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Abstract: Let r ≥ 2. A subset S of vertices of a graph G is a r-hop independent

dominating set if every vertex outside S is at distance r from a vertex of S, and for
any pair v, w ∈ S, d(v, w) 6= r. A r-hop Roman dominating function (rHRDF) is a

function f on V (G) with values 0, 1 and 2 having the property that for every vertex

v ∈ V with f(v) = 0 there is a vertex u with f(u) = 2 and d(u, v) = r. A r-step
Roman dominating function (rSRDF) is a function f on V (G) with values 0, 1 and 2

having the property that for every vertex v with f(v) = 0 or 2, there is a vertex u

with f(u) = 2 and d(u, v) = r. A rHRDF f is a r-hop Roman independent dominating
function if for any pair v, w with non-zero labels under f , d(v, w) 6= r. We show that the

decision problem associated with each of r-hop independent domination, r-hop Roman

domination, r-hop Roman independent domination and r-step Roman domination is
NP-complete even when restricted to planar bipartite graphs or planar chordal graphs.

Keywords: Dominating set, Hop dominating set, Step dominating set, Hop Inde-
pendent set, Hop Roman dominating function, Hop Roman independent dominating

function, Complexity.

AMS Subject classification: 05C69

1. Introduction

For a graph G = (V,E) with vertex set V = V (G) and edge set E = E(G), the

order of G is n(G) = nG = |V (G)| and the size of G is m(G) = mG = |E(G)|. The

open neighborhood of a vertex v is NG(v) = {u ∈ V (G) |uv ∈ E(G)}. The degree

∗ Corresponding author



2 Generalized hop and step domination parameters in graphs

of v, denoted by deg(v), is |NG(v)|, and the open neighborhood of a subset S ⊆ V ,

is NG(S) =
⋃

v∈S NG(v). The distance between two vertices u and v in G, denoted

by d(u, v), is the minimum length of a (u, v)-path in G. A bipartite graph is a graph

whose vertices can chordal graph is a graph that does not contain an induced cycle

of length greater than 3. A planar graph is a graph which can be drawn in the plane

without any edges crossing. A vertex cover of a graph is a set of vertices such that

each edge of the graph is incident with at least one vertex of the set. A subset S

of vertices of a graph G is a dominating set of G if every vertex in V (G) − S has a

neighbor in S. For notation and graph theory terminology not given here, we refer to

[12].

Chartrand, Harary, Hossain, and Schultz [5] introduced the concept of r-step dom-

ination in graphs. For an integer r ≥ 1, two vertices in a graph G are said to r-step

dominate each other if they are at distance exactly r apart in G. A set S of vertices

in G is a r-step dominating set of G if every vertex in V (G) is r-step dominated by

some vertex of S. The r-step domination number, γrstep(G) of G, is the minimum

cardinality of a r-step dominating set of G. The concept of r-step was further stud-

ied, for example in [4, 11, 14, 25]. Ayyaswamy et al. [3, 20] introduced the a similar

concept, namely, hop domination in graphs. A subset S of vertices of a graph G is a

hop dominating set (HDS) if every vertex outside S is at distance two from a vertex

of S. The hop domination number, γh(G) of G, is the minimum cardinality of an

HDS of G. A subset S of vertices of a graph G is a hop independent dominating set

(HIDS) if S is a HDS and for any pair v, w ∈ S, d(v, w) 6= 2. The hop independent

domination number of G is the minimum cardinality of an HIDS of G. The concept of

hop domination was further studied, for example, in [2, 13, 17]. A generalized version

of hop domination, namely r-hop domination, (for any r ≥ 2) is studied in [17]. For

r ≥ 2, a subset S of vertices of G is a r-hop dominating set (rHDS) if every vertex

outside S is at distance r from a vertex of S. The r-hop domination number of G,

is the minimum cardinality of a rHDS of G. For a subset S ⊆ V (G) and a vertex

v ∈ V (G), we say that v is r-hop dominated by S (or S r-hop dominates v) if either

v ∈ S or v 6∈ S and d(u, v) = r for some vertex u ∈ S. Likewise, a subset S of vertices

of G is a r-hop independent dominating set (rHIDS) if every vertex outside S is at

distance r from a vertex of S, and for any pair v, w ∈ S, d(v, w) 6= r.

