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Abstract: A quasi total double Roman dominating function (QTDRD-function) on

a graph G = (V (G), E(G)) is a function f : V (G) −→ {0, 1, 2, 3} having the property
that (i) if f(v) = 0, then vertex v must have at least two neighbors assigned 2 under

f or one neighbor w with f(w) = 3; (ii) if f(v) = 1, then vertex v has at least one

neighbor w with f(w) ≥ 2, and (iii) if x is an isolated vertex in the subgraph induced by
the set of vertices assigned non-zero values, then f(x) = 2. The weight of a QTDRD-

function f is the sum of its function values over the whole vertices, and the quasi
total double Roman domination number γqtdR(G) equals the minimum weight of a
QTDRD-function on G. In this paper, we show that for any tree T of order n ≥ 4,

γqtdR(T ) ≤ n+ s(T )
2

, where s(T ) is the number of support vertices of T , that improves

a known bound.
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1. Introduction

All graphs considered in this article are finite, undirected, simple and without

isolated vertices. Let G = (V,E) = (V (G), E(G)) be a graph of order |V (G)| = n.

For any vertex v ∈ V (G), the open neighbourhood of v is the set N(v) = {u ∈ V |
uv ∈ E(G)} and the closed neighbourhood of v is the set N [v] = N(v) ∪ {v}. For

a set S ⊆ V , the open neighbourhood of S is N(S) =
⋃

v∈S N(v) and the closed

neighbourhood of S is N [S] = N(S) ∪ S. We denote the degree of a vertex v in a

graph G by degG(v), or simply by deg(v) if the graph G is clear from the context.

As usual a path and star on n vertices are denoted by Pn and K1,n−1, and DSp,q

denotes the double star of order p+ q+ 2. A vertex of degree one is called a leaf and

its neighbor a support vertex. A support vertex is said to be strong if it has at least

two leaf neighbors. A tree is an acyclic connected graph. For any integers r ≥ 1 and

t ≥ 0, let Fr,t be a tree obtained from a star K1,r+t by subdividing r edges exactly

once. We say Fr,t is a wounded spider if t ≥ 1 and r ≥ 0 and it is a healthy spider if

t = 0 and r ≥ 2. The center vertex of Fr,t is also called the head vertex and the vertex

at distance two from the head is called the foot vertex. A path joining two vertices

u and v is called a (u, v)-path. The diameter of a connected graph G, denoted by

diam(G), is the length of a shortest path between the most distanced vertices in G.

A diametral path of a graph G is a shortest path whose length equals diam(G). A

rooted tree T distinguishes one vertex r called the root. For a vertex v in a rooted

tree T , the maximal subtree at v is subtree of T induced by v and its descendants,

and is denoted by Tv. The depth of v is the largest distance from v to a descendant

of v.

Roman domination is a variation of domination that was formally introduced in

graph theory, by Cockayne et al. [6] in 2004. Since then, the topic has been widely

studied. For more details on Roman domination and its variants, we refer the reader

to the book chapters [3, 5] and survey [4]. It is worth mentioning that the quasi total

version for Roman dominating functions has been introduced by Cabrera Mart́ınez et

al. [2] and has been further studied in [7, 12, 15].

In 2016, Beeler el at. defined a new variant of Roman domination in [1], namely

double Roman dominating functions. A function f : V (G) → {0, 1, 2, 3} is a double

Roman dominating function (DRD-function) on a graph G if the following conditions

hold: (i) If f(v) = 0, then v must have one neighbor assigned 3 or two neighbors

each assigned 2, and (ii) If f(v) = 1, then v must have at least one neighbor w

with f(w) ≥ 2. The double Roman domination number γdR(G) equals the minimum

weight of a DRD-function on G. A DRD-function of G with weight γdR(G) is called

a γdR-function of G. For a DRD-function f , let Vi be the set of vertices assigned the

value i, where i ∈ {0, 1, 2, 3}. In that case, the function f will simply be referred to

as f = (V0, V1, V2, V3).

In 2020, Hao et al. [8] considered DRD-functions f such that the subgraph of G

induced by the set {v ∈ V | f(v) ≥ 1} has no isolated vertices, and call such functions

total double Roman dominating functions, TDRD-functions. The total double Roman

domination number γtdR(G) is the minimum weight of a TDRD-function on G. For
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more details, see also [9, 13, 14].

