Lemma 5, the number of vertices in each

ΛIt , where t = 2, . . . , k, does not exceed l+ 1. Since were are searching for the largest

value among the orders of the maximal cliques, without loss of generality, let’s take

the extreme case where |V er[ΛI2 ]| = . . . = |V er[ΛIk ]| = l + 1.

On the other hand, since ∆ has the minimum number of components in ΛI1 , and

all other vertices of ΛI1 must contain components different from those of T + ∆ (i.e.

components selected from the remaining n − (k + l) components of R) such that no

overlapping among the components of these vertices (except for I1) occurs. Therefore

the maximum number of vertices that ΛI1 may contain is

⌊
n− (k + l)

l

⌋
(after the

division, the remaining components can be distributed on the vertices of ΛI1 which

are different from T and ∆). Consequently, noticing that T is common among ΛI1 ,

ΛI2 , . . . , and ΛIk , the maximum number of vertices that Λ may contain has an upper

bound given by

⌊
n− (k + l)

l

⌋
+ (k− 1)l+ 2, where the number 2 counts T once and

∆. Now⌊
n− (k + l)

l

⌋
+(k−1)l+2 ≤ n− (k + l)

l
+(k−1)l+2 =

n− k
l

+(k−1)l+1 = ϕ(k, l).

where 1 ≤ k ≤ m and 1 ≤ l ≤ m − k. Notice that the graph with ϕ(k, l) vertices

obtained above is not necessarily a clique. If it is a clique then it’s equal to Λ because

Λ is a maximum clique. Next, we use calculus to show that the upper bound function

ϕ over the triangular region E given by 1 ≤ k ≤ m and 1 ≤ l ≤ m−k does not exceed

n. Since k, l ≥ 1, The region E can be written as 1 ≤ k ≤ m− 1 and 1 ≤ l ≤ m− k.

The solution of the system
∂ϕ

∂k
= l− 1

l
= 0 and

∂ϕ

∂l
= k−1− n− k

l2
= 0 is the critical

point (k, l) where k =
n+ 1

2
and l = 1. This critical point may and may not lie inside

the triangle region E. Fortunately, this does not matter because ϕ(
n+ 1

2
, 1) = n.

For the boundary l = 1 of E, ϕ(k, 1) = n for every 1 ≤ k ≤ m. For the boundary

l = m− k of E, the function ϕ(k,m− k) =
n− k
m− k

+ (k − 1)(m− k) + 1 is increasing

over the interval [1,m− 1] which takes its maximum at k = m− 1 and the maximum

value is n. For the boundary k = 1 of E, we have ϕ(1, l) =
n− 1

l
+ 1 which has the

maximum value n when l = 1. Consequently, the maximum value of ϕ over E is n.

By Theorem 12, the maximal clique induced by a nonzero simple ideal has n vertices,

we conclude that ω(GS(R)) = n.

Remark 14. Theorem 18 provides a solution to the following coloring problem: Given n
different colors and the ability to select 1, 2, ..., or n colors without replacement and without
order (resulting in 2n − 1 possibilities). What is the maximum number of possibilities in
which any two pairs share only one common color? The answer, as stated by Theorem 18,
is n.
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