
CCO
Commun. Comb. Optim.

c© 2024 Azarbaijan Shahid Madani University

Communications in Combinatorics and Optimization

Vol. 9, No. 2 (2024), pp. 279-295

https://doi.org/10.22049/cco.2023.28920.1779

Research Article

Mathematical results on harmonic polynomials
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Abstract: The harmonic polynomial was defined in order to understand better the
harmonic topological index. Here, we obtain several properties of this polynomial,

and we prove that several properties of a graph can be deduced from its harmonic
polynomial. Also, we prove that graphs with the same harmonic polynomial share
many properties although they are not necessarily isomorphic.
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1. Introduction

A topological descriptor is a real number that depicts a molecule in terms of graph-

theoretical elements. Topological descriptors have been widely used on mathematical

chemistry studies. A topological index is a topological descriptor that is well corre-

lated with some molecular property. Since the work of Wiener [26] during the middle

of the last century, many topological indices have been studied in depth.
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Topological indices are used in various fields, including chemistry, physics, computer

science, and network analysis, to analyze and predict properties of molecules, mate-

rials, networks, and other systems represented by graphs. Also, they try to capture

different aspects of graph structure. Each index provides specific information about

the graph and can be used to study and compare graphs, predict properties, or solve

optimization problems.

A long list of topological indices has been recognized to be useful in chemical research.

Perhaps the Randić index (R) defined in [20] is the best known descriptor (see, e.g.,

[11, 17, 18, 21, 23] and the references therein). Scientists have been trying to improve

the predictive power of Randi’c index for years. This race leads to introduce several

topological indices, as the first and second Zagreb indices, defined by

M1(Λ) =
∑

uv∈E(Λ)

(du + dv) =
∑

u∈V (Λ)

d2
u, M2(Λ) =

∑
uv∈E(Λ)

dudv ,

with E(Λ) is the set of edges of Λ, the edge uv joins u and v, and du is the number

of neighbors of u. The interest in the Zagreb’s indices has grown and attracted to the

scientific community [1, 2, 10, 19, 25].

Another remarkable descriptor is the harmonic index [6]:

H(Λ) =
∑

uv∈E(Λ)

2

du + dv
.

For more information on the harmonic index see, e.g., [3, 8, 22, 27, 30]. In [31] is

introduced the general sum-connectivity index, defined as

χα(Λ) =
∑

uv∈E(Λ)

(du + dv)α,

where α is a real number.

Then, we have that first Zagreb index M1 is χ
1
, harmonic index H is 2χ−1

and

sum-connectivity index is χ−1/2
. Mathematical properties of this general index were

studied in [4, 22, 30–32].

The harmonic polynomial with variable x, appears in [16]:

A(Λ, x) :=
∑

uv∈E(Λ)

xdu+dv−1,

and the harmonic polynomial of some classes of graphs were computed as well. The

harmonic polynomials of some line graphs appear in [29]. The harmonic index of

many products of graphs are studied in [14] through their harmonic polynomials.

The name of this polynomial comes from the fact that H(Λ) = 2
∫ 1

0
A(Λ, x) dx.

Hence, the harmonic polynomial of a graph is a polynomial function that encodes in-

formation about the graph structure and the harmonic index. The study of harmonic

polynomials in graph theory is aimed at understanding many properties of graphs.
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These polynomials can be used to derive bounds on the harmonic index and provide

insights into the structural characteristics of graphs.

If Λ1, Λ2 are disjoint graphs, we have

A(Λ1 ∪ Λ2, x) = A(Λ1, x) +A(Λ2, x).

Hence, considering connected graphs is not a restrictive condition.

An important problem is to find a polynomial related to a graph that characterizes all

graphs, i.e., find a polynomial P (Λ; ·) such that if P (Λ1, x) = P (Λ2;x), then Λ1 and

Λ2 are isomorphic graphs. There are several recent articles on the potential of graph

polynomials to characterize some types of graphs [24]. Research on the characteriza-

tion of graphs has been boosted thanks to today’s computer power: representing a

graph by a polynomial (a vector a low dimension O(n)) is simpler than by its adja-

cency matrix (an n × n matrix). Several polynomials related to a graph have been

defined so far, many of them associated to a graph parameter or to the solution of

a graph problem. Some of those polynomials enclose diverse information about the

graph’s structure. Unfortunately, the problem of characterizing any graph has not

been solved by the well-known polynomials yet, since we can often find non-isomorphic

graphs having the same polynomial.

