Quasi total double Roman domination in trees

Maryam Akhoundi ${ }^{1, *}$, Aysha Khan ${ }^{2}$, Jana Shafi ${ }^{3}$ and Lutz Volkmann ${ }^{4}$
${ }^{1}$ Clinical Research Development Unit of Rouhani Hospital, Babol University of Medical Sciences, Babol 4717647745, Iran
Maryam.akhoundi@mubabol.ac.ir
${ }^{2}$ Department of Mathematics, Prince Sattam bin Abdul Aziz University Alkharj 11991, Saudi Arabia a.aysha@psau.edu.sa
${ }^{3}$ Department of Computer Science, College of Arts and Science Prince Sattam bin Abdul Aziz University, Wadi Ad-Dwasir 11991, Saudi Arabia j.jana@psau.edu.sa
${ }^{4}$ RWTH Aachen University, 52056 Aachen, Germany
volkm@math2.rwth-aachen.de

Received: 10 June 2023; Accepted: 11 October 2023
Published Online: 15 October 2023

Abstract

A quasi total double Roman dominating function (QTDRD-function) on a graph $G=(V(G), E(G))$ is a function $f: V(G) \longrightarrow\{0,1,2,3\}$ having the property that (i) if $f(v)=0$, then vertex v must have at least two neighbors assigned 2 under f or one neighbor w with $f(w)=3$; (ii) if $f(v)=1$, then vertex v has at least one neighbor w with $f(w) \geq 2$, and (iii) if x is an isolated vertex in the subgraph induced by the set of vertices assigned non-zero values, then $f(x)=2$. The weight of a QTDRDfunction f is the sum of its function values over the whole vertices, and the quasi total double Roman domination number $\gamma_{q t d R}(G)$ equals the minimum weight of a QTDRD-function on G. In this paper, we show that for any tree T of order $n \geq 4$, $\gamma_{q t d R}(T) \leq n+\frac{s(T)}{2}$, where $s(T)$ is the number of support vertices of T, that improves a known bound.

Keywords: quasi total double Roman domination, total double Roman domination, double Roman domination number, Roman domination number

AMS Subject classification: 05C69

[^0]
1. Introduction

All graphs considered in this article are finite, undirected, simple and without isolated vertices. Let $G=(V, E)=(V(G), E(G))$ be a graph of order $|V(G)|=n$. For any vertex $v \in V(G)$, the open neighbourhood of v is the set $N(v)=\{u \in V \mid$ $u v \in E(G)\}$ and the closed neighbourhood of v is the set $N[v]=N(v) \cup\{v\}$. For a set $S \subseteq V$, the open neighbourhood of S is $N(S)=\bigcup_{v \in S} N(v)$ and the closed neighbourhood of S is $N[S]=N(S) \cup S$. We denote the degree of a vertex v in a graph G by $\operatorname{deg}_{G}(v)$, or simply by $\operatorname{deg}(v)$ if the graph G is clear from the context.

As usual a path and star on n vertices are denoted by P_{n} and $K_{1, n-1}$, and $D S_{p, q}$ denotes the double star of order $p+q+2$. A vertex of degree one is called a leaf and its neighbor a support vertex. A support vertex is said to be strong if it has at least two leaf neighbors. A tree is an acyclic connected graph. For any integers $r \geq 1$ and $t \geq 0$, let $F_{r, t}$ be a tree obtained from a star $K_{1, r+t}$ by subdividing r edges exactly once. We say $F_{r, t}$ is a wounded spider if $t \geq 1$ and $r \geq 0$ and it is a healthy spider if $t=0$ and $r \geq 2$. The center vertex of $F_{r, t}$ is also called the head vertex and the vertex at distance two from the head is called the foot vertex. A path joining two vertices u and v is called a (u, v)-path. The diameter of a connected graph G, denoted by $\operatorname{diam}(G)$, is the length of a shortest path between the most distanced vertices in G. A diametral path of a graph G is a shortest path whose length equals $\operatorname{diam}(G) . A$ rooted tree T distinguishes one vertex r called the root. For a vertex v in a rooted tree T, the maximal subtree at v is subtree of T induced by v and its descendants, and is denoted by T_{v}. The depth of v is the largest distance from v to a descendant of v.

Roman domination is a variation of domination that was formally introduced in graph theory, by Cockayne et al. [6] in 2004. Since then, the topic has been widely studied. For more details on Roman domination and its variants, we refer the reader to the book chapters $[3,5]$ and survey [4]. It is worth mentioning that the quasi total version for Roman dominating functions has been introduced by Cabrera Martínez et al. [2] and has been further studied in [7, 12, 15].

