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Abstract: For a graph G(V,E) which is undirected, simple, and finite, we denote by
|V | and |E| the cardinality of the vertex set V and the edge set E of G, respectively. A

graceful labeling f for the graph G is an injective function f : V → {0, 1, 2, . . . , |E|} such

that {|f(u)− f(v)| : uv ∈ E} = {1, 2, . . . , |E|}. A graph that has a graceful-labeling is
called graceful graph. A vertex (resp. edge) coloring is an assignment of color (positive

integer) to every vertex (resp. edge) of G such that any two adjacent vertices (resp.
edges) have different colors. A graceful coloring of G is a vertex coloring c : V →
{1, 2, . . . , k}, for some positive integer k, which induces edge coloring |c(u) − c(v)|,
uv ∈ E. If c also satisfies additional property that every induced edge color is odd,
then the coloring c is called an odd-graceful coloring of G. If an odd-graceful coloring c

exists for G, then the smallest number k which maintains c as an odd-graceful coloring,

is called odd-graceful chromatic number for G. In the latter case we will denote the odd-
graceful chromatic number of G as Xog(G) = k. Otherwise, if G does not admit odd-

graceful coloring, we will denote its odd-graceful chromatic number as Xog(G) =∞. In
this paper, we derived some facts of odd-graceful coloring and determined odd-graceful
chromatic numbers of some basic graphs.

Keywords: graceful graph, graceful coloring, odd-graceful coloring, odd-graceful chro-
matic number.
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1. Introduction

Let G(V,E) be an undirected, finite simple graph. Denote by |V | and |E| the cardi-

nality of the vertex set V and edge set E of G, respectively. A graceful labeling of G is

an injective function f from vertex set V into the set {0, 1, 2, . . . , |E|} which induces

a bijective function f ′ from the edge set E onto the set {1, 2, . . . , |E|} such that for

every edge uv ∈ E we have f ′(uv) = |f(u)− f(v)|. A graph that has a graceful label-

ing is called graceful. A variation of graceful labeling is called odd-graceful labeling

which was introduced by Gnanajothi [4] in 1991. Here, the codomain of f is the set

{0, 1, 2, . . . , 2|E| − 1}, instead of {0, 1, 2, . . . , |E|}, which generates distinct odd-labels

for edges of G, {|f(u)− f(v)| : uv ∈ E} = {1, 3, . . . , 2|E| − 1}. A graph which admits

an odd-graceful labeling is called odd-graceful graph. An application of odd-graceful

labeling for information security can be seen in [9].

Furthermore, Pasotti [7] in 2012 generalized these two labeling concepts as the so-

called d-graceful labeling. Let G be a graph of size d × m, for some positive in-

tegers d and m. A labeling f of G is called d-graceful if f is an injection from

V into the set {0, 1, . . . , d(m + 1) − 1} such that {|f(u) − f(v)| : uv ∈ E} =

{1, 2, . . . , d(m + 1) − 1} − {m + 1, 2(m + 1), . . . , (d − 1)(m + 1)}. In terms of d-

graceful labeling, we can see that graceful and odd-graceful labelings are 1-graceful

and |E|-graceful labelings, respectively.

A vertex (resp. edge) coloring is an assignment of colors (positive integers) to

every vertex (resp. edge) of G such that any two adjacent vertices (resp. edges) have

different colors. Here, we will discuss a combination between the coloring concept and

the concept of graceful labeling into new concept which is called graceful coloring. The

word graceful refers to the way we induce edge colors which are different for all edges

incident to a common vertex. In more precise formulation, we define graceful coloring

as the following. A graceful coloring for a graph G is a vertex coloring c : V →
{1, 2, . . . , k}, for some positive integer k, which induces edge coloring |c(u)− c(v)|, for

every edge uv ∈ E. The smallest k for which c is a graceful coloring for G is called

the graceful chromatic number of G, denoted by Xg(G). It is clear that any graph

admits a graceful coloring.

If c also satisfies additional property that every induced edge colors are odd, then

the coloring c is called an odd-graceful coloring of G. We will show later on that

not every graph has odd-graceful coloring. If an odd-graceful coloring c exists for

G, then the smallest number k which maintains c as an odd-graceful coloring for G,

is called the odd-graceful chromatic number of G. In this later case, we will denote

the odd-graceful chromatic number of G as Xog(G) = k. Otherwise, if G does not

admits any odd-graceful coloring, we will denote its odd-graceful chromatic number

as Xog(G) = ∞. Since an odd-graceful coloring for a graph G is a graceful coloring

for G, it is obvious that Xg(G) ≤ Xog(G).

Graceful colorings have been studied by many researchers. Byers in [2] studied

chromatic number of some classes of graphs, including cycles, wheel, and caterpillars.

He also derived some upper bound of graceful chromatic numbers of trees related to

their maximum degree. Alfarisi, et al in [1] derived graceful chromatic numbers of
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tadpole and sun graphs. At the last part of their paper, they proposed some open

problems. Other researches on graceful coloring may also be seen in [3, 5, 6].

In [8] Su, Sun, and Yao introduced a variation of graceful coloring which they

call as odd-graceful total coloring. This variant of graceful coloring has prospective

application for the security authentication in generating passwords which resist some

attacks: brute force, dictionary, guessing, reproduction, and denial of service attacks.

In this paper, we study another variation of graceful coloring which may also be

considered as a relaxation of odd-graceful total coloring. Instead of total coloring,

here we introduce a vertex coloring, but keeping oddness and gracefulness properties

of the coloring. As we mentioned above, we call this variation of graceful coloring

as odd-graceful coloring. We study some characteristics of odd-graceful coloring

and then derived some results on odd-graceful chromatic number of some basic graphs.

2. Main Results

We will start with an observation regarding dual coloring of an odd-graceful coloring.