In this paper, Λ = (V (Λ), E(Λ)) is an unoriented simple graph with minimum degree

at least 1. In this paper we study the harmonic polynomial mainly to obtain new

properties on this graph polynomial. We prove that several properties of graphs can

be obtained from their harmonic polynomials: Corollary 2 characterizes regular and

biregular graphs in terms of the zeros of their harmonic polynomials; Theorem 2

gives information about the connectedness, the diameter and the girth (the minimum

length of the cycles) of a graph in terms of its harmonic polynomial; Proposition

11 shows that the number of pendant paths is precisely the coefficient of x2 in the

harmonic polynomial. Besides, Theorems 4, 5 and 6 relate the degree sequence of

a polynomial with the number of non-zero coefficients of its harmonic polynomial.

Theorem 8 shows that graphs with the same harmonic polynomial share interesting

properties although they are not necessarily isomorphic.

2. Main Results

In [16] the following result is proved.

Let us recall that the number of vertices (respectively, edges) of a graph is its order

(respectively, size).

Proposition 1. For every regular graph with degree k and size m,

A(Λ, x) = mx2k−1.

The following result is a combination of Propositions 2, 4, 5, 7 in [16] where Pn, Cn,

Kn and Wn, respectively, denote the path, the cycle, the complete and the wheel
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graphs with order n, respectively, Qn denotes the n-hypercube, and Kn1,n2
denotes

the complete bipartite graph with parts of n1, n2 vertices, respectively.

Proposition 2. For these families of graphs it holds:

A(Kn, x) =
1

2
n(n− 1)x2n−3,

A(Cn, x) = nx3,

A(Qn, x) = n2n−1x2n−1,

A(Kn1,n2 , x) = n1n2x
n1+n2−1,

A(Pn, x) = 2x2 + (n− 3)x3,

A(Wn, x) = (n− 1)(xn+1 + x5).

The forgotten index was introduded with the Zagreb indices by

F (Λ) =
∑

uv∈E(Λ)

(d2
u + d2

v) =
∑

u∈V (Λ)

d3
u.

In [13], are defined the formulas for π-electron energy, where the first Zagreb and the

forgotten topological indices play an active role. The forgotten index gained attention

when [9] shows that this index has a very similar predictive ability to the first Zagreb

index. The correlation coefficients shown by both of them were greater than 0.95.

Our first result shows that we can relate some properties of the graph with the values

of the harmonic polynomial (and its derivatives) at the point 1.

Proposition 3. For every graph Λ of order n, size m, minimum degree δ and maximum
degree ∆, we have:

• A(Λ, 1) = m,

• A′(Λ, 1) +A(Λ, 1) = M1(Λ),

• A′′(Λ, 1)− 2A(Λ, 1) = F (Λ) + 2M2(Λ)− 3M1(Λ),

• A′′(Λ, 1) + 2A(Λ, 1) = M1(L(Λ)) +M1(Λ), where L(Λ) denotes the line graph of Λ.

• 2A(Λ, 1)/∆ ≤ n ≤ 2A(Λ, 1)/δ.

Proof. Note that A(Λ, 1) =
∑
uv∈E(Λ) 1 = m. Also,

A′(Λ, 1) =
∑

uv∈E(Λ)

(du + dv)−
∑

uv∈E(Λ)

1 = M1(Λ)−A(Λ, 1),
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and
A′′(Λ, 1) =

∑
uv∈E(Λ)

(d2
u + d2

v) + 2
∑

uv∈E(Λ)

dudv − 3
∑

uv∈E(Λ)

(du + dv) + 2
∑

uv∈E(Λ)

1

= F (Λ) + 2M2(Λ)− 3M1(Λ) + 2A(Λ, 1),

A′′(Λ, 1) =
∑

uv∈E(Λ)

(du + dv − 2)2 +
∑

uv∈E(Λ)

(du + dv − 2)

=
∑

uv∈E(Λ)

(du + dv − 2)2 +
∑

uv∈E(Λ)

(du + dv)− 2
∑

uv∈E(Λ)

1

= M1(L(Λ)) +M1(Λ)− 2A(Λ, 1).

The inequalities δn ≤ 2m ≤ ∆n and the first item imply the fifth one.

By Proposition 1, we have that every regular graphs with the same degree and the

same size share the harmonic polynomial. Hence, a natural question is: How many

graphs characterized by the harmonic polynomial are there? The answer of this

question looks like to be difficult, but we can partially respond it. Besides, Proposition

3 gives that graphs with distinct sizes have distinct harmonic polynomial. Next result

is an interesting consequence of them.