A function f : V −→ {0, 1, 2} having the property that for every vertex v ∈ V with

f(v) = 0, there exists a vertex u ∈ N(v) with f(u) = 2, is called a Roman dominating

function or just an RDF. The weight of an RDF f is the sum f(V ) =
∑

v∈V f(v).

The minimum weight of an RDF on G is called the Roman domination number of G

and is denoted by γR(G). For an RDF f in a graph G, we denote by Vi (or V f
i to

refer to f) the set of all vertices of G with label i under f . Thus an RDF f can be

represented by a triple (V0, V1, V2), and we can use the notation f = (V0, V1, V2). The

mathematical concept of Roman domination, was defined and discussed by Stewart

[24], and ReVelle and Rosing [21], and was subsequently developed by Cockayne et

al. [10]. Many variations, generalizations and applications of Roman dominations

parameters have been studied, and to see the latest progress until 2020 see [6–9].

Shabani at al. [23] introduced the concept of hop Roman dominating functions. A
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hop Roman dominating function (HRDF) is a function f : V −→ {0, 1, 2} having the

property that for every vertex v ∈ V with f(v) = 0 there is a vertex u with f(u) = 2

and d(u, v) = 2. The weight of an HRDF f is the sum f(V ) =
∑

v∈V f(v). The

minimum weight of an HRDF on G is called the hop Roman domination number of

G and is denoted γhR(G). For an HRDF f in a graph G, we denote by Vi (or V f
i to

refer to f) the set of all vertices of G with label i under f . Thus an HRDF f can

be represented by a triple (V0, V1, V2), and we can use the notation f = (V0, V1, V2).

For a function f = (V0, V1, V2) and a vertex v ∈ V (G), we say that v is hop Roman

dominated by f (or f hop Roman dominates v), if either v ∈ V1 ∪ V2 or there exist

u ∈ V2, such that d(v, u) = 2. An HRDF f = (V0, V1, V2) is a hop Roman independent

dominating function(HRIDF) if for any pair v, w ∈ V1∪V2, d(v, w) 6= 2. The minimum

weight of an HRIDF on G is called the hop Roman independent domination number

of G. The concept of hop Roman domination was further studied, for example in

[1, 15, 22].

We consider a generalized version of hop Roman domination. For r ≥ 2, a r-hop

Roman dominating function (rHRDF) is a function f : V −→ {0, 1, 2} having the

property that for every vertex v ∈ V with f(v) = 0 there is a vertex u with f(u) = 2

and d(u, v) = r. The weight of a rHRDF f is the sum f(V ) =
∑

v∈V f(v). The

minimum weight of a rHRDF on G is called the r-hop Roman domination number of

G and is denoted γrhR(G). For a function f = (V0, V1, V2) and a vertex v ∈ V (G), we

say that v is r-hop Roman dominated by f (or f r-hop Roman dominates v), if either

v ∈ V1∪V2 or there exist u ∈ V2, such that d(v, u) = r. A rHRDF f = (V0, V1, V2) is a

r-hop Roman independent dominating function(rHRIDF) if for any pair v, w ∈ V1∪V2,

d(v, w) 6= r. The minimum weight of a rHRIDF on G is called the r-hop Roman

independent domination number of G. Likewise, a r-step Roman dominating function

(rSRDF) is a function f : V −→ {0, 1, 2} having the property that for every vertex

v ∈ V0 ∪ V2 there is a vertex u ∈ V2 such that d(u, v) = r. The weight of a rSRDF f

is the sum f(V ) =
∑

v∈V f(v). The minimum weight of a rSRDF on G is called the

r-step Roman domination number of G.