Recently, Kosari et al. [10, 11] defined the quasi total version for double Roman

dominating functions. A quasi total double Roman dominating function (QTDRD-

function) on a graph G is a DRD-function with the additional condition that if x is

an isolated vertex in the subgraph induced by the set of vertices labeled with 1, 2

or 3, then f(x) = 2. The minimum weight of a QTDRD-function on G is called the

quasi total double Roman domination number of G and is denoted by γqtdR(G).

In this paper, we are interested in the study of quasi total double Roman domination

number of trees and we prove that for any tree T of order n ≥ 4, γqtdR(T ) ≤ n+ s(T )
2 ,

where s(T ) denotes the number of support vertices of T .

2. An upper bound for trees

In this section, we show that for any tree T with order n ≥ 4, γqtdR(T ) ≤ n+ s(T )
2 ,

where s(T ) is the number of support vertices of T . We start with a simple observation

and some examples.

Observation 1. ([11]) If v is a strong support vertex of a graph G different from stars,
then there exists a γqtdR(G)-function f that assigns 3 to v and 0 to every leaf neighbor of v.

Example 1. Let P k
2,3 be a tree obtained from a path P := v1v2 . . . vk (k ≥ 4) by adding

a new vertex v and a path uw and adding the edges v2v and v3u. If k is odd, the assigning
a 3 to v2, a 2 to w and v2i+1 for i ∈ {1, . . . , k−1

2
} and a 0 to the other vertices provides a

QTDRD-function on P k
2,3 with weight k+4. If k is even, the assigning a 3 to v2, a 1 to vk, a 2

to w and v2i+1 for i ∈ {1, . . . , k−2
2
} and a 0 to the other vertices provides a QTDRD-function

on P k
2,3 with weight k + 4. Thus γqtdR(P k

2,3) ≤ n(P k
2,3) + 1.

Example 2. Let P k′
2,3 be a tree obtained from P k

2,3 by adding a new vertex v′ and adding
the edge vk−1v

′. If k is odd, the assigning a 3 to v2 and vk−1, a 2 to w and v2i+1 for
i ∈ {1, . . . , k−3

2
} and a 0 to the other vertices provides a QTDRD-function on P k′

2,3 with
weight k + 5. If k is even, the assigning a 3 to v2 and vk−1, a 1 to vk−2, a 2 to w and v2i+1

for i ∈ {1, . . . , k−4
2
} and a 0 to the other vertices provides a QTDRD-function on P k′

2,3 with

weight k + 5. Consequently, γqtdR(P k′
2,3) ≤ n(P k′

2,3) + 1.

Example 3. Let F k
r,t be a tree obtained from Fr,t centered at v by adding a path v1v2 . . . vk

and adding the edge v1v. If t ≥ 1, then let w be a leaf neighbor of v. If k is odd and t = 0,
then assigning a 2 to v, each leaf of Fr,t and v2i for i ∈ {1, . . . , k−1

2
}, a 1 to vk and a 0

to the other vertices provides a QTDRD-function on F k
r,t with weight n(F k

r,t) + 1. If k is
odd and t = 1, then assigning a 2 to v, each leaf of Fr,t at distance two from v and v2i for
i ∈ {1, . . . , k−1

2
}, a 1 to w and vk and a 0 to the other vertices provides a QTDRD-function

on F k
r,t with weight n(F k

r,t) + 1. If k is odd and t ≥ 2, then assigning a 3 to v, each leaf of
Fr,t at distance two from v and v2i for i ∈ {1, . . . , k−1

2
}, a 1 to w and vk and a 0 to the other

vertices provides a QTDRD-function on F k
r,t with weight at most n(F k

r,t) + 1.
If k is even and t = 0, the assigning a 2 to v and each leaf of Fr,t and v2i for i ∈ {1, . . . , k−1

2
}

and a 0 to the other vertices provides a QTDRD-function on F k
r,t with weight n(F k

r,t) + 1. If
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k is even and t = 1, the assigning a 2 to v, each leaf of Fr,t at distance two from v and v2i
for i ∈ {1, . . . , k−1

2
}, a 1 to w and a 0 to the other vertices provides a QTDRD-function on

F k
r,t with weight at most n(F k

r,t) + 1. Finally, if k is even and t ≥ 2, the assigning a 3 to v,
each leaf of Fr,t at distance two from v and v2i for i ∈ {1, . . . , k−1

2
}, a 1 to w and a 0 to the

other vertices provides a QTDRD-function on F k
r,t with weight at most n(F k

r,t) + 1. Thus,

in either case we have γqtdR(F k
r,t) ≤ n(F k

r,t) +
s(Fk

r,t)

2
.