Corollary 1. Let Λ be a graph and let Γ be a subgraph of Λ with Γ 6= Λ. Then
A(Γ, x) 6= A(Λ, x).

Theorem 8 shows below that if two graphs share the harmonic polynomial, then the

graphs have to be similar, in some sense.

For each natural number k, consider the polynomial

Qk(x) :=

k∏
j=1

(x− j) = xk +

k−1∑
j=0

ak,jx
j .

We can compute these coefficients ak,j in a very simple way:

ak,k−j = (−1)j
∑

1≤i1<i2<···<ij≤k

i1i2 · · · ij .

In particular, we have ak,k−1 = − 1
2 (k + 1)k and ak,0 = (−1)kk!.

Proposition 4. For every graph Λ and any natural number k, we have

A(k)(Λ, 1) = χk(Λ) +

k−1∑
j=0

ak,jχj(Λ).

Proof. The k-th derivative of A(Λ, x) can be computed as follows:

A(k)(Λ, x) =
∑

uv∈E(Λ)

xdu+dv−k−1
k∏
j=1

(du + dv − j) =
∑

uv∈E(Λ)

Qk(du + dv)xdu+dv−k−1,
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A(k)(Λ, 1) =
∑

uv∈E(Λ)

Qk(du + dv) =
∑

uv∈E(Λ)

(du + dv)k +

k−1∑
j=0

∑
uv∈E(Λ)

ak,j(du + dv)j

= χk(Λ) +

k−1∑
j=0

ak,jχj(Λ).

As usual, if A(x) is a polynomial, we denote by DegmaxA(x) its degree. Also,

DegminA(x) denotes the minimum degree of the monomials of A(x).

Given a graph Λ,

DegmaxA(Λ, x) = max
{
du + dv − 1 | uv ∈ E(Λ)

}
,

DegminA(Λ, x) = min
{
du + dv − 1 | uv ∈ E(Λ)

}
.

A graph is said to be biregular if the graph is bipartite and in each independent set

the vertices have the same degree. Such a graph is said to be (∆, δ)-biregular if the

degrees in each independent set are ∆ and δ.

Proposition 5. For any graph Λ the following facts hold:

• For every natural number k and x ≥ 0, the inequality A(k)(Λ, x) ≥ 0 holds,

• A(Λ, x) is strictly positive on (0,∞) and strictly increasing on [0,∞),

• Λ has a connected component that is not a single edge if and only if A(Λ, x) is a strictly
convex function on [0,∞).

Proof. Since all coefficients of A(Λ, x) are greater than or equal to 0, the first item

holds.

Since DegminA(Λ, x) ≥ 2δ − 1 ≥ 1, we have A(Λ, x) > 0 and A′(Λ, x) > 0 for every

x ∈ (0,∞).

A graph Λ has a connected component that is not a single edge if and only if du+dv ≥ 3

for some edge uv ∈ E(Λ); this happens if and only if Λ satisfies DegmaxA(Λ, x) ≥ 2;

and this inequality is equivalent to A′′(Λ, x) > 0 on (0,∞).

Υ denotes the set of regular and biregular connected graphs. A collection of graphs

{Λi}ki=1, such that Λi is either ∆i-regular or (∆i, δi)-biregular, for each 1 ≤ i ≤ k, is

coherent if Λi ⊂ Υ for all 1 ≤ i ≤ k, and ∆i + δi = ∆j + δj for every 1 ≤ i, j ≤ k. A

graph is said to be coherent if its connected components are coherent.

Fix a graph Λ and a vertex v of Λ. The set of all neighbors of v will be denoted by

N(v).

Theorem 1. For any graph Λ, 0 is the unique root of A(Λ, x) if and only if Λ is coherent.
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Proof. If Λ is coherent, let us consider the set of its connected components {Λi}ki=1.

For each 1 ≤ i ≤ k, Λi is either a regular or a (∆i, δi)-biregular graph with mi edges;

hence, A(Λi, x) = mix
∆i+δi−1. So, m = m1 + · · · + mk is the cardinality of E(Λ),

A(Λ, x) = mx∆1+δ1−1 and 0 is the unique root of the polynomial A(Λ, x).

Suppose that 0 is the unique root of A(Λ, x); thus, A(Λ, x) = axb−1 for some natural

numbers a, b, and du + dv = b for all uv ∈ E(Λ). Let us consider the set of connected

components {Λi}ki=1 of Λ such that Λi has maximum degree ∆i and minimum degree

δi for each 1 ≤ i ≤ k. Thus, given a fixed vertex u ∈ V (Λi) one gets dv = b − du
for every uv ∈ E(Λi), and every v ∈ N(u) has the same degree b − du. Similarly, if

w ∈ N(v), we obtain dw = b − dv = du. Since Λi is a connected graph, Λi is either

regular (if ∆i = δi) or biregular (if ∆i 6= δi), and Λi ⊂ Υ. Since ∆i + δi = b for each

1 ≤ i ≤ k, we obtain that Λ is coherent.