Farhadi et al. [17] proved that for r ≥ 2, the decision problems associated with

both r-step domination and r-hop domination are NP-complete for planar bipartite

graphs and planar chordal graphs. Jafari Rad et al. [16] proved that the decision

problems associated with hop independent domination, r-hop Roman domination

and the hop Roman independent domination are NP-complete even when restricted

to planar bipartite graphs or planar chordal graphs.

In this paper we study the complexity of decision problems associated with the

r-hop independent domination, r-hop Roman domination, r-hop Roman independent

domination and r-step Roman domination. We show that the decision problem as-

sociated to each of these problems is NP-complete even when restricted to planar

bipartite graphs or planar chordal graphs. We use a transformation of the Vertex

Cover Problem which was one of Karp’s 21 NP-complete problems [19] (see also [18]).

The Vertex Cover Problem is the following decision problem.

Vertex Cover Problem (VCP).

Instance: A non-empty graph G, and a positive integer k.
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Question: Does G have a vertex cover of size at most k?

2. r-Hop Independent Domination

Consider the following decision problem:

r-Hop Independent Dominating Problem (rHIDP).

Instance: A non-empty graph G and two positive integers r ≥ 2 and k ≥ 1.

Question: Does G have a r-hop independent dominating set of size at most k?

We show that the decision problem for rHIDP is NP-complete even when restricted

to planar bipartite graphs or planar chordal graphs.

Theorem 1. r-HIDP is NP-complete for planar bipartite graphs.

Proof. Clearly, the rHIDP is NP, since it is easy to verify a “yes” instance of the

rHIDP in polynomial time. Now we transform the vertex cover problem to the rHIDP

so that one of them has a solution if and only if the other has a solution. Let G be a

connected planar bipartite graph of order nG and size mG ≥ 2. Let H be the graph

obtained from G as follows. For each edge e = uv ∈ E(G), we subdivide the edge

e, 2r − 1 times. Let x1e, x
2
e, . . . , x

2r−1
e be the subdivided vertices that are produced

by subdividing e, where xie is adjacent to xi+1
e , for i = 1, 2, . . . , 2r − 2, u is adjacent

to x1e, and v is adjacent to x2r−1e . For every vertex v ∈ V (G) ∪ {x1e, x2e, . . . , x2r−1e },
we add a P2r+1-path P v

2r+1 : v1v2 . . . v2r+1, and join vr+1 to v, and then subdivide

the edge vr+1v 2r − 2 times. Let y1v , y2v , . . . , y2r−2v be the subdivided vertices that

were produced by subdividing the edge vr+1v, where y1v is adjacent vr+1 and y2r−2v is

adjacent to v. For every vertex v ∈ {xre | e ∈ E(G)} we subdivide the edge vy2r−2v ,

and let zv be the subdivided vertex, where zv is adjacent to both v and y2r−2v . Finally,

for every vertex v ∈ {xre | e ∈ E(G)}, add a vertex v′ and join v′ to both x1e and x2r−1e

and then subdivide each edge v′x1e and v′x2r−1e , r − 2 times. The resulting graph H

has order nH = 4rnG+(8r2−2r−2)mG and size mH = (4r−1)nG+(8r2−2r−1)mG.

Figure 1 illustrates the graph H if G is a path P3 and r = 2.
We show that G has a vertex cover of size at most k if and only if H has an rHIDS of size at most

k + rnG + rmG(2r − 1). Assume SG is a vertex cover of size at most k. Let

SH = SG ∪
{
vr+1, vr+2, . . . , v2r | v ∈ SG

}
∪
{
vr+1, y

1
v , y

2
v , . . . , y

r−1
v | v ∈

(
(V (G)− SG) ∪ {x1

e, x
2
e, . . . , x

2r−1
e | e ∈ E(G)}

)}
.

