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Abstract: The folded hypercube FQn is the Cayley graph Cay(Zn
2 , S), where S =

{e1, e2, . . . , en} ∪ {u = e1 + e2 + · · · + en}, and ei = (0, . . . , 0, 1, 0, . . . , 0), with 1

at the ith position, 1 ≤ i ≤ n. In this paper, we show that the folded hypercube
FQn is a distance-transitive graph. Then, we study some properties of this graph. In

particular, we show that if n ≥ 4 is an even integer, then the folded hypercube FQn is

an automorphic graph, that is, FQn is a distance-transitive primitive graph which is
not a complete or a line graph.
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1. Introduction

In this paper, a graph Γ = (V,E) is considered as an undirected simple graph where

V = V (Γ) is the vertex-set and E = E(Γ) is the edge-set. For all the terminology

and notation not defined here, we follow [1, 3, 6].

Let n ≥ 3 be an integer. The hypercube Qn of dimension n is the graph with

the vertex-set {(x1, x2, . . . , xn) | xi ∈ {0, 1}}, two vertices (x1, x2, . . . , xn) and

(y1, y2, . . . , yn) are adjacent if and only if xi = yi for all but one i. As a topol-

ogy for an interconnection network of a multiprocessor system, the hypercube is a

widely used and well-known model. The hypercube Qn possesses many interesting

properties, for example, its regularity, diameter and connectivity all are n. Also, it is

bipartite and thus Qn is 2-colorable. Moreover it is highly semmetric, that is, Qn is

vertex and edge-transitive [1, 6, 22]. There are many invariants of Qn, for instance,

generalized hypercube, folded hypercube, twisted hypercube, augmented hypercube

and enhanced hypercube [2, 8, 22].
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As a variant of the hypercube, the n-dimensional folded hypercube proposed first

in [4]. The folded hypercube FQn of dimension n, is the graph obtained from the

hypercube Qn by adding edges, called complementary edges, between any two vertices

x = (x1, x2, . . . , xn), y = (x̄1, x̄2, . . . , x̄n), where 1̄ = 0 and 0̄ = 1. The folded

hypercube FQn has some interesting properties, for example although it is regular of

degree n+1 (while the hypercube Qn is regular of degree n), its diameter is almost half

of the hypercube Qn, that is, dn2 e [4]. It can be shown that the hypercube Qn is the

Cayley graph Cay(Zn2 , B), where B = {e1, e2, . . . , en}, ei is the element of Zn2 with 1 in

the ith position and 0 in the other positions for, 1 ≤ i ≤ n. Also, the folded hypercube

FQn is the Cayley graph Cay(Zn2 , S), where S = B∪{u = e1+e2+· · ·+en}. Hence the

hypercube Qn and the folded hypercube FQn are vertex-transitive graphs. Since Qn
is Hamiltonian [9, 23] and it is a spanning subgraph of FQn, so FQn is Hamiltonian.

Some properties of the folded hypercube FQn are discussed in [5, 9, 11, 21, 24].

The graphs shown in Figure 1. are the folded hypercubes FQ3 and FQ4

Figure 1. The folded hypercubes FQ3 and FQ4

We say that the graph Γ is distance-transitive if for all vertices u, v, x, y of Γ such

that d(u, v) = d(x, y), where d(u, v) denotes the distance between the vertices u and

v in Γ, there is an automorphism π in Aut(Γ) such that π(u) = x and π(v) = y.

The class of distance-transitive graphs contains many of interesting and important

graphs. It is easy to see that the complete graphs Kn and the complete bipartite

graph Kn,n are distance-transitive. Also, it is not hard to check that the cycle Cn is

distance-transitive. A more interesting example is the Petersen graph [6]. Another

interesting example is the crown graph [12, 13, 17]. The class of Johnson graphs

is one the important subclass of distance-transitive graphs [3, 13, 14, 18]. Another

family of examples is the hypercube Qn [1, 3, 6]. Distance-transitive graphs have been

extensively studied from various aspects, by various authors and some of the works

include [7, 10, 14, 16].

The fact that the folded hypercube is an edge-transitive graph, is one of the main

results that has been shown in [9]. The result has been generalized in [11] by showing

that the folded hypercube is in fact an arc-transitive graph.
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In this paper we show, by an elementary and self-contained method, that the folded

hypercube is in fact distance-transitive and hence distance-regular. Then, we study

some properties of this graph. In particular, we show that if n ≥ 4 is an even

integer, then the hypercube FQn is an automorphic graph, that is, FQn is a distance-

transitive primitive graph which is not a complete or a line graph.