The following consequence of Theorem 1 shows that it is possible to characterize

regular and biregular graphs according to the zeros of their harmonic polynomials.

Corollary 2. If Λ is connected, then x = 0 is the unique zero of A(Λ, x) if and only if Λ
is a biregular or regular graph.

The following result provides inequalities for the harmonic index according to the

value of the harmonic polynomial in the point 1/2.

Proposition 6. For any graph Λ is a graph,

A(Λ) ≥ 2A(Λ, 1/2),

and Λ satisfies the equality if and only if every connected component of Λ is a single edge.

Proof. Hermite-Hadamard’s inequality states that if ϕ : [0, 1]→ R is convex, then

ϕ(1/2) ≤
∫ 1

0
ϕ(x) dx, (1)

and the inequality is strict if ϕ is a strictly convex function.

If some connected component of Λ is not a single edge, then Proposition 5 implies

that A(Λ, x) is strictly convex. Thus, (1) gives the result. If the graph Λ is the

union of m single edges, then H(Λ) = m, A(Λ, x) = mx, A(Λ, 1/2) = m/2. Thus,

2A(Λ, 1/2) = H(Λ).

If Λ is a graph, v ∈ V (Λ) is said to be dominant if N(v) = V (Λ) \ {v}.

Proposition 7. If Λ is a graph with order n, minimum degree δ and maximum degree
∆, then:

• x = 0 is a root of A(Λ, x) with multiplicity DegminA(Λ, x), where 2δ − 1 ≤
DegminA(Λ, x) ≤ DegmaxA(Λ, x) ≤ 2∆− 1.
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• DegmaxA(Λ, x) ≤ 2n − 3, and DegmaxA(Λ, x) = 2n − 3 if and only if there are two
adjacent dominant vertices in Λ.

• Let Λ be a graph and Γ a subgraph. Then

DegmaxA(Γ, x) ≤ DegmaxA(Λ, x), DegminA(Γ, x) ≤ DegminA(Λ, x).

Proof. Since

A(Λ, x) =

DegmaxA(Λ,x)∑
j=DegminA(Λ,x)

cj x
j ,

for some constants cj , 0 is a root of the polynomial A(Λ, x) with multiplicity

DegminA(Λ, x). Since each j in the previous sum can be written as du + dv − 1

for a uv ∈ E(Λ), we have 2δ − 1 ≤ DegminA(Λ, x) ≤ DegmaxA(Λ, x) ≤ 2∆− 1.

Since ∆ ≤ n−1, we have DegmaxA(Λ, x) ≤ 2n−3. Therefore, DegmaxA(Λ, x) = 2n−3

if and only if there is uv in E(Λ) with du = dv = n− 1, and this happens if and only

if u, v are dominant vertices in the graph Λ.

Let Γ be a subgraph of Λ. The last statement holds, since the degree of v ∈ Γ is at

most its degree in Λ.

Recall that the minimum length of the cycles in a graph is its girth. The following

result gives some relations involving the order, diameter, connectivity, girth of a graph,

and the degree of its harmonic polynomial.

Theorem 2. Consider any graph Λ with order n. If DegmaxA(Λ, x) ≥ n, then g(Λ) = 3.
Furthermore, if Λ is triangle-free and DegmaxA(Λ, x) = n − 1, then Λ is connected and
diamΛ ≤ 3.

Proof. Since g(Λ) = 3 if and only if Λ is not triangle-free, it suffices to prove that

if Λ is triangle-free, then DegmaxA(Λ, x) ≤ n − 1. Since Λ is triangle-free, then

N(u) ∩ N(v) = ∅ for any uv ∈ E(Λ). Hence, du + dv ≤ n for any uv ∈ E(Λ), and

DegmaxA(Λ, x) ≤ n− 1.

Assume that Λ is triangle-free and DegmaxA(Λ, x) = n − 1. Thus, there is an edge

uv ∈ E(Λ) with du + dv = n. Since N(u) ∩ N(v) = ∅, we have N(u) ∪ N(v) =

V (Λ) and d(w, {u, v}) ≤ 1 for every w ∈ V (Λ). Consequently, diamΛ ≤ 3 and Λ is

connected.