Example 4. Let F k′
r,t be a tree obtained from F k

r,t by adding a new vertex z and the edge
vk−1z. As in the above examples, it can be seen that F k′

r,t has a QTDRD-function with
weight n(F k′

r,t) + 1.

Theorem 2. Let T be a tree of order n ≥ 4. Then γqtdR(T ) ≤ n+ s(T )
2
.

Proof. Let T be a tree of order n ≥ 4. We will proceed by induction on the order

n. If n = 4, then T ∈ {P4,K1,3} and clearly γqtdR(T ) ≤ 4 + s(T )
2 . This proves the

base case. Let n ≥ 5 and assume that if T ′ is a tree of order n′, where n′ < n and

n′ ≥ 4, then γqtdR(T ′) ≤ n′ + s(T ′)
2 . If T is a star, then the function that assigns 3 to

the central vertex, 1 to one of leaves and 0 to other leaves of the star, is a QTDRD-

function of T of weight 4, and so γqtdR(T ) = 4 < n + s(T )
2 . Hence, we may assume

that T is not a star and thus diam (T ) ≥ 3. If diam (T ) = 3, then T is a double star

T ∼= DSr,s, where r ≥ s ≥ 1 and r ≥ 2. Let x and y be the two support vertices

of T, where x has r leaf neighbors and y has s leaf neighbors. Then the function

that assigns 3 to x and y and 0 to remaining vertices of T is a QTDRD-function

of T of weight 6, leading to γqtdR(T ) = 6 ≤ n + s(T )
2 . Hence, we can assume that

diam (T ) ≥ 4, for otherwise the desired result follows.

If T has a support vertex v with at least three leaf neighbors, then consider the tree

T ′ obtained from T ′ by removing one leaf neighbor of v, say u. Observe that v remains

a strong support vertex in T ′ and that s(T ′) = s(T ). By Observation 1, v is assigned

3 under some γqtdR-function f on T ′, and such a γqtdR-function can be extended to

a QTDRD-function of T by assigning a 0 to u, leading to γqtdR(T ) ≤ γqtdR(T ′) ≤
(n− 1) + s(T ′)

2 < n+ s(T )
2 . Therefore, we can assume that every support vertex in T

is adjacent to one or two leaves.

Let u1u2 . . . uk be a diametral path of T chosen such that degT (u2) is as large as

possible. Note that u2 is a support vertex and thus degT (u2) ∈ {2, 3}. Root T at uk,

and consider the following cases.

Case 1. degT (u2) = 3.

Thus u2 has exactly two leaf neighbors. Suppose first that degT (u3) = 2 and let

T ′ = T − Tu3
, that is T ′ is a tree obtained from T by deleting the vertex u3 and its

descendants. We note that T ′ has order n′ ≥ 2, because diam (T ) ≥ 4. If n′ = 2,

then T is a tree obtained from the path u1 . . . u5 by adding a vertex z and an edge

u2z. In this case, it is not hard to see that γqtdR(T ) = 7 = n+ s(T )
2 . If n′ = 3, then

T is isomorphic to one of the trees T1 or T3 illustrated in Figure 1. In each case, it is

easy to see that γqtdR(T ) ≤ n + s(T )
2 . Hence we may assume that n′ ≥ 4. Since any
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T1 T2 T3

Figure 1.

γqtdR(T ′)-function can be extended to a QTDRD-function of T by assigning a 3 to

u2, a 1 to u3 and a 0 to the leaf neighbors of u2, by applying the induction hypothesis

on T ′, we have γqtdR(T ) ≤ γqtdR(T ′) + 4 ≤ (n− 4) + s(T )
2 + 4 = n+ s(T )

2 as desired.