Let c be an odd-graceful coloring of a graph G. Define the dual coloring of c for G,

c′ : V → {1, 2, . . . , k} as c′(u) = k+1− c(u) for every u ∈ V . We can immediately see

that the dual coloring is a proper vertex coloring for G. Now, we will prove that the

dual coloring c′ of an odd-graceful coloring will preserve the induced color of every

edge, and therefore, c′ is again an odd-graceful coloring for G. This is shown in the

following line.

|c′(u)− c′(v)| = |[k + 1− c(u)]− [k + 1− c(v)]| = |c(v)− c(u)|.

This observation is formulated in the following lemma.

Lemma 1. The dual coloring of an odd-graceful coloring of a graph G is an odd-graceful
coloring of G.

Assume that a graph G has an odd-graceful coloring c. If we restrict the coloring c

to a subgraph H of G, then we may conclude that c is also an odd-graceful coloring

for H. An immediate result is the following.

Lemma 2. Let c be an odd-graceful coloring of G, and H be a subgraph of G. We have

Xog(H) ≤ Xog(G).

Consider a non-connected graph G with l components G1, G2, . . . , Gl. It is clear

that Xog(G) = max{Xog(Gi) : i = 1, 2, . . . , l}. So, whenever we are talking about odd-

graceful chromatic number of some non-connected graph, in fact we are dealing with
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an odd-graceful chromatic number of some connected graph. Hence, in the sequel, we

will be dealing with only connected simple graphs.

The degree of a graph G, denoted by deg(G), is equal to the maximum degree of its

vertices. Now, assume that deg(G) = ∆ and let u be a vertex of G with deg(u) = ∆.

Let N(v) = {w ∈ V : d(v, w) ≤ 1}, where d(x, y) stands for the distance between

vertex x and y. We call N(v) as the closed neighbourhood of vertex v. If c is an odd-

graceful coloring of G, then it is clear that c(v) ≥ 1 for every v ∈ V . Furthermore, for

maintaining the property of oddness, the parity of c(v) is different from the parity of

c(w) for every w 6= v, w ∈ N(v).

Let some pair of edges a and b both be incident to u, with deg(u) = ∆. Since edges

a and b must have different odd colors, we need ∆ odd colors for all these such

edges. This implies that there exists some edge uw, w ∈ N(u), which has color

|c(u)−c(w)| ≥ 2∆−1. Thus, c(u) or c(w) is greater than or equal to 2∆−1+1 = 2∆,

since c(v) ≥ 1 for all v ∈ V . Based on this observation, we have the following lemma.

Lemma 3. If G is a graph with deg(G) = ∆, then Xog(G) ≥ 2∆.

In the following theorem, we will formulate on how many colors we may assign to

vertices adjacent to a certain vertex which has a given color.

Theorem 1. Let G be a graph with deg(G) = ∆ and c be an odd-graceful coloring for G.
Let a be an integer 1 ≤ a ≤ 2∆, and b = min{a, 2∆ + 1− a}. If for some vertex u ∈ V we
have c(u) = a, then there are only ∆ − b b

2
c integers in {1, 2, . . . , 2∆} that can be assigned

for neighbours of u.

Proof. Case 1. a ≤ ∆. Here, b = a.

If a is odd, then the odd differences between a and integers 2, 4, . . . , a − 1 are the

same with those between a and integers a + 1, a + 3, . . . , 2a − 2. Integers a − k and

a + k, 2 ≤ k ≤ a − 2, can not be used simultaneously, since they give the same

odd difference to a. Hence, only a half number, (= (a − 1)/2), of even integers

{2, . . . , a− 1, a + 1, . . . , 2a− 2} that may be assigned for the color of the neighbours

of u due to the odd-gracefulness property. So, there are exactly ∆− a−1
2 = ∆− b−1

2

even integers in {1, 2, . . . , 2∆} which can be assigned for neighbours of u. (Since a is

odd, odd integers can not be assigned to color any neighbour of u. The total of these

odd integers in this set is equal to ∆.)

Now, let a be even. Based on a similar argument, only a half number (= a/2) of odd

integers {1, 3, . . . , a − 1, a + 1, . . . , 2a − 1} that may be assigned for the color of the

neighbours of u. Thus, there are exactly ∆ − a
2 = ∆ − b

2 integers in {1, 2, . . . , 2∆}
which can be assigned for neighbours of u.

Case 2. ∆ < a ≤ 2∆.

In this case b = 2∆ + 1− a. Consider the set of integers (colors)

X = {a± k : 1 ≤ k ≤ 2∆− a, k odd}, if a odd,
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and

Y = {a± k : 1 ≤ k ≤ 2∆− a− 1, k odd}, if a even.

If a is odd, the vertex colors a + k and a − k, for every odd 1 ≤ k ≤ 2∆ − a, will

induce the same edge colors |a − (a − k)| = |a − (a + k)| = k. The same thing will

happen for a is even. Based on the same argument, we may again conclude that only

a half (= b b2c) elements of the integer sets X and Y which can be assigned for colors

of neighbours of u. Thus, the theorem is proven.

Corollary 1. Let G be a graph with deg(G) = ∆ and c be an odd-graceful coloring of G
with Xog(G) = 2∆. If deg(u) = ∆ for some u ∈ V , then c(u) = 1 or c(u) = 2∆.

Proof. By Theorem 1, it is clear that deg(u) ≤ ∆ − b b2c, with b = min{c(u), 2∆ +

1 − c(u)}. If c(u) is not equal to 1 or 2∆, then, again based on Theorem 1, we get

deg(u) ≤ ∆− b b2c < ∆. This implies that deg(u) < ∆, a contradiction.

Now, we will observe odd-graceful chromatic number of some basic graphs. We will

start from path graph.

Theorem 2. Let Pn be the path on n vertices with n ≥ 2. Then,

Xog(Pn) =


2, if n = 2,
4, if n = 3, 4,
5, if n ≥ 5.

Proof. Assume the coloring we set for the path Pn is c : V (Pn) → {1, 2, . . . , k},
for some positive integer k. Let x1, x2, . . . , xn, be the vertices of the path Pn where

xixi+1, 1 ≤ i ≤ n − 1, are the edges of the path. If n = 2, we set c(xi) = i, i = 1, 2.