If A(x) is a polynomial, K(A(x)) denotes the number of its coefficients that are non-

zero.

Theorem 3. If Λ is a graph with size m, then:

• 1 ≤ K(A(Λ, x)) ≤ m,

• K(A(Λ, x)) = 1 if and only if Λ is coherent,

• K(A(Λ, x)) = m if and only if Λ is a single edge.
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Proof. The first item is straightforward.

The proof of Theorem 1 implies that Λ is coherent if and only if A(Λ, x) = axb−1 for

some natural numbers a, b, and this is equivalent to K(A(Λ, x)) = 1.

If Λ is a single edge, then it is regular graph, and the previous item gives K(A(Λ, x)) =

1 = m.

If Λ is not a single edge, then we consider several cases.

(1) Λ is connected. Thus, 3 ≤ du+dv ≤ m+1 for any uv ∈ E(Λ), i.e., 2 ≤ du+dv−1 ≤
m. Since the m values of du + dv − 1 belong to a set of m− 1 integers, there are two

edges with the same value and we conclude that K(A(Λ, x)) ≤ m− 1.

(2) If Λ has connected components Λ1, . . . ,Λk, with k ≥ 2, denote by mi the cardi-

nality of the edges of Λi; thus, m = m1 + · · ·+mk.

(2.1) Assume that there exists some 1 ≤ j ≤ k such that Λi is not isomorphic to

P2. So, (1) gives that K(A(Λj , x)) ≤ mj − 1, and this inequality and the first item

give

K(A(Λ, x)) ≤
k∑
i=1

K(A(Λi, x)) ≤
k∑
i=1

mi − 1 = m− 1.

(2.2) Assume that Λi is isomorphic to P2 for every 1 ≤ i ≤ k. So, m = k ≥ 2,

A(Λ, x) =

m∑
i=1

A(Λi, x) =

m∑
i=1

x = mx,

and K(A(Λ, x)) = 1 ≤ k − 1 < m.

Theorem 3 has the following corollary.

Corollary 3. If Λ is a graph with order m ≥ 2, then 1 ≤ K(A(Λ, x)) ≤ m− 1.

Proposition 8. Let Λ be a graph with size m, order n, maximum degree ∆ and minimum
degree δ. Then:

• K(A(Λ, x)) ≤ DegmaxA(Λ, x)−DegminA(Λ, x) + 1.

• K(A(Λ, x)) ≤ min{ 2∆− 2+. 1, m− 2+. 2}.

• If Λ is triangle-free, then K(A(Λ, x)) ≤ n− 2+. 1.

Proof. The first item holds since there are constants cj with

A(Λ, x) =

DegmaxA(Λ,x)∑
j=DegminA(Λ,x)

cj x
j ,

The first item and the bounds in Proposition 7 give K(A(Λ, x)) ≤ 2∆ − 2+. 1. Since

du + dv − 1 ≤ m for any uv ∈ E(Λ), we have DegmaxA(Λ, x) ≤ m. This inequality,

the first item and the first item in Proposition 7 give K(A(Λ, x)) ≤ m− 2+. 2.
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The third item is a consequence of the first one, the first item in Proposition 7 and

Theorem 2.

If Λ is a graph, DS(Λ) = {du}u∈V (Λ) is the degree sequence of Λ (if dv1 = dv2 for

some v1, v2 ∈ V (Λ), then the value dv1 = dv2 appears just once in {du}u∈V (Λ)).

Let us denote by dte the upper integer part of t ∈ R, i.e., the smallest integer greater

than or equal to t.

Theorem 4. If Λ is any graph, then:

• If DS(Λ) has at most r terms, then K(A(Λ, x)) ≤ r(r+1)
2

.

• If K(A(Λ, x)) ≥ s, then DS(Λ) has at least
⌈√

8s+1−1
2

⌉
terms.

Proof. If DS(Λ) has at most r terms, then the set of different values du + dv has

cardinality at most r(r+ 1)/2 (2-combinations with repetition of a set of r elements).

Thus, K(A(Λ, x)) ≤ r(r + 1)/2.

Assume that K(A(Λ, x)) = S ≥ s, and denote by r the cardinality of DS(Λ). The

first item gives

s ≤ S ≤
r(r + 1)

2
, r2 + r − 2s ≥ 0, r ≥

√
8s+ 1− 1

2
,

and we obtain the desired inequality since r is an integer.

One can think that it might be possible to obtain a lower bound for K(A(Λ, x)) that

is an increasing function of the cardinality of DS(Λ). However, next theorem shows

that this is not possible.