In 2016, Beeler el at. defined a new variant of Roman domination in [1], namely double Roman dominating functions. A function $f: V(G) \rightarrow\{0,1,2,3\}$ is a double Roman dominating function (DRD-function) on a graph G if the following conditions hold: (i) If $f(v)=0$, then v must have one neighbor assigned 3 or two neighbors each assigned 2 , and (ii) If $f(v)=1$, then v must have at least one neighbor w with $f(w) \geq 2$. The double Roman domination number $\gamma_{d R}(G)$ equals the minimum weight of a DRD-function on G. A DRD-function of G with weight $\gamma_{d R}(G)$ is called a $\gamma_{d R}$-function of G. For a DRD-function f, let V_{i} be the set of vertices assigned the value i, where $i \in\{0,1,2,3\}$. In that case, the function f will simply be referred to as $f=\left(V_{0}, V_{1}, V_{2}, V_{3}\right)$.

In 2020, Hao et al. [8] considered DRD-functions f such that the subgraph of G induced by the set $\{v \in V \mid f(v) \geq 1\}$ has no isolated vertices, and call such functions total double Roman dominating functions, TDRD-functions. The total double Roman domination number $\gamma_{t d R}(G)$ is the minimum weight of a TDRD-function on G. For
more details, see also $[9,13,14]$.
Recently, Kosari et al. [10,11] defined the quasi total version for double Roman dominating functions. A quasi total double Roman dominating function (QTDRDfunction) on a graph G is a DRD-function with the additional condition that if x is an isolated vertex in the subgraph induced by the set of vertices labeled with 1,2 or 3 , then $f(x)=2$. The minimum weight of a QTDRD-function on G is called the quasi total double Roman domination number of G and is denoted by $\gamma_{q t d R}(G)$.

In this paper, we are interested in the study of quasi total double Roman domination number of trees and we prove that for any tree T of order $n \geq 4, \gamma_{q t d R}(T) \leq n+\frac{s(T)}{2}$, where $s(T)$ denotes the number of support vertices of T.

2. An upper bound for trees

In this section, we show that for any tree T with order $n \geq 4, \gamma_{q t d R}(T) \leq n+\frac{s(T)}{2}$, where $s(T)$ is the number of support vertices of T. We start with a simple observation and some examples.

Observation 1. ([11]) If v is a strong support vertex of a graph G different from stars, then there exists a $\gamma_{q t d R}(G)$-function f that assigns 3 to v and 0 to every leaf neighbor of v.

Example 1. Let $P_{2,3}^{k}$ be a tree obtained from a path $P:=v_{1} v_{2} \ldots v_{k}(k \geq 4)$ by adding a new vertex v and a path $u w$ and adding the edges $v_{2} v$ and $v_{3} u$. If k is odd, the assigning a 3 to v_{2}, a 2 to w and $v_{2 i+1}$ for $i \in\left\{1, \ldots, \frac{k-1}{2}\right\}$ and a 0 to the other vertices provides a QTDRD-function on $P_{2,3}^{k}$ with weight $k+4$. If k is even, the assigning a 3 to v_{2}, a 1 to v_{k}, a 2 to w and $v_{2 i+1}$ for $i \in\left\{1, \ldots, \frac{k-2}{2}\right\}$ and a 0 to the other vertices provides a QTDRD-function on $P_{2,3}^{k}$ with weight $k+4$. Thus $\gamma_{q t d R}\left(P_{2,3}^{k}\right) \leq n\left(P_{2,3}^{k}\right)+1$.

Example 2. Let $P_{2,3}^{k \prime}$ be a tree obtained from $P_{2,3}^{k}$ by adding a new vertex v^{\prime} and adding the edge $v_{k-1} v^{\prime}$. If k is odd, the assigning a 3 to v_{2} and v_{k-1}, a 2 to w and $v_{2 i+1}$ for $i \in\left\{1, \ldots, \frac{k-3}{2}\right\}$ and a 0 to the other vertices provides a QTDRD-function on $P_{2,3}^{k \prime}$ with weight $k+5$. If k is even, the assigning a 3 to v_{2} and v_{k-1}, a 1 to v_{k-2}, a 2 to w and $v_{2 i+1}$ for $i \in\left\{1, \ldots, \frac{k-4}{2}\right\}$ and a 0 to the other vertices provides a QTDRD-function on $P_{2,3}^{k \prime}$ with weight $k+5$. Consequently, $\gamma_{q t d R}\left(P_{2,3}^{k \prime}\right) \leq n\left(P_{2,3}^{k \prime}\right)+1$.