It is obvious that Xog(P2) = 2.

For n = 3, we define the coloring c as c(x1) = 2, c(x2) = 1, c(x3) = 4, and for n = 4,

we define c as c(x1) = 2, c(x2) = 1, c(x3) = 4, and c(x4) = 3. By using Lemma 3, we

get Xog(P3) = 4 = Xog(P4).

For n ≥ 5, we define the coloring as follows.

c(xi) =


1, if i ≡ 1 (mod 4),

2, if i ≡ 2 (mod 4),

5, if i ≡ 3 (mod 4),

4, if i ≡ 0 (mod 4).

We can immediately check that this above coloring defines an odd-graceful coloring

for Pn, n ≥ 5. From here, we conclude that Xog(Pn) ≤ 5, with n ≥ 5.

First, we focus on the path of five vertices, P5. We will show that Xog(P5) = 5.

Let V (P5) = {x1, x2, x3, x4, x5} and E(P5) = {x1x2, x2x3, x3x4, x4x5}. Note that

the vertices x2, x3, and x4 have maximum degree ∆ = 2. Suppose that Xog(P5) =
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2∆ = 4. Based on Corollary 1, it must be either c(x2) = 1 = c(x4) and c(x3) = 4,

or c(x2) = 4 = c(x4) and c(x3) = 1. But this implies c(x2x3) = 3 = c(x3x4) which

contradicts the gracefulness property. This insists us to add one more color which is

greater than 4. From this, we then conclude that Xog(P5) ≥ 5. Thus, for n = 5 we

infer that Xog(P5) = 5.

Furthermore, by Lemma 2, we have that Xog(Pn) ≥ Xog(P5) = 5. Therefore, we can

conclude that Xog(Pn) = 5, for n ≥ 5.

The next basic graph we will observe is cycle on n ≥ 3 vertices, Cn.

Theorem 3. Let Cn, n ≥ 3, be the cycle on n vertices. Then,

Xog(Cn) =


5, if n ≡ 0 (mod 4),
6, if n ≡ 2 (mod 4),
∞, if n is odd.

Proof. Let the vertices of Cn be x1, x2, . . . , xn where xi is adjacent with xi+1, 1 ≤
i ≤ n− 1, and xn and x1 are adjacent. Now we divide the proof into three cases.

Case 1. n ≡ 0 (mod 4).

In this case we define a coloring c for cycle Cn, n ≥ 4, as follows.

c(xi) =


2, if i ≡ 1 (mod 4),

1, if i ≡ 2 (mod 4),

4, if i ≡ 3 (mod 4),

5, if i ≡ 0 (mod 4).

Under this definition we can see immediately that every two adjacent edges in Cn

have different induced colors: 1 and 3. Therefore, in this case we may conclude that

Xog(Cn) = 5.

Case 2. n ≡ 2 (mod 4).

Here we will consider Cn as a subdivision graph from Cn−2, through twice edge

subdivisions. Let n = 4k + 2, for some positive integer k. Consider the colored C4k

as in Case 1. We will do subdivision on an edge which has end vertex colors 4 and 5.

Assume that the end vertices of this edge are x and y where c(x) = 4 and c(y) = 5.

This edge xy has induced color 1. This means that if vertex w 6= y is adjacent to x,

and vertex z 6= x is adjacent to y, then c(wx) 6= 1 and c(yz) 6= 1.

Let us add two different vertices a and b on this edge xy, such that each new pair of

vertices {x, a}, {a, b}, and {b, y} are adjacent vertices in the new graph Cn. Extend

the coloring c into c∗ for the subdivision graph Cn as follows.

c∗(v) =


c(v), if v ∈ V (C4k),

3, if v = a,

6, if v = b.
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Observe that the color of the edge xa is c(xa) = |c(x) − c(a)| = 4 − 3 = 1, and the

one of the edge by is c(by) = |c(b)− c(y)| = |5− 6| = 1. On the other hand, the color

of the edge ab is c(ab) = |c(a) − c(b)| = 3 − 6 = 3. This implies that the coloring c∗

is an odd-graceful coloring for Cn.

Thus, for n ≡ 2 (mod 4), we can conclude that Xog(Cn) = 6.

Case 3. n ≥ 3 is odd.

For inducing edge color to become odd, any pair of adjacent vertices should get colors

with different parity: odd and even parities. Let {x1, x2, . . . , xn} be the vertices of

the graph Cn. Without loss of generality, assume that c(x1) is odd. For maintaining

the odd-graceful coloring property, then for every even integer i, 1 ≤ i ≤ n− 1, c(xi)

is even, and otherwise c(xi) is odd. Therefore, c(xn) is odd. But, this will imply that

the induced label for the edge x1xn to be even. This violates the requirement of c for

being an odd-graceful coloring. Hence, we may conclude that Xog(Cn) =∞ whenever

n is odd. So, in all cases suggest that the theorem is proved.

It is well known that graph contains a cycle of odd length if and only if it is not

bipartite. Thus, we have the following corollary.

Corollary 2. If G is not bipartite graph, then Xog(G) =∞.

Proof. Theorem 3 and Lemma 2 immediately imply Corollary 2.

A caterpillar is a connected simple graph which becomes a path after removing all

leafs from the graph. This path is called the spine of the caterpillar. Each vertex

in the spine is an internal vertex of the original caterpillar. If each end vertex of

the spine of a caterpillar is reconnected with one pendant edge (which was removed

before), then we obtain a new path of length two more than the length of the spine.

This new path will be named as the extended spine of the caterpillar. The length of a

caterpillar is equal to the length of its extended spine. Note that caterpillar of length

2 is a star.

If all vertices of the spine of a caterpillar have the same degree ∆ in the related

caterpillar, then the caterpillar is called uniform caterpillar. It is well known that a

caterpillar is bipartite graph. This implies that every caterpillar has an odd-graceful

coloring. Moreover, any two vertices in the same partition must get colors with the

same parity, and they are at even distance one another. Any path on more than two

vertices is a caterpillar.