Theorem 5. Let Λ be a connected graph with r terms in DS(Λ).

• If r ≤ 2, then K(A(Λ, x)) ≥ 1.

• If r > 2, then K(A(Λ, x)) ≥ 2.

Furthermore, the bounds are sharp for each r.

Proof. The first statement follows from Theorem 3.

Assume now that r > 2. Since Λ is connected, there exist a path γ = {u1, u2, . . . , uk}
in Λ and three vertices in V (Λ) ∩ γ with different degrees. One can assume that

du1 /∈ {du2 , . . . , duk} and duk /∈ {du1 , . . . , duk−1},

since otherwise u1 and/or uk can be removed from γ, and a shorter path with the same

property is obtained. Also, we can assume that du2
= du3

= · · · = duk−2
= duk−1

.

Thus, du1 + du2 6= du2 + duk
= duk−1

+ duk
and, since u1u2, uk−1uk ∈ E(Λ), we

conclude K(A(Λ, x)) ≥ 2.
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If Λ is a star graph of order n, then DS(Λ) = {1, n − 1}; thus r = 1 if n = 2, and

r = 2 if n > 2. Since A(Λ, x) = (n− 1)xn−1, we have K(A(Λ, x)) = 1.

Consider the sequence {1, 2, . . . , r} with r > 2. We are going to define a graph Tr (in

fact, Tr is a tree) with DS(Λ) = {1, 2, . . . , r} and K(A(Tr, x)) = 2. Let us consider

the (ordered) sequence {a1, a2, . . . , ar} obtained as a permutation of {1, 2, . . . , r} in

the following way. If r is even, then{
a1, a2, . . . , ar

}
=
{ r

2
+ 1,

r

2
,
r

2
+ 2,

r

2
− 1, . . . , r − 1, 2, r, 1

}
.

If r is odd, then

{
a1, a2, . . . , ar

}
=
{ r + 1

2
,
r + 1

2
+ 1,

r + 1

2
− 1,

r + 1

2
+ 2,

r + 1

2
− 2, . . . , r − 1, 2, r, 1

}
.

In both cases we have that aj + aj+1 is either r + 1 or r + 2 for each 1 ≤ j < r.

Consider a point v1, which will be the root of Tr. We define Tr inductively on the

distance j from v1. We join v1 with a1 vertices (at distance 1 from v1). If u ∈ V (Tr)

with dTr (u, v1) = j − 1 for some 1 < j < r, then we join u with aj − 1 vertices (at

distance j from v1). Note that if u ∈ V (Tr), then dTr
(u, v1) = j−1 for some 1 ≤ j < r

and du = aj . If uv ∈ E(Tr), then one can assume that there exists 1 ≤ j < r with

dTr
(u, v1) = j − 1 and dTr

(v, v1) = j. Therefore, du + dv = aj + aj+1 is either r + 1

or r + 2, and so K(A(Tr, x)) = 2.

Theorem 6. Let Λ be a graph.

• If some connected component of Λ has a degree sequence of cardinality r > 2, then
K(A(Λ, x)) ≥ 2.

• For each r ≥ 1, there exists Λ with SD(Λ) of cardinality r and K(A(Λ, x)) = 1.

Proof. If there is a connected component Λi of Λ with degree sequence of cardinality

r > 2, then Theorem 5 gives K(A(Λi, x)) ≥ 2, and K(A(Λ, x)) ≥ K(A(Λi, x)) ≥ 2.

Fix any r ≥ 1.

If r is even, then define Λr as the union of the complete bipartite graphs

K1,r,K2,r−1, . . . ,Kr/2−1,r/2+2,Kr/2,r/2+1.

If r is odd, then define Λr as the union of

K1,r,K2,r−1, . . . ,K(r+1)/2−1,(r+1)/2+1,K(r+1)/2,(r+1)/2.

In both cases, the degree sequence of Λr has cardinality r. If m denotes the cardinality

of E(Λr), then A(Λr, x) = mxr and K(A(Λr, x)) = 1.

We say that DS(Λ) is even (respectively, odd) if DS(Λ) = {du}u∈V (Λ) is contained

the even (respectively, odd) integers.
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Proposition 9. For any graph Λ, A(Λ, x) is an odd function if and only if the degree
sequence of each connected component of Λ is either even or odd.

Proof. If the degree sequence of each connected component of Λ is either even or

odd, then du + dv − 1 is odd for any uv ∈ E(Λ). Since every exponent in A(Λ, x) is

odd, A(Λ, x) is an odd function.