Clearly d(a, b) 6= r for any pair a, b ∈ SH . We show SH is a rHIDS of size at most k+rnG+rmG(2r−
1). For each e ∈ E(G), the vertices xr

e and xr
e
′ are r-hop dominated by SG, any vertex on the path

from xr
e
′ to x1

e is r-hop dominated by {x1
er+1, y

1
x1
e
, y2

x1
e
, . . . , yr−1

x1
e
}, and any vertex on the path from

xr
e
′ to x2r−1

e is r-hop dominated by {x2r−1
e r+1, y

1

x2r−1
e

, y2
x2r−1
e

, . . . , yr−1

x2r−1
e
}. For any vertex v ∈ SG,

any vertex in {v1, v2, . . . , v2r+1}∪{y1v , y2v , . . . , y
2r−2
v } is hop dominated by {vr+1, vr+2, . . . , v2r}. For

any vertex v ∈ V (G)− SG, any vertex in {v1, v2, . . . , v2r+1} ∪ {y1v , y2v , . . . , y
2r−2
v } is hop dominated
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Figure 1. The graphs G and H in the proof of Theorem 1

by {vr+1, y1v , y
2
v , . . . , y

r−1
v }. For any edge e ∈ E(G), any vertex in

{xr
e1, x

r
e2, . . . , x

r
e2r+1} ∪ {y

1
xr
e
, y2xr

e
, . . . , y2r−2

xr
e
}

is r-hop dominated by {xr
er+1, y

1
xr
e
, y2xr

e
, . . . , yr−1

xr
e
}. Similarly, for any edge e ∈ E(G), any ver-

tex in {xi
e, x

i
e1, x

i
e2, . . . , x

i
e2r+1} ∪ {y1xi

e
, y2

xi
e
, . . . , y2r−2

xi
e
}, where i 6= r, is r-hop dominated by

{xi
er+1, y

1
xi
e
, y2

xi
e
, . . . , yr−1

xi
e
}. Consequently, SH is a rHIDS of size at most k + rnG + rmG(2r − 1).

Assume next that H has a rHIDS, SH , of size at most k+ rnG + rmG(2r− 1). It is evident that

for any vertex v ∈ V (G) ∪ {x1
e, x

2
e, . . . , x

2r−1
e | e ∈ E(G)},

|SH ∩ {v1, v2, . . . , v2r+1, y
1
v , y

2
v , . . . , y

2r−2
v }| ≥ r.

Let

A = SH ∩
⋃

v∈V (G)∪{x1
e,x

2
e,...,x

2r−1
e |e∈E(G)}

({v1, v2, . . . , v2r+1, y
1
v , y

2
v , . . . , y

2r−2
v }).

Then |A| ≥ rnG + rmG(2r − 1), and so |SH − A| ≤ k. For any edge e = uv, since xr
e
′ is r-hop

dominated by SH , either xr
e
′ ∈ SH or SH ∩ {u, v} 6= ∅. If for an edge e = uv, SH ∩ {u, v} = ∅, then

xr
e
′ ∈ SH , and we replace SH by (SH − {xr

e
′}) ∪ {u}. Thus we assume that for any edge e = uv,

SH ∩{u, v} 6= ∅. Thus SH ∩V (G) is a vertex cover for G of size at most k. Therefore G has a vertex

cover of size at most k, as desired.

We next prove the NP-completeness of rHIDP for planar chordal graphs.
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Theorem 2. rHIDP is NP-complete for planar chordal graphs.

Proof. Let G be a planar chordal graph of order nG and size mG ≥ 2, and let

H be the graph presented in the proof of Theorem 1. For any edge e ∈ E(G), let

x1e, x
2
e
′
, . . . , xr−1e

′
, xre
′ be vertices on the path from x1e to xre

′, and xre
′, xr+1

e
′
, . . . , x2r−1e

be the vertices on the path from xre
′ to x2r−1e . We join xie to both xie

′
and xi+1

e
′

for

each i = 2, 3, . . . , 2r − 3, and join x2r−2e to x2r−2e
′
. Let H ′ be the constructed graph.