Theorem 4. Let G be a caterpillar with deg(G) = ∆ ≥ 2, then 2∆ ≤ Xog(G) ≤ 2∆ + 1.

Proof. Based on Theorem 3 we have Xog(G) ≥ 2∆. To complete the proof, we

will now prove that Xog(G) ≤ 2∆ + 1. First, let x1, x2, . . . , xn be the vertices of the
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extended spine of G. Color these vertices as follow:

c(xi) =


2, if i ≡ 1 (mod 4),

1, if i ≡ 2 (mod 4),

2∆, if i ≡ 3 (mod 4),

2∆ + 1, if i ≡ 0 (mod 4).

(1)

Now, the coloring c for leafs of the caterpillar using procedure below.

i. Every leaf which is adjacent to xi, i ≡ 1(mod 4) is assigned with color from the

odd color set {5, 7, . . . , 2∆− 1}. Together with colors 1 and 2∆ + 1(which have

already been assigned for xi−1 and xi+1, 2 ≤ i ≤ n− 1), we have ∆ odd colors

for all vertices which are adjacent to this xi. So, the provided colors are enough

for coloring the mentioned leafs, since the degree of G is ∆.

ii. Each leaf which is adjacent to xi, i ≡ 2 (mod 4) at the extended spine is assigned

with color from the even color set {4, 6, . . . , 2∆−2}. Similarly to i.) the provided

colors are enough for coloring the mentioned leafs.

iii. Any leaf adjacent to vertex xi, i ≡ 3 (mod 4) is assigned with odd color from

the color set {3, 5, 7, . . . , 2∆− 3}. Again, we can argue that the provided colors

are enough for coloring the mentioned leafs.

iv. Any leaf adjacent to vertex xi, i ≡ 0 (mod 4) at the extended spine is assigned

with even color from the color set {4, 6, . . . , 2∆− 2}. Here, we can also see that

the provided colors are enough for coloring the mentioned leafs.

We can see immediately that c defines an odd graceful coloring for the caterpillar G,

and gives Xog(G) ≤ 2∆ + 1.

Below we will show that the bounds of the odd-graceful chromatic number for

caterpillars as formulated in Theorem 4, are sharp. This is shown by observing odd-

graceful chromatic numbers of some classes of caterpillars.

Theorem 5. Let G be a caterpillar of degree ∆. If there are two vertices in G with
maximum degree having distance 2 one another, then Xog(G) = 2∆ + 1.

Proof. In order that the caterpillar G may contain two vertices as in the theorem,

the length of G must be at least 4. Based on Corollary 1, if we use only colors

1, 2, . . . , 2∆, for coloring G odd-gracefully, then there are only two colors, that are 1

and 2∆, which can be assigned to vertex of maximum degree ∆. But, two vertices

which are at distance 2 can not get the same color. Therefore, we need at least one

bigger color to complete the coloring for G into odd-graceful coloring. This says that

Xog(G) ≥ 2∆ + 1. So, based on Theorem 4, we can conclude that Xog(G) = 2∆ + 1

if G contains two vertices with maximum degree ∆ which are at distance 2.
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Except for caterpillars of length less than 4, any uniform caterpillar satisfies the

condition of Theorem 5. Therefore, the following theorem can be considered as a

corollary of Theorem 5.

Theorem 6. Let G be a uniform caterpillar of degree ∆, then Xog(G) = 2∆ if the length
of G is at most 3, and Xog(G) = 2∆ + 1 otherwise.

Proof. Let Pn, n ≥ 3, be the extended spine of the caterpillar G. If n = 3 (G is

a star), assign color 1 for the vertex with maximum degree ∆, and its ∆ leafs with

colors {2, 4, . . . , 2∆}. Here, we conclude that Xog(G) = 2∆.

If n = 4, let w, x, y and z in order be the vertices of the extended spine of G. Here

deg(x) = deg(y) = ∆ and deg(w) = deg(z) = 1. Color x with 1 and y with 2∆.

Then, color leafs which are adjacent to x, including the vertex w, using colors from

{2, 4, . . . , 2(∆−1)}, and color all leafs adjacent to y, including z, with {3, 5, . . . , 2∆−
1}.
It is clear that the above two colorings are odd-graceful colorings with Xog(G) = 2∆.

As it is mentioned just right after Theorem 5, for n ≥ 5, graph G satisfies the premise

of Theorem 5, and hence the theorem is proved.

In Figure 1 we depict an example of a uniform caterpillar G of length 7 and of

degree 5 with Xog(G) = 11 = 2∆ + 1.

Figure 1. An example of uniform caterpillar G of degree ∆ = 5 with an odd-graceful coloring having
Xog(G) = 11.

In the following theorem we show the exact value of odd-graceful chromatic number

of another class of caterpillar.

Theorem 7. Let G be a non-trivial caterpillar with deg(G) = ∆ ≥ 3. If any two vertices
with maximum degrees ∆ in the same partition set are at distance congruent to 0(mod 4),
then Xog(G) = 2∆.

Before proceeding to a proof of the theorem, we show an example of the theorem in

Figure 2. We see that the blue and the red vertices have maximum degree 6. The

blue vertices are at distance 4 one another. So are the red vertices. Here, we may

consider that the bipartition set A contains the blue vertices, and the other bipartion

set, B, contains the red vertices. The coloring for the caterpillar graph in the figure

is an odd-graceful coloring with Xog(G) = 12.
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Figure 2. An example of caterpillar G of degree ∆ = 6 which satisfies Theorem 7 having Xog(G) = 12.

Proof. Let G be a caterpillar with deg(G) = ∆, where A and B be the partition sets

of its vertex set. As it is noticed just right before the Theorem 4, any two vertices

in the same partition set have even distance one another. Moreover, it is clear that

vertices with maximum degree are always internal vertex of the extended spine of the

caterpillar G.

Let Pn be the extended spine of G and let V = {x1, x2, . . . , xn−1, xn} in this order be

the vertices of Pn. Let s, 2 ≤ s ≤ n− 1, be the smallest index such that deg(xs) = ∆.