Let us assume in the next that degT (u3) ≥ 3. Let T ′ = T − Tu2
, and note that T ′

has order n′ ≥ 4, because diam (T ) ≥ 4 and degT (u3) ≥ 3. Applying the induction

hypothesis on T ′, we have γqtdR(T ′) ≤ (n − 3) + s(T ′)
2 = (n − 3) + s(T )−1

2 . Now, if

there exists a γqtdR(T ′)-function f ′ such that f ′(u3) 6= 0, then f ′ can be extended

to a QTDRD-function of T by assigning 3 to u2 and 0 to its two leaf neighbors,

yielding γqtdR(T ) ≤ γqtdR(T ′) + 3 < n+ s(T )
2 . Henceforth, we may assume that every

γqtdR-function of T ′ assigns 0 to u3. According the choice of u2 on the diametral

path, let s be the number of children of u3, with degree 3, other than u2, r be the

number of children of u3 with degree 2 and t be the number of leaf neighbors of u3
in T . Observe that if t ≥ 2 (resp. r ≥ 2), then u3 would be assigned a 3 (resp. 2)

under some γqtdR-function of T ′, contradicting our earlier assumption. Hence t ≤ 1

and r ≤ 1. Similarly, if s ≥ 1, then u3 could be assigned at least 1 under some

γqtdR-function of T ′, contradicting our earlier assumption again. Hence s = 0. We

distinguish the following subcases.

Subcase 1.1. t = 1.

Let u′ denote the leaf neighbor of u3, and let f ′ be a γqtdR-function of T ′. By our

earlier assumption we have f ′(u3) = 0 and thus f ′(u′) = 2. Consider the following

situations.

(a) r = 1.
Then f ′(V (T ′u3

)) = 5. In this case, form f from γqtdR(T ′)-function f ′, by
letting f(x) = f ′(x) for all x ∈ T − Tu3

, f(u2) = f(u3) = 3, f(z) = 2 for the
leaf neighbor of the child of v3 with degree 2 and f(z) = 0 for the remaining
vertices of Tv3 . Then f is a QTDRD-function of T , yielding

γqtdR(T ) ≤ f ′(V (T − Tu3 )) + 8 = γqtdR(T ′) + 3 ≤ (n− 3) +
s(T )− 1

2
+ 3 < n+

s(T )

2
.

(b) r = 0 and degT (u4) ≥ 3.

Let T ′′ = T − Tu3
. Then s(T ′′) = s(T ) − 2 and T ′′ has order n′′ ≥ 3 because

diam (T ) ≥ 4 and degT (u4) ≥ 3. If n′′ = 3, then T is isomorphic to the tree

T4 depicted in Figure 2 and it is easy to see that γqtdR(T3) = 9 < n + s(T )
2 , as

desired. Hence, we may assume that n′′ ≥ 4. Applying the induction hypothesis
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u5 u4 u3 u2 u1

Figure 2. Tree T4

on T ′′, we have γqtdR(T ′′) ≤ (n−5) + s(T )−2
2 . Since any γqtdR(T ′′)-function can

be extended to a QTDRD-function of T by assigning 3 to the vertices u2 and u3,

and 0 to each leaf at Tu3
, we get γqtdR(T ) ≤ γqtdR(T ′′)+6 ≤ (n−5)+ s(T )−2

2 +6 =

n+ s(T )
2 .

(c) r = 0 and deg(u4) = 2.

Let T ′′′ be a tree obtained from T by deleting u4 and its descendants, that is

T ′′′ = T − Tu4
. Then s(T ′′′) ≤ s(T ) − 1 and T ′′′ has order n′′′ ≥ 1 because

diam (T ) ≥ 4. If n′′′ = 1, then T is isomorphic to the tree T5 depicted in Figure 3

and we have γqtdR(T5) = 8 < n+ s(T )
2 . If n′′′ = 2, then T is isomorphic to the tree

T6 depicted in Figure 4 and we have γqtdR(T6) = 9 < n+ s(T )
2 . If n′′′ = 3, then T

is isomorphic to one of the trees T7 or T8 depicted in Figure 5 and it is easy to see

that γqtdR(T ) = 10 < n+ s(T )
2 , as desired. Thus, we may suppose that n′′′ ≥ 4.

Applying the induction hypothesis on T ′′′, we have γqtdR(T ′′′) ≤ (n−6)+ s(T )−1
2 .

Since any γqtdR(T ′′′)-function can be extended to a QTDRD-function of T by

assigning 3 to the vertices v2 and v3, and 0 to each other vertices of Tv3 , we get

γqtdR(T ) ≤ γqtdR(T ′′′) + 6 ≤ (n− 6) + s(T )−1
2 + 6 < n+ s(T )

2 .

u5 u4 u3 u2 u1

Figure 3. Tree T5

u6 u5 u4 u3 u2 u1

Figure 4. Tree T6

Subcase 1.2. Assume that t = 0, r = 1 and deg(u4) ≥ 3.