Clearly H ′ is a planar chordal graph. Now with the same argument given in the proof

of Theorem 1, we can see that G has a vertex cover of size at most k if and only if

H ′ has an rHIDS of size at most k + rnG + rmG(2r − 1).

3. r-Hop Roman Domination

Consider the following decision problem:

r-Hop Roman Dominating Function Problem (rHRDFP).

Instance: A non-empty graph G, and two positive integers r ≥ 2 and k ≥ 1.

Question: Does G have a r-hop Roman dominating function of weight at most k?

We show that the decision problem for the rHRDFP is NP-complete even when

restricted to planar bipartite graphs or planar chordal graphs.

Theorem 3. For r ≥ 2, rHRDFP is NP-complete for planar bipartite graphs.

Proof. Clearly, the rHRDFP is in NP. We transform the vertex cover problem to the

rHRDFP so that one of them has a solution if and only if the other one has a solution.

Let G be a connected planar bipartite graph of order nG and size mG ≥ 2, and let

H be the graph obtained from G as follows: We convert each edge e = vu ∈ E(G)

into a double edge e1 = vu, and e2 = vu, and then subdivide each of edges e1 and e2,

2r − 1 times. Let the vertices x1ei , x
2
ei , . . . , x

2r−2
ei be the vertices that were produced

from subdividing the edge ei, for i = 1, 2, where the vertex x1ei is adjacent to v, for

i = 1, 2. For each edge e = vu ∈ E(G), we add a new vertex evu and a P2r+1-

path v1ev
2
e . . . v

2r+1
e , join the vertex evu to u, v and vr+1

e . Finally, we subdivide the

edge evuv
r+1
e , r − 2 times. Let y1v , . . . , y

r−2
v be the subdivided vertices produced by

subdivision of evuv
r+1
e , where y1v is adjacent to vr+1

e and yr−2v is adjacent to euv. The

resulting graph H has order nH = nG + (7r − 2)mG and size mH = (7r + 1)mG.

Figure 2 illustrates the graph H if G is a path P3 and r = 2. We note that since G

is connected and planar, so H is connected and planar. Further, by construction, H

is bipartite. Thus, H is a connected planar bipartite graph.

We show that G has a vertex cover of size at most k if and only if H has a rHRDF

of weight 2k + 2rmG. Assume that G has a vertex cover, SG, of size at most k. Let

SH = SG ∪
⋃

e=uv∈E(G)

{vr+1
e , y1v , . . . , y

r−2
v , evu}.
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Figure 2. The graph G and H in the proof of Theorem 3

We show that f = (V (H) − SH , ∅, SH) is an rHRDF for H of weight at most

2k + 2rmG. For every edge e = vu ∈ E(G), the vertex vr+1
e r-hop Roman dominates

the vertices v1e , v2r+1
e , u and v in H, while the vertex yiv (i = 1, 2, . . . , r − 2) r-hop

dominates the vertices vi+1
e , v2r+1−i

e , xie1 , xie2 , x2r−ie1 and x2r−ie2 . Furthermore, evu
r-hop Roman dominates the vertices xr+1

e1 and xr+1
e2 , since SG is a vertex cover in G.

Therefore, the function f is a rHRDF for H of weight at most 2k + 2rmG.

Assume next that f = (V f
0 , V

f
1 , V

f
2 ) is a rHRDF for H of weight 2k + 2rmG.

Without loss of generality we assume that f has minimum weight. If for an edge e ∈
E(G), f(v1e)+· · ·+f(v2r+1

e )+f(y1v)+· · ·+f(yr−2v )+f(evu) < 2r, then there is a vertex

in {v1e , . . . , v2r+1
e } such that it is not r-hop Roman dominated by f , a contradiction.