2. Preliminaries

The graphs Γ1 = (V1, E1) and Γ2 = (V2, E2) are called isomorphic, if there is a

bijection α : V1 −→ V2 such that {a, b} ∈ E1 if and only if {α(a), α(b)} ∈ E2 for all

a, b ∈ V1. In such a case the bijection α is called an isomorphism. An automorphism

of a graph Γ is an isomorphism of Γ with itself. The set of automorphisms of Γ with

the operation of composition of functions is a group called the automorphism group

of Γ and denoted by Aut(Γ).

The group of all permutations of a set V is denoted by Sym(V ) or just Sym(n)

when |V | = n. A permutation group G on V is a subgroup of Sym(V ). In this case

we say that G acts on V . If G acts on V we say that G is transitive on V (or G

acts transitively on V ) if given any two elements u and v of V , there is an element

β of G such that β(u) = v. If Γ is a graph with vertex-set V then we can view each

automorphism of Γ as a permutation on V and so Aut(Γ) = G is a permutation group

on V.

A graph Γ is called vertex-transitive if Aut(Γ) acts transitively on V (Γ). We

say that Γ is edge-transitive if the group Aut(Γ) acts transitively on the edge-set E,

namely, for any {x, y}, {v, w} ∈ E(Γ), there is some π in Aut(Γ), such that π({x, y}) =

{v, w}. We say that Γ is symmetric (or arc-transitive) if for all vertices u, v, x, y

of Γ such that u and v are adjacent, and also, x and y are adjacent, there is an

automorphism π in Aut(Γ) such that π(u) = x and π(v) = y. Note that if Γ is arc-

transitive, then it is edge-transitive. Also, it is not hard to see that every distance-

transitive graph is an arc-transitive graph. The automorphism group of a graph and

its action on the vertex and edge or arc sets of a graph have crucial roles in finding

some topological properties of the graph. Some recent works in this field include

[11, 14, 15, 17, 19].

Let G be any abstract finite group with identity 1 and suppose Ω is a subset of G

with the properties:

(i) x ∈ Ω =⇒ x−1 ∈ Ω, (ii) 1 /∈ Ω.

The Cayley graph Γ=Cay(G,Ω) is the (simple) graph whose vertex-set and edge-set

are defined as follows: V (Γ) = G, E(Γ) = {{g, h} | g−1h ∈ Ω}.
It can be shown that the Cayley graph Γ=Cay(G,Ω) is connected if and only if the

set Ω is a generating set in the group G [1].

The group G is called a semidirect product of N by Q, denoted by G = N oQ, if

G contains subgroups N and Q such that: (i)N �G (N is a normal subgroup of G);

(ii) NQ = G; and (iii) N ∩Q = 1 [20].

It has been shown in [11] that if n > 3 , then Aut(FQn) is a semidirect product of N
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by M , where N is isomorphic to the Abelian group Zn2 and M is isomorphic to the

group Sym(n+ 1).

3. Main results

Let Γ = (V,E) be a graph with diameter D. For each vertex v of Γ we let Γi(v) =

{x ∈ V | d(x, v) = i}, 0 ≤ i ≤ D. In other words Γi(v) is the set of vertices of Γ which

are at distance i from the vertex v. The stabilizer subgroup of v in A=Aut(Γ) denoted

by Av is defined to be the subgroup of automorphisms g of Γ such that g(v) = v. We

have the following result.

Proposition 1. [1, 6] Let Γ = (V,E) be a vertex-transitive graph with diameter D and
v be an arbitrary vertex of Γ. Then Γ is a distance-transitive graph if and only if there is a
subgroup H of Aut(Γ)v=Av such that H acts transitively on every Γi, 0 ≤ i ≤ D.

One of the interesting properties in the folded hypercube, concerning the distances

between vertices, is shown in the following result.

Proposition 2. Let Γ = FQn. If 1 ≤ i ≤ dn
2
e, then Γi(0)={v | w(v) = i} ∪ {x | w(x) =

n − i + 1}={v | w(v) = i} ∪ {v + u | w(v) = i − 1},where w(v) is the number of 1s in the
n-tuple v (u = e1 + · · ·+ en).