Example 3. Let $F_{r, t}^{k}$ be a tree obtained from $F_{r, t}$ centered at v by adding a path $v_{1} v_{2} \ldots v_{k}$ and adding the edge $v_{1} v$. If $t \geq 1$, then let w be a leaf neighbor of v. If k is odd and $t=0$, then assigning a 2 to v, each leaf of $F_{r, t}$ and $v_{2 i}$ for $i \in\left\{1, \ldots, \frac{k-1}{2}\right\}$, a 1 to v_{k} and a 0 to the other vertices provides a QTDRD-function on $F_{r, t}^{k}$ with weight $n\left(F_{r, t}^{k}\right)+1$. If k is odd and $t=1$, then assigning a 2 to v, each leaf of $F_{r, t}$ at distance two from v and $v_{2 i}$ for $i \in\left\{1, \ldots, \frac{k-1}{2}\right\}$, a 1 to w and v_{k} and a 0 to the other vertices provides a QTDRD-function on $F_{r, t}^{k}$ with weight $n\left(F_{r, t}^{k}\right)+1$. If k is odd and $t \geq 2$, then assigning a 3 to v, each leaf of $F_{r, t}$ at distance two from v and $v_{2 i}$ for $i \in\left\{1, \ldots, \frac{k-1}{2}\right\}$, a 1 to w and v_{k} and a 0 to the other vertices provides a QTDRD-function on $F_{r, t}^{k}$ with weight at most $n\left(F_{r, t}^{k}\right)+1$.
If k is even and $t=0$, the assigning a 2 to v and each leaf of $F_{r, t}$ and $v_{2 i}$ for $i \in\left\{1, \ldots, \frac{k-1}{2}\right\}$ and a 0 to the other vertices provides a QTDRD-function on $F_{r, t}^{k}$ with weight $n\left(F_{r, t}^{k}\right)+1$. If
k is even and $t=1$, the assigning a 2 to v, each leaf of $F_{r, t}$ at distance two from v and $v_{2 i}$ for $i \in\left\{1, \ldots, \frac{k-1}{2}\right\}$, a 1 to w and a 0 to the other vertices provides a QTDRD-function on $F_{r, t}^{k}$ with weight at most $n\left(F_{r, t}^{k}\right)+1$. Finally, if k is even and $t \geq 2$, the assigning a 3 to v, each leaf of $F_{r, t}$ at distance two from v and $v_{2 i}$ for $i \in\left\{1, \ldots, \frac{k-1}{2}\right\}$, a 1 to w and a 0 to the other vertices provides a QTDRD-function on $F_{r, t}^{k}$ with weight at most $n\left(F_{r, t}^{k}\right)+1$. Thus, in either case we have $\gamma_{q t d R}\left(F_{r, t}^{k}\right) \leq n\left(F_{r, t}^{k}\right)+\frac{s\left(F_{r, t}^{k}\right)}{2}$.

Example 4. Let $F_{r, t}^{k \prime}$ be a tree obtained from $F_{r, t}^{k}$ by adding a new vertex z and the edge $v_{k-1} z$. As in the above examples, it can be seen that $F_{r, t}^{k \prime}$ has a QTDRD-function with weight $n\left(F_{r, t}^{k \prime}\right)+1$.

Theorem 2. Let T be a tree of order $n \geq 4$. Then $\gamma_{q t d R}(T) \leq n+\frac{s(T)}{2}$.

Proof. Let T be a tree of order $n \geq 4$. We will proceed by induction on the order n. If $n=4$, then $T \in\left\{P_{4}, K_{1,3}\right\}$ and clearly $\gamma_{q t d R}(T) \leq 4+\frac{s(T)}{2}$. This proves the base case. Let $n \geq 5$ and assume that if T^{\prime} is a tree of order n^{\prime}, where $n^{\prime}<n$ and $n^{\prime} \geq 4$, then $\gamma_{q t d R}\left(T^{\prime}\right) \leq n^{\prime}+\frac{s\left(T^{\prime}\right)}{2}$. If T is a star, then the function that assigns 3 to the central vertex, 1 to one of leaves and 0 to other leaves of the star, is a QTDRDfunction of T of weight 4 , and so $\gamma_{q t d R}(T)=4<n+\frac{s(T)}{2}$. Hence, we may assume that T is not a star and thus $\operatorname{diam}(T) \geq 3$. If $\operatorname{diam}(T)=3$, then T is a double star $T \cong D S_{r, s}$, where $r \geq s \geq 1$ and $r \geq 2$. Let x and y be the two support vertices of T, where x has r leaf neighbors and y has s leaf neighbors. Then the function that assigns 3 to x and y and 0 to remaining vertices of T is a QTDRD-function of T of weight 6 , leading to $\gamma_{q t d R}(T)=6 \leq n+\frac{s(T)}{2}$. Hence, we can assume that $\operatorname{diam}(T) \geq 4$, for otherwise the desired result follows.
If T has a support vertex v with at least three leaf neighbors, then consider the tree T^{\prime} obtained from T^{\prime} by removing one leaf neighbor of v, say u. Observe that v remains a strong support vertex in T^{\prime} and that $s\left(T^{\prime}\right)=s(T)$. By Observation $1, v$ is assigned 3 under some $\gamma_{q t d R}$-function f on T^{\prime}, and such a $\gamma_{q t d R}$-function can be extended to a QTDRD-function of T by assigning a 0 to u, leading to $\gamma_{q t d R}(T) \leq \gamma_{q t d R}\left(T^{\prime}\right) \leq$ $(n-1)+\frac{s\left(T^{\prime}\right)}{2}<n+\frac{s(T)}{2}$. Therefore, we can assume that every support vertex in T is adjacent to one or two leaves.