Therefore, f(v1e) + · · ·+ f(v2r+1
e ) + f(y1v) + · · ·+ f(yr−2v ) + f(evu) ≥ 2r for every edge

e ∈ E(G). If for an edge e ∈ E(G), f(ve2) + f(ve4) + f(evu) ≤ 1, then ve2 or ve4 is not

hop Roman dominated by f , a contradiction. Therefore, f(ve2) + f(ve4) + f(evu) ≥ 2

for every edge e ∈ E(G). Suppose that there exists an edge e = uv ∈ E(G) such

that f(xrei) > 0 for each i = 1, 2. Assume that f(u) ≥ f(v). Then the function g

defined by g(xre1) = g(xre2) = 0, g(u) = max{f(u), 2} and g(z) = f(z) otherwise, is

an rHRDF. If f(u) 6= 0 then g(V ) < f(V ), a contradiction by the choice of f . Thus,

assume that f(u) = 0, and so g is a minimum rHRDF. Thus we may assume that

f(xre1) = f(xre2) = 0 for any edge e = uv ∈ E(G). Then either f(u) = 2 or f(v) = 2.

Hence, SG = V f
2 ∩V (G) is a vertex cover of G of size at most 1

2

(
w(f)−2rmG

)
. Thus,

G has a vertex cover of size at most k.
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4. r-Hop Roman Independent Domination

We next study the complexity issue of the r-hop Roman independent domination.

Consider the following decision problem:

r-Hop Roman Independent Dominating Function Problem (HRIDFP).

Instance: A non-empty graph G, and two positive integers r ≥ 2 and k ≥ 1.

Question: Does G have a r-hop Roman independent dominating function of weight

at most k?

We show that the decision problem for rHRIDFP is NP-complete even when re-

stricted to planar bipartite graphs or planar chordal graphs.

Theorem 4. For r ≥ 2, rHRIDFP is NP-complete for planar bipartite graphs.

Proof. Let G be a graph of order nG and size mG, and let H be the connected

planar bipartite graph constructed in the proof of Theorem 1. Note that H has order

nH = 4rnG + (8r2 − 2r − 2)mG and size mH = (4r − 1)nG + (8r2 − 2r − 1)mG. We

show that G has a vertex cover of size at most k if and only if H has an rHRIDF of

weight at most 2k + 2rnG + 2rmG(2r − 1). Assume first that G has a vertex cover,

SG, of size at most k. Let

SH = SG ∪
{
vr+1, vr+2, . . . , v2r | v ∈ SG

}
∪
{
vr+1, y

1
v , y

2
v , . . . , y

r−1
v | v ∈

(
(V (G)− SG) ∪ {x1e, x2e, . . . , x2r−1e | e ∈ E(G)}

)}
.

Clearly d(a, b) 6= r for any pair a, b ∈ SH . We set f = (V (H) − SH , ∅, SH). As it is

proved in the proof of Theorem 1, that SH is a rHIDS for H, we conclude that any

vertex v with f(v) = 0 is r-hop dominated by a vertex u with f(u) = 2. Hence H

has a rHRIDF of weight at most 2k + 2rnG + 2rmG(2r − 1).

Assume now that H has a rHRIDF f , of weight at most 2k+2rnG +2rmG(2r−1).

It is evident that for any vertex v ∈ V (G) ∪ {x1e, x2e, . . . , x2r−1e | e ∈ E(G)},

∑
v∈{v1,v2,...,v2r+1,y1

v,y
2
v,...,y

2r−2
v }

f(v) ≥ 2r.

Let

A = SH ∩
⋃

v∈V (G)∪{x1
e,x

2
e,...,x

2r−1
e |e∈E(G)}

({v1, v2, . . . , v2r+1, y
1
v , y

2
v , . . . , y

2r−2
v }).

Then
∑

v∈A f(v) ≥ 2rnG +2rmG(2r−1). For any edge e = uv, since both xre and xre
′

are r-hop dominated by f , either f(xre) ≥ 1 and f(xre
′) ≥ 1, or 2 ∈ {f(u), f(v)}. If
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2 6∈ {f(u), f(v)}, then we replace f(u) by 2 and both f(xre) and f(xre
′) by 0. Thus we

my assume that for any edge e = uv, 2 ∈ {f(u), f(v)}. Then {v ∈ V (G) : f(v) = 2}
is a vertex cover for G of size at most 2k. Therefore G has a vertex cover of size at

most 2k.