Proof. Let v be a vertex in the hypercube Qn. Let w(v) denote the weight of v,

that is, the number of 1s in the n-tuple v. Let 0 = (0, 0, . . . , 0) be the zero n-tuple

in Qn. It is easy to see that dQn
(0, v) = w(v). Thus in the hypercube Qn we

have Qni
(0) = {y ∈ V (Qn) | w(y) = i}. We know that the diameter of the folded

hypercube FQn is dn2 e. Now it is easy to check that if 1 ≤ i ≤ dn2 e, and w(v) = i or

w(v) = n− i+ 1, then the distance between the zero vertex and v in FQn is i. In fact

we can check that if Γ = FQn, then Γi(0)={v | w(v) = i} ∪{v + u | w(v) = i − 1},
where u = e1 + e2 + · · · + en, ej is the element of Zn2 with 1 in the jth position and

0 in the other positions for 1 ≤ j ≤ n. Note that if w(x) = j − 1, 1 ≤ j ≤ dn2 e, then

w(u+ x) = n− (j − 1) = n− j + 1, but dFQn
(0, u+ x) = j.

We now are ready to prove the following important theorem.

Theorem 1. Let n ≥ 4 be an integer. Then the folded hypercube FQn is a distance-
transitive graph.

Proof. Let Γ = FQn and A=Aut(Γ). Let v = 0. In the rest of the proof we need

some information about A0, the stabilizer subgroup of the vertex 0 in the group A, and

its action on the vertex-set of Γ explicitly. Note that the Abelian group Zn2 is also a

vector space over the field F = {0, 1} and B = {e1, e2, . . . , en} is a basis of this vector

space. It is easy to check that any n-subset of the set S = B∪{u = e1 +e2 + · · ·+en}
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is linearly independent over F and hence it is a basis of the vector space Zn2 . Let T

be a subset of S with n elements and f : B −→ T be a one to one function. We can

extend f over Zn2 linearly to a mapping e(f), that is, if v = a1e1 + a2e2 + · · ·+ anen,

then e(f)(v) = a1f(e1) + a2f(e2) + · · ·+ anf(en). Thus e(f) is a non-singular linear

mapping of the vector space Zn2 into itself such that e(f)|B = f . Since B and T are

bases of the vector space Zn2 , hence e(f) is a permutation of Zn2 . Since e(f) is an

automorphism of the group Zn2 which fixes the generating set S of the Cayley graph

FQn, hence it is an automorphism of the folded hypercube FQn. Now it is easy to

check that, H = {e(f) | f : B −→ T, T ⊂ S, |T | = n, f is a one to one mapping},
is a subgroup of the stabilizer group of the vertex v = 0. (In fact, it is not hard to

show that H=A0.) The graph FQn is a Cayley graph, thus it is a vertex-transitive

graph, hence by Proposition 1, it is sufficient to show that the action of H on the set

Γi(0) = Γi is transitive, where Γi(0) is the set of vertices at distance i from the vertex

v = 0. Let x and y be two vertices in Γi. Then either w(x) = w(y) or w(x) 6= w(y).

First suppose that w(x) = w(y). Let x = ek1 + · · · + eki and y = ej1 +

· · · + eji . There are vertices ex1 , . . . , exn−i and ey1 , . . . , eyn−i in FQn such that

{ek1 , . . . , eki , ex1
, . . . , exn−i

}=B={e1, e2, . . . , en}={ej1 , . . . , eji , ey1 , . . . , eyn−i
}. Let f

be the permutation on the set B which is defined by the rule, f(ekr ) = ejr , 1 ≤ r ≤ i,
and f(exl

) = eyl , 1 ≤ l ≤ n − i. We now can see that e(f)(x) = y, where e(f) is the

linear extension of f to Zn2 . Note that e(f) ∈ H.
Now suppose that w(x) 6= w(y). Without loss of generality we can assume that

w(x) = i and w(y) = n − i + 1. By Proposition 2, there is a vertex y1 in Γi−1 such

that w(y1) = i− 1 and y = u+ y1 (in fact y1 = y + u).

Let x = ek1 + · · ·+ eki and y1 = ej2 + · · ·+ eji . There are vertices ex1
, . . . , exn−i

and

ey1 , . . . , eyn−i in FQn such that {ek1 , . . . , eki , ex1 , . . . , exn−i}=B={e1, e2, . . . , en} and

{u, ej2 , . . . , eji , ey1 , . . . , eyn−i
} = T , |T | = n, T ⊂ S.

Let f : B −→ T be a one to one function such thatf(ek1) = u, f(ekr ) = eyr , 2 ≤ r ≤ i,
f(exr

) = eyr , 1 ≤ r ≤ n− i.
Now it is clear that for the automorphism e(f) we have e(f)(x) = y. Now, since

e(f) ∈ H, the result follows.

A block B, in the action of a group G on a set X, is a subset of X such that

B ∩ g(B) ∈ {B, ∅}, for each g in G. If G is transitive on X, then we say that the

permutation group (X,G) is primitive if the only blocks are the trivial blocks, that

is, those with cardinality 0,1 or |X|. In the case of an imprimitive permutation group

(X,G), the set X is partitioned into a disjoint union of non-trivial blocks, which are

permuted by G. We refer to this partition as a block system. A graph Γ is said to

be primitive or imprimitive according to the group Aut(Γ) acting on V (Γ) has the

corresponding property. In the sequel, we need the following definition.