Let $u_{1} u_{2} \ldots u_{k}$ be a diametral path of T chosen such that $\operatorname{deg}_{T}\left(u_{2}\right)$ is as large as possible. Note that u_{2} is a support vertex and thus $\operatorname{deg}_{T}\left(u_{2}\right) \in\{2,3\}$. Root T at u_{k}, and consider the following cases.
Case 1. $\operatorname{deg}_{T}\left(u_{2}\right)=3$.
Thus u_{2} has exactly two leaf neighbors. Suppose first that $\operatorname{deg}_{T}\left(u_{3}\right)=2$ and let $T^{\prime}=T-T_{u_{3}}$, that is T^{\prime} is a tree obtained from T by deleting the vertex u_{3} and its descendants. We note that T^{\prime} has order $n^{\prime} \geq 2$, because $\operatorname{diam}(T) \geq 4$. If $n^{\prime}=2$, then T is a tree obtained from the path $u_{1} \ldots u_{5}$ by adding a vertex z and an edge $u_{2} z$. In this case, it is not hard to see that $\gamma_{q t d R}(T)=7=n+\frac{s(T)}{2}$. If $n^{\prime}=3$, then T is isomorphic to one of the trees T_{1} or T_{3} illustrated in Figure 1. In each case, it is easy to see that $\gamma_{q t d R}(T) \leq n+\frac{s(T)}{2}$. Hence we may assume that $n^{\prime} \geq 4$. Since any

Figure 1.
$\gamma_{q t d R}\left(T^{\prime}\right)$-function can be extended to a QTDRD-function of T by assigning a 3 to u_{2}, a 1 to u_{3} and a 0 to the leaf neighbors of u_{2}, by applying the induction hypothesis on T^{\prime}, we have $\gamma_{q t d R}(T) \leq \gamma_{q t d R}\left(T^{\prime}\right)+4 \leq(n-4)+\frac{s(T)}{2}+4=n+\frac{s(T)}{2}$ as desired. Let us assume in the next that $\operatorname{deg}_{T}\left(u_{3}\right) \geq 3$. Let $T^{\prime}=T-T_{u_{2}}$, and note that T^{\prime} has order $n^{\prime} \geq 4$, because $\operatorname{diam}(T) \geq 4$ and $\operatorname{deg}_{T}\left(u_{3}\right) \geq 3$. Applying the induction hypothesis on T^{\prime}, we have $\gamma_{q t d R}\left(T^{\prime}\right) \leq(n-3)+\frac{s\left(T^{\prime}\right)}{2}=(n-3)+\frac{s(T)-1}{2}$. Now, if there exists a $\gamma_{q t d R}\left(T^{\prime}\right)$-function f^{\prime} such that $f^{\prime}\left(u_{3}\right) \neq 0$, then f^{\prime} can be extended to a QTDRD-function of T by assigning 3 to u_{2} and 0 to its two leaf neighbors, yielding $\gamma_{q t d R}(T) \leq \gamma_{q t d R}\left(T^{\prime}\right)+3<n+\frac{s(T)}{2}$. Henceforth, we may assume that every $\gamma_{q t d R^{-}}$-function of T^{\prime} assigns 0 to u_{3}. According the choice of u_{2} on the diametral path, let s be the number of children of u_{3}, with degree 3 , other than u_{2}, r be the number of children of u_{3} with degree 2 and t be the number of leaf neighbors of u_{3} in T. Observe that if $t \geq 2$ (resp. $r \geq 2$), then u_{3} would be assigned a 3 (resp. 2) under some $\gamma_{q t d R}$-function of T^{\prime}, contradicting our earlier assumption. Hence $t \leq 1$ and $r \leq 1$. Similarly, if $s \geq 1$, then u_{3} could be assigned at least 1 under some $\gamma_{q t d R}$-function of T^{\prime}, contradicting our earlier assumption again. Hence $s=0$. We distinguish the following subcases.

Subcase 1.1. $t=1$.
Let u^{\prime} denote the leaf neighbor of u_{3}, and let f^{\prime} be a $\gamma_{q t d R^{\prime}}$-function of T^{\prime}. By our earlier assumption we have $f^{\prime}\left(u_{3}\right)=0$ and thus $f^{\prime}\left(u^{\prime}\right)=2$. Consider the following situations.
(a) $r=1$.

Then $f^{\prime}\left(V\left(T_{u_{3}}^{\prime}\right)\right)=5$. In this case, form f from $\gamma_{q t d R}\left(T^{\prime}\right)$-function f^{\prime}, by letting $f(x)=f^{\prime}(x)$ for all $x \in T-T_{u_{3}}, f\left(u_{2}\right)=f\left(u_{3}\right)=3, f(z)=2$ for the leaf neighbor of the child of v_{3} with degree 2 and $f(z)=0$ for the remaining vertices of $T_{v_{3}}$. Then f is a QTDRD-function of T, yielding

$$
\gamma_{q t d R}(T) \leq f^{\prime}\left(V\left(T-T_{u_{3}}\right)\right)+8=\gamma_{q t d R}\left(T^{\prime}\right)+3 \leq(n-3)+\frac{s(T)-1}{2}+3<n+\frac{s(T)}{2} .
$$

(b) $r=0$ and $\operatorname{deg}_{T}\left(u_{4}\right) \geq 3$.