Assume, without loss of generality, that xs ∈ A, and t, s + 1 ≤ t ≤ n − 1, be the

smallest index such that xt ∈ B with deg(xt) = ∆. We have two cases.

Case 1. t− s ≡ 1 (mod 4)

Define a vertex coloring c for G as follows.

c(xi) =


1 if i− s ≡ 0 (mod 4),

2∆ if i− s ≡ 1 (mod 4),

2∆− 1 if i− s ≡ 2 (mod 4),

2 if i− s ≡ 3 (mod 4).

From the above coloring we see immediately that every vertex in the extended spine

which is at distance congruent to 0(mod 4) from vertex xs (resp. xt) will get color 1

(resp. 2∆). So, all these vertices are eligible to have maximum degree.

Case 2. t− s ≡ 3 (mod 4)

Define a vertex coloring c for G as follows.

c(xi) =


1 if i− s ≡ 0 (mod 4),

2 if i− s ≡ 1 (mod 4),

2∆− 1 if i− s ≡ 2 (mod 4),

2∆ if i− s ≡ 3 (mod 4).

Using this above coloring we can see a similar thing with Case 1., that every vertex

in the extended spine which is at distance congruent to 0 (mod 4) with vertex xs

(resp. xt) will again get color 1 (resp. 2∆). Hence, we can also conclude that all

these vertices are eligible to have maximum degree.

The other internal vertices in the spine will get color 2 or 2∆− 1 which are valid for

having degree less than the maximum degree ∆. Thus, the theorem is proved.
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In [3], English, et al define a specific tree which is denoted by T∆,h for some positive

integer h ≥ 2 where T∆,1 is the star of ∆+1 vertices. This T∆,h is obtained by adding

∆−1 pendant edges to any leaf of T∆,h−1. The tree T∆,h has 1+∆[1+
∑h−1

i=0 (∆−1)i]

vertices. For instance, the tree T2,3 is the path with seven vertices.

The following theorem may be considered as a corollary of the first part of Theorem 6.

Theorem 8. The star T∆,1 with ∆ + 1 vertices has Xog(T∆,1) = 2∆.

Proof. Let x0 be center vertex of the star and x1, x2, . . . , x∆ be its related leafs.

Define vertex coloring c : V (T∆,1)→ {1, 2, . . . , 2∆} as the following

c(xi) =

{
1, if i = 0,

2i, otherwise.

We can see immediately that c defines an odd-graceful coloring for T∆,1. By applying

Theorem 3, then we may conclude that Xog(T∆,1) = 2∆.

Below we observe Xog(T∆,h) for h = 2 and leave the case h ≥ 3 as an open problem

which will be formulated in the last section of the paper.

Theorem 9. For a positive integer ∆ ≥ 2, we have

Xog(T∆,2) = 3∆− 1.

Proof. Let V (T∆,2) be {x0, xi, y
i
j : i = 1, 2, . . . ,∆; j = 1, 2 . . . ,∆− 1}, and E(T∆,2)

be {x0xi, xiy
i
j : i = 1, 2, . . . ,∆; j = 1, 2 . . . ,∆− 1}. We can see that deg(xi) = ∆, for

every i = 0, 1, 2, . . . ,∆, and deg(yij) = 1 for every i = 1, 2, . . . ,∆ and j = 1, 2 . . . ,∆−
1.

Below we define a coloring c : V (T∆,2)→ {1, 2, . . . , 3∆− 1}. First, we set c for all

internal vertices of T∆,2.

c(x0) = 1,

c(xi) =

{
2i, if i ≤ b∆

2 c,
2(∆ + (i− b∆

2 c)− 1), if b∆
2 c+ 1 ≤ i ≤ ∆.

Since c(x0) is odd and c(xi) is even for every 1 ≤ i ≤ ∆, it is clear that

the induced edge label |c(x0) − c(xi)| is odd for every 1 ≤ i ≤ ∆ and

|c(x0) − c(xi)| 6= |c(x0) − c(xk)| for every i 6= k, 1 ≤ i, k ≤ ∆. Now we will

define c for the leafs yij , 1 ≤ i ≤ ∆; 1 ≤ j ≤ ∆− 1, as follows.

For i = 1, 2, . . . , b∆
2 c,

c(yij) =

{
2j + 1, j = 1, 2, . . . , i− 1,

2(i + j) + 1, j = i, i + 1, . . . ,∆− 1,
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and for i = b∆
2 c+ 1, . . . ,∆,

c(yij) = 2j + 1, for every j = 1, 2, . . . ,∆− 1.

By inspection we can see that c defines an odd-graceful coloring for graph T∆,2.

Furthermore, the largest color here is 3∆−1 which is assigned to vertex x∆ if ∆ is odd,

and to vertex y
b∆

2 c
∆−1 if ∆ is even. Therefore, we can conclude that Xog(T∆,2) ≤ 3∆−1.

Now, we will show that 3∆− 1 is the smallest maximum possible color such that c is

odd graceful coloring for T∆,2. This is explained as below.

If there is a vertex v, deg(v) = ∆ with color ∆ ≤ c(v) ≤ 2∆ − 1, then based on

Theorem 1, the color ≥ 3∆ − 1 occurs for a vertex adjacent to v. To show this, we

will divide the case on the parity of ∆: even or odd. Remember that, according to

Theorem 1, if vertices x, y, with deg(x) = ∆ = deg(y) and with ∆ ≤ c(x) < c(y) ≤
2∆− 1, then the smallest maximum color needed by vertices adjacent to y is greater

than the one adjacent to x. So, we will only see for c(v) = ∆.

First let ∆ is even. Here b in Theorem 1 is equal to ∆. Therefore, to complete all

colors for vertices adjacent to v, we need ∆/2 odd colors which are greater than 2∆.

Thus, the greatest color will be ≥ 2∆− 1 + 2(∆/2) = 3∆− 1.