Definition 1. A graph Γ = (V,E) of diameter D is said to be antipodal if for any
x, v, w ∈ V such that d(x, v) = d(x,w) = D, then we have d(v, w) = D or v = w.
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Let Γi(x) denote the set of vertices of Γ at distance i from the vertex x. Let Γ be a

distance-transitive graph. From Definition 1, it follows that if ΓD(x) is a singleton set,

then the graph Γ is antipodal. It is easy to see that the hypercube Qn is antipodal,

since every vertex u has a unique vertex at maximum distance from it. Note that this

graph is at the same time bipartite. We have the following result [1].

Proposition 3. A distance-transitive graph Γ of diameter D has a block X = {v}∪ΓD(v)
if and only if Γ is antipodal, where ΓD(v) is the set of vertices of Γ at distance D from the
vertex v.

Also, we have the following important result [1].

Theorem 2. An imprimitive distance-transitive graph is either bipartite or antipodal.
(Both possibilities can occur in the same graph.)

We have the following result.

Proposition 4. [23] The folded hypercube FQn is a bipartite graph if and only if n is
an odd integer.

We now can state and prove the following fact concerning the folded hypercube FQn.

Theorem 3. Let n ≥ 4 be an integer. Then, the folded hypercube FQn is a primitive
distance-transitive graph if and only if n is an even integer.

Proof. By Theorem 1, the folded hypercube FQn is a distance-transitive graph. If

n is an odd integer, then by Proposition 4, the folded hypercube FQn is a bipartite

graph, thus by Theorem 2, it is imprimitive.

Let n be an even integer. Therefore, by Proposition 4, FQn is not bipartite. Let

n = 2m. Thus the diameter of the FQn is m. Let v be a vertex in FQn such that

w(v) = m. Let t = u+ v, where u = e1 + e2 + · · ·+ en. Hence w(t) = m. This follows

that d(0, v) = d(0, t) = m, but d(v, t) = 1 6= m. Hence FQ2m is not antipodal. Thus,

by Theorem 2, FQ2m is primitive.

Let Γ = (V,E) be a simple connected graph with diameter D. A distance-regular

graph Γ = (V,E), with diameter D, is a regular connected graph of valency k with

the following property. There are positive integers

b0 = k, b1, . . . , bD−1; c1 = 1, c2, . . . , cD,

such that for each pair (u, v) of vertices satisfying u ∈ Γi(v), we have

(1) the number of vertices in Γi−1(v) adjacent to u is ci, 1 ≤ i ≤ D.



S.M. Mirafzal 7

(2) the number of vertices in Γi+1(v) adjacent to u is bi, 0 ≤ i ≤ D − 1.

The intersection array of Γ is i(Γ) = {k, b1, . . . , bD−1; 1, c2, ..., cD}.
It is easy to show that if Γ is a distance-transitive graph, then it is distance-regular

[1]. Hence, the hypercube Qn, n > 2 is a distance-regular graph. We can verify by

an easy argument that the intersection array of Qn is

{n, n− 1, n− 2, . . . , 1; 1, 2, 3, . . . , n}.

In other words, for hypercube Qn, we have bi = n − i, ci = i, 1 ≤ i ≤ n − 1, and

b0 = n, cn = n. In the following theorem, we determine the intersection array of the

Folded hypercube FQn.

Proposition 5. Let n > 3 be an integer and Γ = FQn be the folded hypercube. Let
D denote the diameter of FQn. Then for the intersection array of this graph we have
bi=n+ 1− i, 0 ≤ i < D. ci=i, 1 ≤ i ≤ D (note that D=dn

2
e).

Proof. Nothing to what is stated in the proof of Proposition 2, the proof of the

theorem is straightforward.

An automorphic graph is a distance-transitive graph whose automorphism group acts

primitively on its vertices, and not a complete graph or a line graph [1].

Automorphic graphs are apparently very rare. For instance, there are exactly three

cubic automorphic graphs [1]. It is clear that for n ≥ 3, the graph FQn is not a

complete graph. In the sequel, we show that if n ≥ 4 is an even integer, then the

graph FQn is an automorphic graph. In the first step, we show that FQn is not a

line graph. In the rest of our paper , we need some information about the eigenvalues

of FQn. We do not need the spectrum of FQn, that is, all the eigenvalues of FQn.