Let $T^{\prime \prime}=T-T_{u_{3}}$. Then $s\left(T^{\prime \prime}\right)=s(T)-2$ and $T^{\prime \prime}$ has order $n^{\prime \prime} \geq 3$ because $\operatorname{diam}(T) \geq 4$ and $\operatorname{deg}_{T}\left(u_{4}\right) \geq 3$. If $n^{\prime \prime}=3$, then T is isomorphic to the tree T_{4} depicted in Figure 2 and it is easy to see that $\gamma_{q t d R}\left(T_{3}\right)=9<n+\frac{s(T)}{2}$, as desired. Hence, we may assume that $n^{\prime \prime} \geq 4$. Applying the induction hypothesis

Figure 2. Tree T_{4}
on $T^{\prime \prime}$, we have $\gamma_{q t d R}\left(T^{\prime \prime}\right) \leq(n-5)+\frac{s(T)-2}{2}$. Since any $\gamma_{q t d R}\left(T^{\prime \prime}\right)$-function can be extended to a QTDRD-function of T by assigning 3 to the vertices u_{2} and u_{3}, and 0 to each leaf at $T_{u_{3}}$, we get $\gamma_{q t d R}(T) \leq \gamma_{q t d R}\left(T^{\prime \prime}\right)+6 \leq(n-5)+\frac{s(T)-2}{2}+6=$ $n+\frac{s(T)}{2}$.
(c) $r=0$ and $\operatorname{deg}\left(u_{4}\right)=2$.

Let $T^{\prime \prime \prime}$ be a tree obtained from T by deleting u_{4} and its descendants, that is $T^{\prime \prime \prime}=T-T_{u_{4}}$. Then $s\left(T^{\prime \prime \prime}\right) \leq s(T)-1$ and $T^{\prime \prime \prime}$ has order $n^{\prime \prime \prime} \geq 1$ because $\operatorname{diam}(T) \geq 4$. If $n^{\prime \prime \prime}=1$, then T is isomorphic to the tree T_{5} depicted in Figure 3 and we have $\gamma_{q t d R}\left(T_{5}\right)=8<n+\frac{s(T)}{2}$. If $n^{\prime \prime \prime}=2$, then T is isomorphic to the tree T_{6} depicted in Figure 4 and we have $\gamma_{q t d R}\left(T_{6}\right)=9<n+\frac{s(T)}{2}$. If $n^{\prime \prime \prime}=3$, then T is isomorphic to one of the trees T_{7} or T_{8} depicted in Figure 5 and it is easy to see that $\gamma_{q t d R}(T)=10<n+\frac{s(T)}{2}$, as desired. Thus, we may suppose that $n^{\prime \prime \prime} \geq 4$. Applying the induction hypothesis on $T^{\prime \prime \prime}$, we have $\gamma_{q t d R}\left(T^{\prime \prime \prime}\right) \leq(n-6)+\frac{s(T)-1}{2}$. Since any $\gamma_{q t d R}\left(T^{\prime \prime \prime}\right)$-function can be extended to a QTDRD-function of T by assigning 3 to the vertices v_{2} and v_{3}, and 0 to each other vertices of $T_{v_{3}}$, we get $\gamma_{q t d R}(T) \leq \gamma_{q t d R}\left(T^{\prime \prime \prime}\right)+6 \leq(n-6)+\frac{s(T)-1}{2}+6<n+\frac{s(T)}{2}$.

Figure 3. Tree T_{5}

Figure 4. Tree T_{6}

Subcase 1.2. Assume that $t=0, r=1$ and $\operatorname{deg}\left(u_{4}\right) \geq 3$.
Let $T^{1}=T-T_{u_{3}}$. Since $\operatorname{diam}(T) \geq 4$ and $\operatorname{deg}\left(u_{4}\right) \geq 3, T^{1}$ has order $n_{1} \geq 3$. If $n_{1}=3$, then T is isomorphic to the tree T_{2} of the Figure 1 and it can be seen that $\gamma_{q t d R}(T)<n+\frac{s(T)}{2}$. Consequently, we can assume in the next that $n_{1} \geq 4$. Using the

Figure 5. Two trees discussed in situation (c)

Figure 6. Family \mathcal{F}
induction hypothesis on T^{1}, we have $\gamma_{q t d R}\left(T^{1}\right) \leq n_{1}+\frac{s\left(T^{1}\right)}{2}=(n-6)+\frac{s(T)-2}{2}$. Let f_{1} be a $\gamma_{q t d R}\left(T^{1}\right)$-function. Then we extend f_{1} to a QTDRD-function of T of weight $\gamma_{q t d R}\left(T^{1}\right)+7$ by assigning 3 to the two children of $u_{3}, 1$ to u_{3} and 0 to all leaves of $T_{v_{3}}$. This leads to $\gamma_{q t d R}(T) \leq \gamma_{q t d R}\left(T^{1}\right)+7 \leq(n-6)+\frac{s(T)-2}{2}+7=n+\frac{s(T)}{2}$.