Assume now that A(Λ, x) is odd. Therefore, du + dv is even for every uv ∈ E(Λ).

Consider any fixed connected component Λi of Λ. If there is u ∈ V (Λi) such that du
is even, then dv is even for any v ∈ N(u). Since Λi is connected, we conclude that the

degree sequence of Λi is even. The same argument gives that if there is u ∈ V (Λi)

with du odd, the degree sequence of Λi is odd.

We say that Λ has alternated degree if du and dv have different oddity for any u, v ∈
V (Λ) with uv ∈ E(Λ).

From the above definition, the following result is obtained.

Proposition 10. For any graph Λ, A(Λ, x) is an even function if and only if Λ has
alternated degree.

An edge is pendant if one of its vertices has degree 1. A path with length two is a

pendant path if it contains a pendant edge and a non-pendant edge.

Proposition 11. For any graph Λ, the cardinality of the pendant paths in Λ is the
coefficient of x2 in A(Λ, x).

Proof. There exists a bijective map between the pendant paths in Λ and the edges

uv ∈ E(Λ) with du = 1 and dv = 2 (i.e., du + dv − 1 = 2). This gives the result.

There are inequalities relating the harmonic index and the first Zagreb index ([15],

[28, Theorem 2.5], [12, p.234]). One of these results can be stated as:

Theorem 7. If Λ is a graph with minimum degree δ, maximum degree ∆ and size m,
then

2m2

M1(Λ)
≤ H(Λ) ≤

(∆ + δ)2m2

2∆δM1(Λ)
.

In 2009, Fath-Tabar [7] defined the first Zagreb polynomial as

M1(Λ, x) :=
∑

uv∈E(Λ)

xdu+dv .

Theorem 7 relates the first Zagreb and the harmonic indices. Notice that there is

a direct relation between definitions of the harmonic polynomial and the first Za-

greb polynomial, i.e., M1(Λ, x) = xA(Λ, x). The following proposition provides new

bounds for DegminA(Λ, x) and DegmaxA(Λ, x).
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Proposition 12. If Λ is a graph with size m, order n, maximum degree ∆ and minimum
degree δ, then

2-.1 ≤ DegminA(Λ, x) ≤
A′(Λ, 1)

m
,

4m

n
− 1 ≤ DegmaxA(Λ, x) ≤ 2∆− 1.

Proof. The inequality A(Λ) ≤ n/2 is a well-known upper bound for the harmonic

index. Theorem 7 gives the lower bound A(Λ) ≥ 2m2/M1(Λ). Given j ∈ N, define

cj = cj(Λ) as the cardinality of the set {uv ∈ E(Λ) | du + dv = j + 1}. One can write

A(Λ, x) =

DegmaxA(Λ,x)∑
j=DegminA(Λ,x)

cjx
j , with

DegmaxA(Λ,x)∑
j=DegminA(Λ,x)

cj = m.

Thus, we have

n

2
≥ H(Λ) = 2

∫ 1

0
A(Λ, x) dx =

DegmaxA(Λ,x)∑
j=DegminA(Λ,x)

2cj

j + 1

≥
DegmaxA(Λ,x)∑
j=DegminA(Λ,x)

2cj

DegmaxA(Λ, x) + 1
=

2m

DegmaxA(Λ, x) + 1
,

DegmaxA(Λ, x) ≥
4m

n
− 1,

2m2

M1(Λ)
≤ H(Λ) =

DegmaxA(Λ,x)∑
j=DegminA(Λ,x)

2cj

j + 1
≤

2m

DegminA(Λ, x) + 1
,

DegminA(Λ, x) ≤
M1(Λ)

m
− 1 =

M1(Λ)−m
m

=
A′(Λ, 1)

m
.

Proposition 7 provides the other inequalities.

The next result allows to bound the harmonic index in terms of several parameters

of its harmonic polynomial.

If Λ is a graph, denote by cmin(Λ) and cmax(Λ) the coefficients of xDegminA(Λ,x) and

xDegmaxA(Λ,x) in A(Λ, x), respectively.

Proposition 13. If Λ be a graph with size m, then

2cmin(Λ)

DegminA(Λ, x) + 1
+

2m− 2cmin(Λ)

DegmaxA(Λ, x) + 1
≤ A(Λ) ≤

2cmax(Λ)

DegmaxA(Λ, x) + 1
+

2m− 2cmax(Λ)

DegminA(Λ, x) + 1
.