Let Γ be a graph with vertex set V (Γ) = V = {v1, v2, . . . , vn} and edge set E = E(Γ).

The adjacency matrix A = A(Γ) = [aij ] of Γ is an n× n symmetric matrix of 0s and

1s with aij = 1 if and only if vi and vj are adjacent. The characteristic polynomial

of Γ is the polynomial P (G) = P (G, x) = det(xIn − A), where In denotes the n × n
identity matrix. The spectrum of A(Γ) is also called the spectrum of Γ. If the

distinct eigenvalues are ordered by λ1 > λ2 > · · · > λr, and their multiplicities are

m1,m2, . . . ,mr, respectively, then we write,

Spec(Γ) =
(
λ1,λ2,...,λr

m1,m2,...,mr

)
or Spec(Γ) = {λm1

1 , λm2
2 , ..., λmr

r }.

Let Γ be a graph with vertex set V = {v1, v2, . . . , vn} and adjacency matrix A, and

the rows and columns of A are labeled by the set V . Let π be a permutation of the

set V . We know that π can be represented by a permutation matrix Pπ = P = (pij),

where pij = 1 if vi = π(vj), and pij = 0 otherwise. It is a well known fact that π is

an automorphism of the graph Γ if and only if AP = PA [1].
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Let Γ = (V,E) be a graph. The line graph L(Γ) of the graph Γ is constructed by

taking the edges of Γ as vertices of L(Γ), and joining two vertices in L(Γ) whenever

the corresponding edges in Γ have a common vertex. Note that if e = {v, w} is an

edge of Γ, then its degree in the graph L(Γ) is deg(v) + deg(w)− 2. Concerning the

eigenvalues of the line graphs, we have the following fact [1].

Proposition 6. If λ is an eigenvalue of a line graph L(Γ), then λ ≥ −2.

Therefore, if λ < −2 is an eigenvalue of a graph Γ, then Γ is not a line graph.

In the proof of the following theorem, we need the following fact.

Proposition 7. Let Γ = FQn. Then the mapping α : V (Γ) → V (Γ), α(v) = vc, where
vc is the complement of v (vc = (x̄1, x̄2, ..., x̄n), when v = (x1, x2, . . . , xn), 1̄=0, 0̄=1), is an
automorphism of Γ and the hypercube Qn.

Proof. The proof is straightforward.

Using this result we show that, without having the spectrum of the folded hypercube

FQn in the hand, if n ≥ 4, then FQn has an eigenvalue less than -2, hence it is not

a line graph.

Theorem 4. If n ≥ 4, then FQn is not a line graph.

Proof. If Γ = FQn, then by Proposition 7, the permutation α : V (Γ) → V (Γ),

α(v) = vc, where vc is the complement of the set v, is an automorphism of the graph

Γ and the hypercube Qn. Thus, if P is the permutation matrix of α, then we have

MP = PM where M is the adjacency matrix of the graph FQn.

It is not hard to check that the adjacency matrix of FQn is of the form M = A+ P ,

where A is the adjacency matrix of the hypercube Qn. Since α is of order 2, then

P 2 = E where E = Ih is the identity matrix of size h (h = 2n). Hence if p(x) = x2−1,

then p(P ) = 0. Thus, if µ is an eigenvalue of the matrix P , then p(µ) = 0, namely,

µ ∈ {1,−1}. Since α is an automorphism of the graph Qn, thus AP = PA. On

the other hand, the matrices A and P are symmetric, hence the matrices A and P

are diagonalizable, and therefore there is a basis B = {u1, . . . , uh} of Rh such that

each ui is an eigenvector of the matrices A and P [6]. Therefore, if Aui = λiui,

then Mui = (A + P )ui = λiui + tiui = (λi + ti)ui, where ti ∈ {1,−1}. Every

eigenvalue of the hypercube Qn is of the form n− 2i, 0 ≤ i ≤ n, [1]. Thus, for i = n,

n− 2n+ 1 = −n+ 1, or n− 2n− 1 = −n− 1 is an eigenvalue of the folded hypercube

FQn. Nothing that n ≥ 4, FQn has an eigenvalue δ such that δ ≤ −3. Now, by

Proposition 6, the hypercube FQn is not a line graph.



S.M. Mirafzal 9

Theorem 5. Let n ≥ 4 be an integer. Then the folded hypercube FQn is an automorphic
graph if and only if n is an even integer.

Proof. By Theorem 3, the folded hypercube FQn is a primitive distance-transitive

graph if and only if n is an even integer. By Theorem 4, FQn is not a line graph. It is

clear that FQn is not a complete graph. We now conclude that the folded hypercube

FQn is automorphic if and only if n is an even integer.
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