Subcase 1.3. Assume that $t=0, r=1$ and $\operatorname{deg}\left(u_{4}\right)=2$.
If $\operatorname{deg}\left(u_{i}\right)=2$ for $i \in\{4,5, \ldots, k-1\}$, then $T=P_{2,3}^{k}$ and Example 1 implies that $\gamma_{q t d R}(T) \leq n+1<n+\frac{s(T)}{2}$. Hence we assume that $\operatorname{deg}\left(u_{i}\right) \geq 3$ for some $i \in$ $\{5, \ldots, k-1\}$. Let $m \geq 4$ be the smallest integer with $\operatorname{deg}\left(u_{m}\right)=2$ and $\operatorname{deg}\left(u_{m+1}\right) \geq$ 3. If $m=k-1$, then we must have $T=P_{2,3}^{k \prime}$, since every support vertex in T is adjacent to one or two leaves and Example 2 leads to $\gamma_{q t d R}(T) \leq n+1<n+\frac{s(T)}{2}$. Thus we assume that $m<k-2$. Let $T^{2}=T-T_{u_{m}}$. Clearly T^{2} has order $n_{2} \geq 4$. Applying the induction hypothesis on T^{2}, we have $\gamma_{q t d R}\left(T^{2}\right) \leq n_{2}+\frac{s\left(T^{2}\right)}{2}=(n-m-$ $3)+\frac{s(T)-2}{2}$. Let f_{1} be a $\gamma_{q t d R}\left(T^{2}\right)$-function and f_{2} be a $\gamma_{q t d R}\left(T_{u_{m}}\right)$-function. Then the function h defined on $V(T)$ by $h(x)=f_{1}(x)$ for $x \in V\left(T^{2}\right)$ and $h(x)=f_{2}(x)$ for $x \in V\left(T_{u_{m}}\right)$, is a QTDRD-function on T. Using Example 1, we get $\gamma_{q t d R}(T) \leq$ $\gamma_{q t d R}\left(T^{2}\right)+\gamma_{q t d R}\left(T_{u_{m}}\right) \leq(n-m-3)+\frac{s(T)-2}{2}+(m+4)=n+\frac{s(T)}{2}$.
Case 2. $\operatorname{deg}_{T}\left(u_{2}\right)=2$.
By the choice of the diametral path, each child of u_{3} has degree at most two. Let r be the number of children of v_{3} with degree 2 and t be the number of leaves adjacent to v_{3}. Note that $r \geq 1$ and $t \geq 0$. First let $r=1$ and $t=0$, that is $\operatorname{deg}_{T}\left(u_{3}\right)=2$, and let T^{\prime} be the tree obtained from T by deleting u_{1}. Since $\operatorname{diam}(T) \geq 4, T^{\prime}$ has order $n^{\prime} \geq 4$. Applying the induction hypothesis on T^{\prime}, we have $\gamma_{q t d R}\left(T^{\prime}\right) \leq(n-1)+\frac{s(T)}{2}$. Let f^{\prime} be a $\gamma_{q t d R}\left(T^{\prime}\right)$-function such that $f\left(u_{2}\right)$ is minimized. If $f^{\prime}\left(v_{2}\right) \geq 2$, then we can extend f^{\prime} to a QTDRD-function of T by assigning a 1 to u_{1} and this leads to $\gamma_{q t d R}(T) \leq \gamma_{q t d R}\left(T^{\prime}\right)+1 \leq n+\frac{s(T)}{2}$, as desired. If $f^{\prime}\left(u_{2}\right)=0$, then we must have $f\left(u_{3}\right)=3$ and $f\left(u_{4}\right) \geq 1$ and by reassigning a 2 to u_{3} and assigning a 2 to u_{1}, we obtain a QTDRD-function of T and thus $\gamma_{q t d R}(T) \leq \gamma_{q t d R}\left(T^{\prime}\right)+1 \leq n+\frac{s(T)}{2}$, as desired. Hence we assume that $f\left(u_{2}\right)=1$. Then by the choice of f^{\prime} we must have
$f\left(u_{3}\right)=2$. By reassigning a 0 to u_{2} and assigning a 2 to u_{1}, we obtain a QTDRDfunction of T. Consequently, $\gamma_{q t d R}(T) \leq \gamma_{q t d R}\left(T^{\prime}\right)+1 \leq n+\frac{s(T)}{2}$.
Assume next that $r+t \geq 2$. We distinguish two situations.
Subcase 2.1. $\operatorname{deg}\left(u_{4}\right) \geq 3$.
Let T^{\prime} be the tree obtained from T by deleting u_{3} and all its descendants, that is $T^{\prime}-T_{u_{3}}$. Since $\operatorname{diam}(T) \geq 4$ and $\operatorname{deg}\left(u_{4}\right) \geq 3, T^{\prime}$ has order $n^{\prime} \geq 3$. If $n^{\prime}=3$, then T is a tree belonging to the families \mathcal{F} of trees illustrated in Figure 6 and so $n=t+2 r+4$. It can be seen that