Now let ∆ is odd. Based on Theorem 1, again b is equal to ∆, and therefore we need

(∆ − 1)/2 even colors which are greater than 2∆ to complete all colors for vertices

adjacent to v. Thus, the greatest color will be ≥ 2∆ + 2((∆− 1)/2) = 3∆− 1.

In any case, we have shown that the color ≥ 3∆ − 1 occurs in odd-graceful coloring

for the graph T∆,2. In other words, here we obtain that Xog(T∆,2) ≥ 3∆− 1. Hence,

the theorem is proved.

An illustration for Theorem 9 is shown in Figure 3.

Figure 3. An odd-graceful labeling of the graph T6,2 having Xog(T6,2) = 3∆− 1 = 17.

In the rest part of the paper, we will focus on the odd-graceful chromatic numbers

of ladder and prism graphs. We first formulate our result on ladder Pn × P2, n ≥ 1.
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Theorem 10. If n is even we have,

Xog(Pn × P2) =



2, if n = 1,
5, if n = 2,
6, if n = 3,
7, if n = 4,
8, if n = 5,
9, if n ≥ 6.

Proof. For every integer n ≥ 1, let c be an odd-graceful coloring for graph Pn ×P2.

For n = 1 is trivial. For n = 2, the graph P2 × P2 is a cycle on four vertices. So, by

referring to Theorem 3, we confirm the theorem.

For n = 3, there are two vertices of maximum degree ∆ = 3. Based on Theorem 3,

we conclude that Xog(P3 × P2) ≥ 6. By using diagram in Figure 4, we obtain that

Xog(P3 × P2) = 6.

Now, let us observe for n = 4. The graph P4 × P2 contains a cycle the vertices of

which all have degree 3 in P4×P2. Thus, if we apply only even colors 2, 4, and 6, the

even color 2 or 4 must be the color of some vertex of degree 3. Based on Theorem 3,

if some vertex v of degree 3 has color 2 or 4, then there is a vertex adjacent to v with

odd color ≥ 7. This means that Xog(P4 × P2) ≥ 7. But, then, using the odd-graceful

coloring for P4 × P2 shown in Figure 5, we may confirm that the theorem is true for

n = 4.

Figure 4. An odd-graceful coloring for P3 × P2.

Figure 5. An odd-graceful coloring for P4 × P2.

The argument for concluding Xog(P5 × P2) = 8 is similar with graph P4 × P2. But

here, we observe the occurrence of odd color 3 or 5 for vertex of maximum degree 3.

See Figure 6 for an odd-graceful coloring of P5 × P2.

Now, let us observe the graph P6 × P2. Note that if even color 4 is the color of some

vertex of maximum degree 3 in P6 × P2, then odd color ≥ 9 must appear. Suppose

that we use only even colors 2, 6, and 8, for relevant vertices of degree 3.
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Figure 6. An odd-graceful coloring for P5 × P2.

Let V = {xi, yi : i = 1, 2, . . . , 6} and E = {xixi+1, yiyi+1 : i = 1, 2, . . . , 5} ∪ {xiyi :

i = 1, 2, . . . , 6}. Recall that to maintain gracefulness property, any two vertices at

distance 2 to each other can not get the same color.

Without loss of generality, assume c(x2) = 2, c(x4) = 8, c(x6) = 6, c(y3) = 6,

c(y5) = 2. See Figure 7 for a visualization. Consider x3. We see that c(x3) can not

be 5 or 7. Let c(x3) = 1. Now, c(y4) can not be 1, 5, or 7. Assign c(y4) = 3. This

implies that c(x5) can not be 1, 3, 5, and 7. Hence, c(x5) must be odd color ≥ 9. This

means that Xog(P6 × P2) ≥ 9.

Figure 7. Odd-graceful coloring of P6 × P2 with Xog(P6 × P2) ≥ 9.

From here, based on Theorem 2, we can conclude that Xog(P6 × P2) ≥ 9 for every

n ≥ 6.

It is clear that Pn ×P2, n ≥ 6 contains P6 ×P2. Therefore, Xog(Pn ×P2) ≥ 9. Then,

for concluding that Xog(Pn × P2) = 9, we apply the following odd-graceful coloring

for Pn × P2, n ≥ 6 which shows that Xog(Pn × P2) ≤ 9.

We start by naming vertices and edges of Pn×P2 as V = {xi, yi : i = 1, 2, . . . , n} and

E = {xixi+1, yiyi+1 : i = 1, 2, . . . , n− 1} ∪ {xiyi : i = 1, 2, . . . , n}, respectively.

Define coloring c for Pn × P2, n ≥ 6, as follows.

c(xi) =


1 if i ≡ 1 (mod 4),

6 if i ≡ 2 (mod 4),

3 if i ≡ 3 (mod 4),

8 if i ≡ 0 (mod 4),

and c(yi) =


2 if i ≡ 1 (mod 4),

7 if i ≡ 2 (mod 4),

4 if i ≡ 3 (mod 4),

9 if i ≡ 0 (mod 4).

(2)

See Figure 8 for a visualization. From the diagram in Figure 8 we can immediately

conclude that Xog(P4 × P2) = 9 for every n ≥ 6. Thus, we proved the theorem.

Below we will observe the odd-graceful chromatic number of prism graphs Cn×P2,

n ≥ 3. First, we only see cases n ≡ 0 (mod 4) and n odd. The case n ≡ 2(mod 4),

will be discussed separately. Here, we have the following theorem.
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Figure 8. Odd-graceful coloring for Pn × P2, n ≥ 6 with Xog(Pn × P2) ≤ 9.

Theorem 11. For positive integer n ≥ 3, we have,

Xog(Cn × P2) =

{
9, if n ≡ 0 (mod 4),
∞, if n is odd.

Proof. For n odd, it is obvious that Xog(Cn × P2) =∞. This is because the graph

is not bipartite (see Corollary 2).

Now, let n ≡ 0 (mod 4). We know that all vertices of Cn × P2 each has degree 3.