Let T 1 = T − Tu3
. Since diam (T ) ≥ 4 and deg(u4) ≥ 3, T 1 has order n1 ≥ 3. If

n1 = 3, then T is isomorphic to the tree T2 of the Figure 1 and it can be seen that

γqtdR(T ) < n+ s(T )
2 . Consequently, we can assume in the next that n1 ≥ 4. Using the
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T7 T8

Figure 5. Two trees discussed in situation (c)

Figure 6. Family F

induction hypothesis on T 1, we have γqtdR(T 1) ≤ n1 + s(T 1)
2 = (n− 6) + s(T )−2

2 . Let

f1 be a γqtdR(T 1)-function. Then we extend f1 to a QTDRD-function of T of weight

γqtdR(T 1) + 7 by assigning 3 to the two children of u3, 1 to u3 and 0 to all leaves of

Tv3 . This leads to γqtdR(T ) ≤ γqtdR(T 1) + 7 ≤ (n− 6) + s(T )−2
2 + 7 = n+ s(T )

2 .

Subcase 1.3. Assume that t = 0, r = 1 and deg(u4) = 2.

If deg(ui) = 2 for i ∈ {4, 5, . . . , k − 1}, then T = P k
2,3 and Example 1 implies that

γqtdR(T ) ≤ n + 1 < n + s(T )
2 . Hence we assume that deg(ui) ≥ 3 for some i ∈

{5, . . . , k−1}. Let m ≥ 4 be the smallest integer with deg(um) = 2 and deg(um+1) ≥
3. If m = k − 1, then we must have T = P k′

2,3, since every support vertex in T is

adjacent to one or two leaves and Example 2 leads to γqtdR(T ) ≤ n + 1 < n + s(T )
2 .

Thus we assume that m < k − 2. Let T 2 = T − Tum . Clearly T 2 has order n2 ≥ 4.

Applying the induction hypothesis on T 2, we have γqtdR(T 2) ≤ n2 + s(T 2)
2 = (n−m−

3) + s(T )−2
2 . Let f1 be a γqtdR(T 2)-function and f2 be a γqtdR(Tum

)-function. Then

the function h defined on V (T ) by h(x) = f1(x) for x ∈ V (T 2) and h(x) = f2(x)

for x ∈ V (Tum
), is a QTDRD-function on T . Using Example 1, we get γqtdR(T ) ≤

γqtdR(T 2) + γqtdR(Tum) ≤ (n−m− 3) + s(T )−2
2 + (m+ 4) = n+ s(T )

2 .

Case 2. degT (u2) = 2.

By the choice of the diametral path, each child of u3 has degree at most two. Let r

be the number of children of v3 with degree 2 and t be the number of leaves adjacent

to v3. Note that r ≥ 1 and t ≥ 0. First let r = 1 and t = 0, that is degT (u3) = 2, and

let T ′ be the tree obtained from T by deleting u1. Since diam (T ) ≥ 4, T ′ has order

n′ ≥ 4. Applying the induction hypothesis on T ′, we have γqtdR(T ′) ≤ (n− 1) + s(T )
2 .

Let f ′ be a γqtdR(T ′)-function such that f(u2) is minimized. If f ′(v2) ≥ 2, then we

can extend f ′ to a QTDRD-function of T by assigning a 1 to u1 and this leads to

γqtdR(T ) ≤ γqtdR(T ′) + 1 ≤ n + s(T )
2 , as desired. If f ′(u2) = 0, then we must have

f(u3) = 3 and f(u4) ≥ 1 and by reassigning a 2 to u3 and assigning a 2 to u1, we

obtain a QTDRD-function of T and thus γqtdR(T ) ≤ γqtdR(T ′) + 1 ≤ n + s(T )
2 , as

desired. Hence we assume that f(u2) = 1. Then by the choice of f ′ we must have
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f(u3) = 2. By reassigning a 0 to u2 and assigning a 2 to u1, we obtain a QTDRD-

function of T . Consequently, γqtdR(T ) ≤ γqtdR(T ′) + 1 ≤ n+ s(T )
2 .

Assume next that r + t ≥ 2. We distinguish two situations.