Proof. As in the proof of Proposition 12, we obtain

H(Λ) = 2

∫ 1

0
A(Λ, x) dx =

DegmaxA(Λ,x)∑
j=DegminA(Λ,x)

2cj

j + 1
.
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Hence,

H(Λ) =
2cmin(Λ)

DegminA(Λ, x) + 1
+

DegmaxA(Λ,x)∑
j=DegminA(Λ,x)+1

2cj

j + 1

≥
2cmin(Λ)

DegminA(Λ, x) + 1
+

DegmaxA(Λ,x)∑
j=DegminA(Λ,x)+1

2cj

DegmaxA(Λ, x) + 1

=
2cmin(Λ)

DegminA(Λ, x) + 1
+

2m− 2cmin(Λ)

DegmaxA(Λ, x) + 1
,

H(Λ) =
2cmax(Λ)

DegmaxA(Λ, x) + 1
+

DegmaxA(Λ,x)−1∑
j=DegminA(Λ,x)

2cj

j + 1

≤
2cmax(Λ)

DegmaxA(Λ, x) + 1
+

DegmaxA(Λ,x)−1∑
j=DegminA(Λ,x)

2cj

DegminA(Λ, x) + 1

=
2cmax(Λ)

DegmaxA(Λ, x) + 1
+

2m− 2cmax(Λ)

DegminA(Λ, x) + 1
.

Theorem below shows that if two graphs have the same harmonic polynomial, then

they share several properties. However, two non-isomorphic graphs could share the

harmonic polynomial.

Given function µ : N→ R+, define its associated topological indices

Tµ(Λ) =
∑

uv∈E(Λ)

µ(du + dv) , Uµ(Λ) =
∏

uv∈E(Λ)

µ(du + dv) .

In particular, if µ(t) = tα, then Tµ = χα. The modified first multiplicative Zagreb

index is Π∗1(Λ) =
∏
uv∈E(Λ)(du+dv) , see [5]. In particular, if µ(t) = t, then Uµ = Π∗1.

Theorem 8. If two graphs Λ1 and Λ2 have the same harmonic polynomial, then Tµ(Λ1) =
Tµ(Λ2) and Uµ(Λ1) = Uµ(Λ2) for every function µ : N → (0,∞). In particular, χα(Λ1) =
χα(Λ2) for every α ∈ R, and Π∗1(Λ1) = Π∗1(Λ2).

Proof. As in the proof of Proposition 12, given a graph Λ and j ∈ N, we define cj(Λ)

as the cardinality of {uv ∈ E(Λ) | du + dv = j + 1}. Thus, A(Λ, x) =
∑
j cj(Λ)xj .

If A(Λ1, x) = A(Λ2, x), then cj(Λ1) = cj(Λ2) for every j ∈ N. Since Tµ(Λ) =∑
j cj(Λ)µ(j+ 1) and Uµ(Λ) =

∏
j µ(j+ 1)cj(Λ) for every function µ : N→ (0,∞), we

conclude that Tµ(Λ1) = Tµ(Λ2) and Uµ(Λ1) = Uµ(Λ2).

We want to remark that if we consider a function µ : N→ C in the definition Tµ, then

the argument in the proof of Theorem 8 also works. Thus, we can consider a family

of functions {µz}, where z is a complex variable, and we can define for each graph Λ

the complex function FΛ(z) := Tµz
(Λ). So, if two graphs Λ1 and Λ2 have the same

harmonic polynomial, then the complex functions FΛ1
(z) and FΛ1

(z) are the same.

This holds, in particular, for the holomorphic function FΛ(z) :=
∑
uv∈E(Λ)(du +dv)

z.
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Conclusions

In this work, we obtain several properties of the harmonic polynomial and we prove

that certain graph properties can be derived from their corresponding associated

polynomials. Namely, we characterize regular and biregular graphs by examining the

zeros of their harmonic polynomials (Corollary 2). In Theorem 2, we provide insights

into the graph’s connectivity, diameter, and circumference in relation to the degree

of its harmonic polynomial. Proposition 11 demonstrates that the coefficient of x2

in the harmonic polynomial represents the cardinality of the set of pendant paths

in the graph. Furthermore, Theorems 4, 5 and 6 establish a relationship between

the number of nonzero coefficients in the harmonic polynomial and the polynomial’s

degree sequence. Lastly, Theorem 8 establishes that two graphs sharing the same

harmonic polynomial must be similar.

There are still some open problems; for example, studying the mathematical

properties of other polynomials associated with different indices; as well as studying

the harmonic polynomial on graph operators.
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[13] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total ϕ-

electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972), no. 4,

535–538.

https://doi.org/10.1016/0009-2614(72)85099-1.
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