First, we observe for n = 4. Note that the vertices of graph C4×P2 may be partitioned

into A and B, each with four vertices. For complying with the odd-graceful coloring

property, all vertices in each partition get colors of the same parity. Assume, without

loss of generality, that vertices in A get even colors. Since, each of these vertices is at

distance 2 to the others in A, every vertex must be assigned with different colors. This

insists the occurrence of a vertex with color 4 or greater than 8. Thus, by Theorem

1, Xog(C4 × P2) ≥ 9. But the odd-graceful coloring for C4 × P2 in Figure 9 confirms

that Xog(C4 × P2) = 9.

Figure 9. An odd-graceful coloring for C4 × P2.

Now, we continue our observation on graph Cn × P2 with n ≡ 0 (mod 4), n ≥ 8.

Based on Theorem 10, for the ladder Pn × P2, we have Xog(Pn × P2) ≥ 9 for every

n ≥ 8. This implies that Xog(Cn × P2) ≥ 9. But, using the odd-graceful coloring in

Eq. 2 (or in Figure 8), we may conclude that Xog(Cn×P2) = 9 for every integer n ≥ 8.

Combining this last result and the result on the odd-graceful chromatic number of

graph C4 × P2, we proved already the theorem.

Finally, we will observe the odd-graceful chromatic number of Cn × P2, n ≡
2(mod 4), n ≥ 6.

First, we show that Xog(C6 × P2) = 10, by showing that using colors

1, 2, 3, 4, 6, 7, 8, 9 is not possible. Note that color 5 is not included, otherwise, since
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every vertex has degree 3, even color ≥ 10 must occur.

From odd color combinations in any odd-graceful coloring c of C6 × P2, we will have

four possible combinations shown in Figure 10, where c(u) is an even color for some

vertex u in C6 × P2.

Figure 10. Four possible combinations of odd colors on odd-graceful coloring for C6×P2, with c(u) even
for some vertex u in C6 × P2.

In the next discussion, we will only describe combination a. for the impossibility of

using only colors 1, 2, 3, 4, 6, 7, 8 and 9. The other three combinations are left to the

reader for the sake of space efficiency and for the similarity of process. The impossibil-

ity of using only colors 1, 2, 3, 4, 6, 7, 8, and 9, to produce an odd-graceful coloring for

C6×P2, will be done by showing diagram in Figure 12 with the following explanations:

1) For some colors a and b, a|b means that we assign color a for the related vertex

between two possible colors, a and b, we may use.

2) The number written in red color stands for the only one possible color we may

apply for the related vertex.

3) The red dot on a vertex means that we can not continue the coloring process,

since we do not have choice of color to be assigned on the vertex.

4) The boldface colors are fixed colors of the initial combination. In this case the

boldface colors are 1,3, and 7.

Consider Figure 11. The process of coloring will be started from vertex a, b, then

Figure 11. Order of vertices assigned for coloring C6 × P2.

vertex c or d, e or f , g or h, and vertex i, if necessary. Following this coloring

order, for combination a. we have nine cases in total (see Figure 12), and these
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Figure 12. Nine coloring cases totally implied by combination of odd colors 1, 3, and 7, which are impos-
sible as an odd-graceful coloring for C6 × P2.

all are impossible for being an odd-graceful coloring. Now we may conclude that

Xog(C6 × P2) ≥ 10. Then, by considering the diagram of colored graph C6 × P2 in

Figure 13 we may conclude that Xog(C6 × P2) = 10.

For the remaining case, n ≡ 2 (mod 4), n ≥ 10, we have the following theorem

Theorem 12. For every integer n ≥ 10, n ≡ 2 (mod 4), we have 9 ≤ Xog(Cn×P2) ≤ 10.

Proof. We will introduce a terminology called as an open prism, which is in fact a

ladder. Let the vertex set and edge set of Cn × P2 be V = {xi, yi : i = 1, 2, . . . , n}
and E = {xixi+1, yiyi+1, x1xn, y1yn : i = 1, 2, . . . , n − 1} ∪ {xiyi : i = 1, 2, . . . , n},
respectively. If we slice Cn×P2 on an edge xiyi for some 1 ≤ i ≤ n, then we will get a

ladder Pn+1×P2 on 2(n+1) vertices. After renaming the vertices of this Pn+1×P2, we

may consider the vertex and edge set of Pn+1×P2 as V : {xi, yi : i = 1, 2, . . . , n, n+1}
and E = {xixi+1, yiyi+1 : i = 1, 2, . . . , n} ∪ {xiyi : i = 1, 2, . . . , n, n + 1}, respectively,

where vertices xn+1, yn+1, and edge xn+1yn+1 are the duplicates of vertices x1, y1

and edge x1y1, respectively. So, if c is an odd-graceful coloring for prism Cn×P2 and

the prism is sliced through the edge x1y1 in the above way, then we have: c(x1) =

c(xn+1), c(y1) = c(yn+1), and c(x1y1) = c(xn+1yn+1).

This ladder will be denoted by LCn×P2
. Then, we can immediately see that Xog(Cn×
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P2) ≥ Xog(LCn×P2
).

Furthermore, by Theorem 10 we may conclude that Xog(Cn×P2) ≥ Xog(LCn×P2) ≥ 9,

for every n ≥ 10.

Now, let us consider the odd-graceful colored graph C6 × P2 in Figure 13. Slice

Figure 13. An odd-graceful coloring for C6 × P2.

the colored C6 × P2 through the edge having end vertex colors 1 and 2. On this,

we obtain the colored open prism LC6×P2 as depicted in Figure 14. Note that by

Figure 14. An odd-graceful coloring for LC6×P2
.

re-glueing(re-identifying) the edge and end vertices of LC6×P2
which was sliced from

C6 × P2, we will get back the original C6 × P2.

To obtain an odd-graceful coloring for Cn × P2 for n ≡ 2(mod 4), n ≥ 10, we

need to introduce a ladder of length 4k + 1, L4k+1, for some integer k ≥ 1. Let

the vertex set and edge set of L4k+1 are V = {ui, vi : i = 1, 2, . . . , 4k + 1} and

E = {uiui+1, vivi+1 : i = 1, 2, . . . , 4k} ∪ {uivi : i = 1, 2, . . . , 4k + 1}, respectively.