Subcase 2.1. deg(u4) ≥ 3.
Let T ′ be the tree obtained from T by deleting u3 and all its descendants, that is
T ′ − Tu3

. Since diam (T ) ≥ 4 and deg(u4) ≥ 3, T ′ has order n′ ≥ 3. If n′ = 3,
then T is a tree belonging to the families F of trees illustrated in Figure 6 and so
n = t+ 2r + 4. It can be seen that

γqtdR(T ) =

{
2r + 5, if t = 0

2r + 6, if t ≥ 1,

and thus γqtdR(T ) < n + s(T )
2 . Therefore, we may assume in the next that n′ ≥ 4.

Applying the induction hypothesis on T ′, we have γqtdR(T ′) ≤ n′ + s(T ′)
2 . Now, if

t ≥ 2, then any γqtdR(T ′)-function f ′, can be extended to a QTDRD-function of T
of weight γqtdR(T ′) + 4 + 2r by assigning 3 to u3, 2 to every leaf neighbor of Tu3 not
adjacent to u3, 1 to one leaf neighbor of u3 and 0 to the remaining vertices of Tu3

. It
follows that

γqtdR(T ) ≤ (n− 2r − t− 1) +
s(T ′)

2
+ 4 + 2r = n− t+ 3 +

s(T )− r − 1

2
≤ n+

s(T )

2
,

as desired. Assume now that t = 1. Then any γqtdR(T ′)-function f ′ can be extended
to a QTDRD-function of T of weight γqtdR(T ′) + 3 + 2r by assigning 2 to u3 and all
leaves of Tu3 that are not adjacent to v3, 1 to the unique leaf neighbor of u3 and 0 to
the remaining vertices of Tu3

. It follows that

γqtdR(T ) ≤ (n− 2r − 2) +
s(T ′)

2
+ 3 + 2r = n+ 1 +

s(T )− r − 1

2
≤ n+

s(T )

2
,

as desired.
Now, let t = 0. Form f from any γqtdR(T ′) by assigning 2 to u3 and to each leaf
at distance two from u3 in Tu3

and 0 to the children of u3. Using the induction
hypothesis on T ′, it follows that

γqtdR(T ) ≤ γqtdR(T ′) + 2r + 2 ≤ (n− 2r − 1) +
s(T )− r

2
+ 2r + 2 ≤ n+

s(T )

2
,

as desired.

Subcase 2.2. degT (u4) = 2.
If degT (ui) = 2 for each 4 ≤ i ≤ k − 1, then T = F k

r,t and the result follows from
Example 3. Hence we assume that degT (vi) ≥ 3 for some 5 ≤ i ≤ k − 1. Let
m ≥ 4 be the smallest integer such that degT (um) = 2 and degT (um+1) ≥ 3. Let
T ′ = T − Tum

. Clearly, T ′ has order n′ ≥ 3. If n′ = 3, then T = F k′
r,t and the

result follows from Example 4. Therefore, we may assume in the next that n′ ≥ 4.

Applying the induction hypothesis on T ′, we have γqtdR(T ′) ≤ n′ + s(T ′)
2 . Let f ′

be a γqtdR(T ′)-function and f ′′ be a γqtdR(Tum)-function and define h on V (T ) bt
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h(x) = f ′(x) for x ∈ V (T ′) and h(x) = f ′′(x) for x ∈ V (Tum
). It is easy to see that

h is a QTDRD-function of T and thus

γqtdR(T ) ≤ γqtdR(T ′) + γqtdR(Tvm )

≤ (n− |V (Tvm )|) +
s(T ′)

2
+ |V (Tvm )|+ 1

≤ n+ 1 +
s(T )− 2

2
= n+

s(T )

2
.

This completes the proof. 2

Let T be a family of trees which is obtained from k paths P4 = x1ix
2
ix

3
ix

4
i (k ≥ 1) by

adding k−1 edges between x2i s such that the resulting graph is connected (see Figure

7 for k = 3). The proof of the following theorems can be found in [11].

x12 x32

x22

Figure 7. A tree T in the family T

Theorem 3 ([11]). For n ≥ 2, γqtdR(Pn) = n+ 1.

Theorem 4 ([11]). For any tree T of order n ≥ 4, γqtdR(T ) ≤ 5
4
n, with equality if and

only if T ∈ T .

These theorems show that the bound of Theorem 2 attains by any path of order at

least three and any tree T in the family T .
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