Theorem 5. For r ≥ 2, rHRIDFP is NP-complete for planar chordal graphs.

Proof. Let G be a graph of order nG and size mG, and let H ′ be the connected planar

chordal graph constructed in the proof of Theorem 2. With a similar argument as it

is given in proof of Theorem 4, we can see that G has a vertex cover of size at most

k if and only if H ′ has an rHRIDS of weight at most 2k+ 2rnG + 2rmG(2r− 1).

5. r-Step Roman domination

Consider the following decision problem:

r-Step Roman Dominating Function Problem (rSRDFP).

Instance: A non-empty graph G, and two positive integers r ≥ 2 and k ≥ 1.

Question: Does G have a r-step Roman dominating function of weight at most k?

We show that the decision problem for rSRDFP is NP-complete even when re-

stricted to planar bipartite graphs or planar chordal graphs.

Theorem 6. For r ≥ 2, rSRDFP is NP-complete for planar bipartite graphs.

Proof. Clearly, the rSRDFP is in NP, since it is easy to verify a “yes” instance of

rSRDFP in polynomial time. Now we transform the vertex cover problem to the

rSRDFP so that one of them has a solution if and only if the other has a solution.

Let G be a connected planar bipartite graph of order nG and size mG ≥ 2. Let H be

the graph obtained from G as follows. For each edge e = uv ∈ E(G) we subdivide the

edge e, 2r−1 times, and add a path ve1v
e
2 . . . v

e
2r, and join ve1 to both u and v. For any

edge e = uv ∈ E(G), let euv be the subdivided vertex at distance r from both u and

v in H that resulted from subdividing the edge e, 2r − 1 times. Then add a vertex

euv
′ and join it to both neighbors of euv. Let H be the resulted graph. Then H has

order nH = nG + 4rmG and size mH = (4r + 3)mG. The transformation can clearly

be performed in polynomial time. We note that since G is connected and planar, so

H is connected and planar. Further, by construction, H is bipartite. Thus, H is a

connected planar bipartite graph. Figure 3 depicts the graph H if r = 2 and G = P3.

We show that G has a vertex cover of size at most k if and only if H has a r-step

Roman dominating function of weight at most 2k + 2rmG. Assume that G has a
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a

b

c

e

f

(a) G (b) H

ve4 ve3 ve2 ve1

vf4 vf3 vf2 vf1

c

b

a

eab eab
′

ebc ebc
′

Figure 3. The graphs G and H in the proof of Theorem 6 for r = 2

vertex cover, namely SG, of size at most k. Let

SH = SG ∪
⋃

e∈E(G)

{v1e , v2e , . . . , vre}.

We show that f = (V (H)−SH , ∅, SH) is a r-step Roman dominating function. Clearly

SG 6= ∅, since mG ≥ 2. For every edge e = uv ∈ E(G), the vertex ver r-step dominates

the vertices v2re , u and v in H, while the vertex vie (i = 1, 2, . . . , r−1)r-step dominates

the vertex vi+r
e and the r-neighbors of u and v in H that belong to the (u, v)-path in H

that resulted from subdividing the edge e = uv of G. Since SG is a vertex cover in G,

every subdivided vertex that is not a neighbor of a vertex in V (G) is r-step dominated

by the set SG in H. Further, the set SG r-step dominates the vertex vre for every edge

e ∈ E(G). Since G is connected and mG ≥ 2, for every two adjacent edges e and f in

G the vertices vie and vjf r-step dominate each other for 1 ≤ i, j < r, where i+ j = r.

Therefore, SH is a r-step dominating set for H, and thus f = (V (H)− SH , ∅, SH) is

a r-step Roman dominating function for H of weight at most 2k + 2rmG in H.