$$
\gamma_{q t d R}(T)= \begin{cases}2 r+5, & \text { if } t=0 \\ 2 r+6, & \text { if } t \geq 1,\end{cases}
$$

and thus $\gamma_{q t d R}(T)<n+\frac{s(T)}{2}$. Therefore, we may assume in the next that $n^{\prime} \geq 4$. Applying the induction hypothesis on T^{\prime}, we have $\gamma_{q t d R}\left(T^{\prime}\right) \leq n^{\prime}+\frac{s\left(T^{\prime}\right)}{2}$. Now, if $t \geq 2$, then any $\gamma_{q t d R}\left(T^{\prime}\right)$-function f^{\prime}, can be extended to a QTDRD-function of T of weight $\gamma_{q t d R}\left(T^{\prime}\right)+4+2 r$ by assigning 3 to $u_{3}, 2$ to every leaf neighbor of $T_{u_{3}}$ not adjacent to $u_{3}, 1$ to one leaf neighbor of u_{3} and 0 to the remaining vertices of $T_{u_{3}}$. It follows that

$$
\gamma_{q t d R}(T) \leq(n-2 r-t-1)+\frac{s\left(T^{\prime}\right)}{2}+4+2 r=n-t+3+\frac{s(T)-r-1}{2} \leq n+\frac{s(T)}{2},
$$

as desired. Assume now that $t=1$. Then any $\gamma_{q t d R}\left(T^{\prime}\right)$-function f^{\prime} can be extended to a QTDRD-function of T of weight $\gamma_{q t d R}\left(T^{\prime}\right)+3+2 r$ by assigning 2 to u_{3} and all leaves of $T_{u_{3}}$ that are not adjacent to $v_{3}, 1$ to the unique leaf neighbor of u_{3} and 0 to the remaining vertices of $T_{u_{3}}$. It follows that

$$
\gamma_{q t d R}(T) \leq(n-2 r-2)+\frac{s\left(T^{\prime}\right)}{2}+3+2 r=n+1+\frac{s(T)-r-1}{2} \leq n+\frac{s(T)}{2},
$$

as desired.
Now, let $t=0$. Form f from any $\gamma_{q t d R}\left(T^{\prime}\right)$ by assigning 2 to u_{3} and to each leaf at distance two from u_{3} in $T_{u_{3}}$ and 0 to the children of u_{3}. Using the induction hypothesis on T^{\prime}, it follows that

$$
\gamma_{q t d R}(T) \leq \gamma_{q t d R}\left(T^{\prime}\right)+2 r+2 \leq(n-2 r-1)+\frac{s(T)-r}{2}+2 r+2 \leq n+\frac{s(T)}{2}
$$

as desired.
Subcase 2.2. $\operatorname{deg}_{T}\left(u_{4}\right)=2$.
If $\operatorname{deg}_{T}\left(u_{i}\right)=2$ for each $4 \leq i \leq k-1$, then $T=F_{r, t}^{k}$ and the result follows from Example 3. Hence we assume that $\operatorname{deg}_{T}\left(v_{i}\right) \geq 3$ for some $5 \leq i \leq k-1$. Let $m \geq 4$ be the smallest integer such that $\operatorname{deg}_{T}\left(u_{m}\right)=2$ and $\operatorname{deg}_{T}\left(u_{m+1}\right) \geq 3$. Let $T^{\prime}=T-T_{u_{m}}$. Clearly, T^{\prime} has order $n^{\prime} \geq 3$. If $n^{\prime}=3$, then $T=F_{r, t}^{k \prime}$ and the result follows from Example 4. Therefore, we may assume in the next that $n^{\prime} \geq 4$. Applying the induction hypothesis on T^{\prime}, we have $\gamma_{q t d R}\left(T^{\prime}\right) \leq n^{\prime}+\frac{s\left(T^{\prime}\right)}{2}$. Let f^{\prime} be a $\gamma_{q t d R}\left(T^{\prime}\right)$-function and $f^{\prime \prime}$ be a $\gamma_{q t d R}\left(T_{u_{m}}\right)$-function and define h on $V(T)$ bt
$h(x)=f^{\prime}(x)$ for $x \in V\left(T^{\prime}\right)$ and $h(x)=f^{\prime \prime}(x)$ for $x \in V\left(T_{u_{m}}\right)$. It is easy to see that h is a QTDRD-function of T and thus

$$
\begin{aligned}
\gamma_{q t d R}(T) & \leq \gamma_{q t d R}\left(T^{\prime}\right)+\gamma_{q t d R}\left(T_{v_{m}}\right) \\
& \leq\left(n-\left|V\left(T_{v_{m}}\right)\right|\right)+\frac{s\left(T^{\prime}\right)}{2}+\left|V\left(T_{v_{m}}\right)\right|+1 \\
& \leq n+1+\frac{s(T)-2}{2}=n+\frac{s(T)}{2} .
\end{aligned}
$$