Then, define an odd-graceful coloring c′ for L4k+1 similar with Eq. (2) as the following.

c′(ui) =


1 if i ≡ 1 (mod 4),

6 if i ≡ 2 (mod 4),

3 if i ≡ 3 (mod 4),

8 if i ≡ 0 (mod 4),

and c′(vi) =


2 if i ≡ 1 (mod 4),

7 if i ≡ 2 (mod 4),

4 if i ≡ 3 (mod 4),

9 if i ≡ 0 (mod 4).

(3)

Observe that c′(u1) = 1 = c′(u4k+1), c′(v1) = 2 = c′(v4k+1), and therefore, c′(u1v1) =

1 = c′(u4k+1v4k+1), for every integer k ≥ 1.

We have also c(x7) = c′(u1) and c(y7) = c′(v1), and therefore c(x7y7) = c′(u1v1).

For producing an odd-graceful coloring for Cn × P2 with n ≡ 2(mod 4), n ≥ 10, we

proceed by identifying the vertex u1 and x7, v1 and y7 and of course the edge x7y7
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and u1v1 of graph L4k+1, k ≥ 1, and graph LC6×P2
in Figure 14, respectively. The

resulting graph is a ladder of length 6 + 4k + 1 = 4l + 3, for some integer l ≥ 2.

This ladder can be considered as an open prism LC4l+2×P2
of C4l+2 × P2. Since,

|c(x1) − c(x2)| 6= |c′(u4k) − c′(u4k+1)| and |c(y1) − c(y2)| 6= |c′(v4k) − c′(v4k+1)|, by

identifying vertex x1 and vertex u4k+1, y1 and v4k+1, and edge x1y1 and u4k+1v4k+1,

we obtain an odd-graceful coloring of Cn × P2, for n ≥ 10, n ≡ 2 (mod 4) with

odd-graceful chromatic number 9 ≤ Xog(Cn × P2) ≤ 10.

3. Discussion and Open Problems

Odd-graceful coloring topic is introduced. Our current focus on this coloring is on

undirected finite simple graphs. We found some results on this observation. The

prospective future researches can be about some modification of odd-graceful coloring

to directed graphs.

Particularly on undirected finite simple graphs, finding odd-graceful chromatic

numbers of some classes of well-known graphs is also worthwhile research topics.

Based on partial results we discussed above, we propose the following open prob-

lems. We start to propose odd-graceful chromatic number of caterpillars.

Problem 1. Calculate the odd-graceful chromatic number for some classes of caterpillars.

In relation with graphs T∆,h, h ≥ 3, we have the following open problem.

Problem 2. Find the exact value of the odd-graceful chromatic number of graph T∆,h

for every integer h ≥ 3.

Theorem 11 did not give yet the exact value for Xog(Cn × P2). Here, we propose

the following.

Problem 3. Find the odd-graceful chromatic number of prism graph Cn × P2, with
n ≥ 10, n ≡ 2(mod 4).

As for general cases, we may consider graph coloring problems based on d-graceful

labeling introduced by Pasotti [7].

Problem 4. Let G be a graph of size q = d×m, for some positive integers d and m. Find
the d-graceful chromatic number for classes of basic graphs with d 6∈ {1, q}.

Acknowledgement. Authors express gratitude to anonymous referees for the

invaluable comments, corrections, and suggestions. Especially, authors give high

appreciation to a referee who brought their attention to the paper [7]. The first



20 On odd-graceful coloring of graphs

author would also like to express his gratitude to Universitas Pendidikan Ganesha

for the support provided through Grant No.: 1166/UN48.16/LT/2023.

Conflict of interest. The authors declare that they have no conflict of interest.

Data Availability. Data sharing is not applicable to this article as no datasets were

generated or analyzed during the current study.

References

[1] R. Alfarisi, R.M. Prihandini, R. Adawiyah, E.R. Albirri, and I.H. Agustin, Grace-

ful chromatic number of unicyclic graphs, Journal of Physics: Conference Series,

vol. 1306, IOP Publishing, 2019, pp. Article ID: 012039

https://doi.org/10.1088/1742-6596/1306/1/012039.

[2] A.D. Byers, Graceful Colorings and Connection in Graphs, Ph.D. thesis, Kalama-

zoo, Michigan, USA, 2018.

[3] S. English and P. Zhang, On graceful colorings of trees, Math. Bohem. 142 (2017),

no. 1, 57–73

http://doi.org/10.21136/MB.2017.0035-15.

[4] R.B. Gnanajothi, Topics in Graph Theory, Ph.D. thesis, Madurai, India, 1991.

[5] A.I. Kristiana, A. Aji, E. Wihardjo, and D. Setiawan, on graceful chromatic num-

ber of vertex amalgamation of tree graph family, CAUCHY: Jurnal Matematika

Murni dan Aplikasi 7 (2022), no. 3, 432–444

http://doi.org/10.18860/ca.v7i3.16334.

[6] R. Mincu, C. Obreja, and A. Popa, The graceful chromatic number for some par-

ticular classes of graphs, 2019 21st International Symposium on Symbolic and

Numeric Algorithms for Scientific Computing (SYNASC), 2019, pp. 109–115

https://doi.org/10.1109/SYNASC49474.2019.00024.

[7] A. Pasotti, On d-graceful graphs, Ars Combin. 111 (2013), 207–223.

[8] J. Su, H. Sun, and B. Yao, Odd-graceful total colorings for constructing graphic

lattice, Mathematics 10 (2022), no. 1, Article ID: 109

https://doi.org/10.3390/math10010109.

[9] H. Wang, J. Xu, and B. Yao, Twin odd-graceful trees towards information security,

Procedia Computer Science 107 (2017), 15–20

https://doi.org/10.1016/j.procs.2017.03.050.


	Introduction
	Main Results
	Discussion and Open Problems
	References