Suppose next that H has a r-step Roman dominating function f of weight at most

2k + 2rmG. Without loss of generality we assume that f has minimum weight. Let

e = uv ∈ E(G). For i = r+1, . . . , 2r, in order to r-step Roman dominate vie in H, it is

required that
∑2r

i=1 f(vie) ≥ 2r. If 2 6∈ {f(u), f(v)}, then f(euv) 6= 0 and f(euv
′) 6= 0.

Let g be a function obtained by changing both f(euv) and f(euv
′) to 0 and f(u) to

2. Since f has minimum weight, we find that w(g) = w(f). Thus we may assume

that 2 ∈ {f(u), f(v)}. Hence, {v ∈ V (G) : f(v) = 2} is a vertex cover of G. Further,

|{v ∈ V (G) : f(v) = 2}| ≤ k, since
∑2r

i=1 f(vie) ≥ 2r for every edge e ∈ E(G). Thus,

G has a vertex cover of size at most k.

Theorem 7. For r ≥ 2, rSRDFP is NP-complete for planar chordal graphs.

Proof. Let G be a connected planar chordal graph of order nG and size mG ≥ 2.

Let H be the graph obtained from G as follows. For each edge e = uv ∈ E(G)

we add a new vertex euv adjacent to both u and v in H and we add a Pr−1-path

e1uve
2
uv . . . e

r−1
uv and join euv to e1uv. Further, we add a P2r-path v1ev

2
e . . . v

2r
e ,
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and join v1e to u and v. Finally for each edge e = uv ∈ E(G) add a new vertex

er−1uv
′

and join it to the neighbor of er−1uv. The resulting graph H has order nH =

nG + (3r + 1)mG and size mH = (3r + 4)mG. The transformation can clearly be

performed in polynomial time. We note that since H is a connected planar chordal

graph.

e

f

h

a

b

c

(a) G (b) H

v4e v3e v2e

v4f v3f v2f

v1e

v1f

v1h v2h v3h v4h

c

b

a

e1ab
e1ab
′

eab

ebc

eac

Figure 4. The graphs G and H in the proof of Theorem 7 for r = 2

We show that G has a vertex cover of size at most k if and only if H has a r-step

Roman dominating function of weight at most 2k + 2rmG. Let SG be a vertex cover

of size at most k, and let

SH = SG ∪
⋃

e∈E(G)

{v1e , v2e , . . . , vre}.

Let f = (V (H) − SH , ∅, SH). Note that SG 6= ∅. For every edge e = uv ∈ E(G),

the vertex vre r-step dominates the vertices v2re , u and v in H, while the vertex vie
(1 ≤ i < r) r-step dominates the vertices vi+r

e and euv
r−i−1, where euv

0 =: euv.

Since SG is a vertex cover in G, every vertex euv
r−1 is r-step dominated by SG in

H. Further, SG r-step dominates vre for every edge e ∈ E(G). Since G is connected

and mG ≥ 2, for every two adjacent edges e and f in G the vertices vie and vjf r-step

dominate each other for 1 ≤ i, j < r, where i+ j = r. Therefore, f is a r-step Roman

dominating function of weight at most 2k + 2rmG.

Suppose next thatH has a r-step Roman dominating function f of weight at most 2k+

2rmG. Let e = uv ∈ E(G). For i = r+ 1, . . . , 2r, in order to r-step Roman dominate

vie in H, it is required that
∑2r

i=1 f(vie) ≥ 2r. If 2 6∈ {f(u), f(v)}, then f(er−1uv
′
) 6= 0

and f(er−1uv) 6= 0. Let g be a function obtained by changing both f(er−1uv) and

f(er−1uv
′
) to 0 and f(u) to 2. Since f has minimum weight, we find that w(g) = w(f).

Thus we may assume that 2 ∈ {f(u), f(v)}. Hence, {v ∈ V (G) : f(v) = 2} is a vertex

cover of G. Further, |{v ∈ V (G) : f(v) = 2}| ≤ k, since
∑2r

i=1 f(vie) ≥ 2r for every

edge e ∈ E(G). Thus, G has a vertex cover of size at most k.
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