This completes the proof.
Let \mathcal{T} be a family of trees which is obtained from k paths $P_{4}=x_{i}^{1} x_{i}^{2} x_{i}^{3} x_{i}^{4}(k \geq 1)$ by adding $k-1$ edges between x_{i}^{2} s such that the resulting graph is connected (see Figure 7 for $k=3$). The proof of the following theorems can be found in [11].

Figure 7. A tree T in the family \mathcal{T}

Theorem 3 ([11]). For $n \geq 2, \gamma_{q t d R}\left(P_{n}\right)=n+1$.

Theorem 4 ([11]). For any tree T of order $n \geq 4, \gamma_{q t d R}(T) \leq \frac{5}{4} n$, with equality if and only if $T \in \mathcal{T}$.

These theorems show that the bound of Theorem 2 attains by any path of order at least three and any tree T in the family \mathcal{T}.

Acknowledgements. The authors are grateful to anonymous referees for their constructive suggestions that improved the paper.

Conflict of interest. The authors declare that they have no conflict of interest.

Data Availability. Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

[1] R.A. Beeler, T.W. Haynes, and S.T. Hedetniemi, Double Roman domination, Discrete Appl. Math. 211 (2016), 23-29
https://doi.org/10.1016/j.dam.2016.03.017.
[2] S. Cabrera García, A.C. Martínez, and I.G. Yero, Quasi-total Roman domination in graphs, Results Math. 74 (2019), no. 4, Article number 173 https://doi.org/10.1007/s00025-019-1097-5.
[3] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami, and L. Volkmann, Roman domination in graphs, Topics in Domination in Graphs (T.W. Haynes, S.T. Hedetniemi, and M.A. Henning, eds.), Springer, Berlin/Heidelberg, 2020, p. 365-409.
[4] , Varieties of Roman domination II, AKCE Int. J. Graphs Comb. 17 (2020), no. 3, 966-984
https://doi.org/10.1016/j.akcej.2019.12.001.
[5] __ Varieties of Roman domination, Structures of Domination in Graphs (T.W. Haynes, S.T. Hedetniemi, and M.A. Henning, eds.), Springer, Berlin/Heidelberg, 2021, p. 273-307.
[6] E.J. Cockayne, P.A. Dreyer Jr, S.M. Hedetniemi, and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004), no. 1-3, 11-22 https://doi.org/10.1016/j.disc.2003.06.004.
[7] N. Ebrahimi, J. Amjadi, M. Chellali, and S.M. Sheikholeslami, Quasi-total Roman reinforcement in graphs, AKCE Int. J. Graphs Comb. 20 (2023), no. 1, 1-8 https://doi.org/10.1080/09728600.2022.2158051.
[8] G. Hao, L. Volkmann, and D.A. Mojdeh, Total double Roman domination in graphs, Commun. Comb. Optim. 5 (2020), no. 1, 27-39
https://doi.org/10.22049/cco.2019.26484.1118.
[9] G. Hao, Z. Xie, S.M. Sheikholeslami, and M. Hajjari, Bounds on the total double Roman domination number of graphs, Discuss. Math. Graph Theory 43 (2023), no. 4, 1033-1061 https://doi.org/10.7151/dmgt.2417.
[10] S. Kosari, S. Babaei, J. Amjadi, M. Chellali, and S.M. Sheikholeslami, Bounds on quasi total double roman domination in graphs, (Submitted).
[11] \qquad , Quasi total double Roman domination in graphs, (Submitted).
[12] A.C. Martínez, J.C. Hernández-Gómez, and J.M. Sigarreta, On the quasi-total Roman domination number of graphs, Mathematics 9 (2021), no. 21, Article number 2823
https://doi.org/10.3390/math9212823.
[13] Z. Shao, J. Amjadi, S.M. Sheikholeslami, and M. Valinavaz, On the total double Roman domination, IEEE Access 7 (2019), 52035-52041 https://doi.org/10.1109/ACCESS.2019.2911659.
[14] A. Teymourzadeh and D.A. Mojdeh, Covering total double Roman domination in graphs, Commun. Comb. Optim. 8 (2023), no. 1, 115-125 https://doi.org/10.22049/cco.2021.27443.1265.
[15] M. Vikas and P. Venkata Subba Reddy, Algorithmic aspects of quasi-total Roman domination in graphs, Commun. Comb. Optim. 7 (2022), no. 1, 93-104
https://doi.org/10.22049/cco.2021.27126.1200.

[^0]: * Corresponding Author

